A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    


Paper Title Other Keywords Page
MOAA003 PEP-II and KEKB Operational Status luminosity, interaction-region, beam-beam-effects, collider 276
  • J. Seeman
    SLAC, Menlo Park, California
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

The present two B-Factories, KEKB at Tsukuba in Japan and PEP-II at SLAC in California, operate at the Upsilon 4S and have reached parameter levels unprecedented for e+e- colliders. They have provided very large data samples for their respective particle detectors, BELLE and BaBar. Luminosities are approaching 1 x 1034/cm2/s and beyond. Beam currents have reached over 2.5 A with 1600 positron bunches spaced by 4 nsec. Continuous injection with the detectors taking data has added significantly to data collection rates. Bunch-by-bunch feedback systems damp strong longitudinal and transverse coupled bunch instabilities. The beam-beam interaction has allowed high tune shift levels even in the presence of parasitic crossing and crossing angle effects. Both B-Factory colliders have significant near term luminosity improvement programs.

MOPA001 Advances in the Understanding and Operations of Superconducting Colliders dipole, sextupole, coupling, multipole 54
  • P. Bauer, G. Annala, M.A. Martens, V.D. Shiltsev, G. Velev
    Fermilab, Batavia, Illinois
  • L. Bottura, N.J. Sammut
    CERN, Geneva
  Chromaticity drift is a well-known and more or less understood phenomenon in superconducting colliders such as the Tevatron. Less known is the effect of tune and coupling drift, also observed in the Tevatron during injection. Recently, in the context of the Tevatron collider run II, extensive studies of chromaticity, tune and coupling drifts were conducted to improve Tevatron performance. The studies included not only beam studies but also extensive off-line magnetic measurements on spare Tevatron dipoles. Some of these measurements were conducted in collaboration with Cern. Cern’s interest in multipole drifts is related to the future LHC, which will have similar issues. The following will report on the results of these studies. A new result, which will be presented here also, is related to fast drifts occurring in the first few seconds of the injection porch. These fast drifts were observed first in the Tevatron and efforts are underway to explain them. The author will also attempt to broaden the discussion to include the discussion of drift effects in the accelerating fields of superconducting linear accelerators.  
MOPA002 Performance Limitations in High-Energy Ion Colliders ion, luminosity, electron, heavy-ion 122
  • W. Fischer
    BNL, Upton, Long Island, New York
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886.

High-energy ion colliders (hadron colliders operating with species other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. However, the experiments also expect flexibility with frequent changes in the collision energy, lattice configuration, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams, attention must be paid to space charge, charge exchange, and intra-beam scattering effects. The latter leads to luminosity lifetimes of only a few hours for heavy ions. Ultimately cooling at full energy is needed to overcome this effect. Currently, the Relativistic Heavy Ion Collider at BNL is the only operating high-energy ion collider. The Large Hadron Collider, under construction at CERN, will also run with heavy ions.

MOPA004 Status of Slip Stacking at Fermilab Main Injector beam-loading, target, booster, emittance 347
  • K. Seiya, T. Berenc, B. Chase, J.E. Dey, I. Kourbanis, J.A. MacLachlan, K.G. Meisner, R.J. Pasquinelli, J. Reid, C.H. Rivetta, J. Steimel
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U.S. Department of Energy under contract DE-AC02-76CH03000.

In order to increase proton intensity on anti proton production cycle of the Main Injector we are going to use the technique of 'slip stacking' and doing machine studies. In slip stacking, one bunch train is injected at slightly lower energy and second train is at slightly higher energy. Afterwards they are aligned longitudinally and captured with one rf bucket. This longitudinal stacking process is expected to double the bunch intensity. The required intensity for anti proton production is 8·1012 protons in 84 bunches. Beam studies of the slip stacking process have started and we have already established that the stacking procedure works as expected for a low beam intensity. In order to make this stacking process usable for higher intensity beam in standard mode of operation, we are working on high intensity beam and the development of the feedback and feed forward system is under way.

MOPA008 On the Feasibility of a Tripler Upgrade for LHC dipole, photon, synchrotron, multipole 634
  • P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas
  Funding: This work is supported by the U.S. Dept. of Energy, grant #DE-FG03-95ER40924.

Recent developments in the performance of superconductors and the design of high-field superconducting dipoles have opened the possibility to extend dipole field strength to ~25 Tesla in the arc dipoles of a future hadron collider. Design issues are presented for a concept of a Tripler upgrade of LHC, in which a second dual ring would be installed over the LHC ring in the same tunnel. Proton beams from LHC would be transferred to the Tripler midway through the LHC cycle and accelerated to ~20 TeV/beam for collisions. A number of obvious issues are explored. Synchrotron radiation power would be 80 times greater, but the critical energy would come as soft X-rays rather than hard UV, and so could be absorbed locally on ~150 K photon stops following each dipole so that total refrigeration power could perhaps be no more than that for LHC. Synchrotron damping would be dramatically enhanced in the Tripler compared to LHC, with damping times of ~one hour. Alternatives for beam transfer and low-beta insertions will be discussed. Like LHC, the Tripler would access new mass scales primarily through gluon fusion. The Tripler should reach about twice the mass scale attainable with LHC.

MOPA009 Global Decoupling on the RHIC Ramp coupling, quadrupole, betatron, optics 659
  • Y. Luo, P. Cameron, A. Della Penna, W. Fischer, J.S. Laster, A. Marusic, F.C. Pilat, T. Roser, D. Trbojevic
    BNL, Upton, Long Island, New York
  Funding: Work supported by U.S. DOE under contract No. DE-AC02-98CH10886.

The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). In the polarized proton run, the betatron tunes are required to keep almost constant on the ramp to avoid spin resonance line crossing and the beam polarization loss. Some possible correction schemes on the ramp, like three-ramp correction, the coupling amplitude modulation and the coupling phase modulaxtion, have been found. The principles of these schemes are shortly reviewed and compared. Operational results of their applications on the RHIC ramps are given.

MOPA010 Studies of the Chromaticity, Tune, and Coupling Drift in the Tevatron dipole, coupling, sextupole, collider 725
  • M.A. Martens, J. Annala, P. Bauer, V.D. Shiltsev, G. Velev
    Fermilab, Batavia, Illinois
  Chromaticity drift is a well-known and more or less well-understood phenomenon in superconducting colliders such as the Tevatron. Less known is the effect of tune and coupling drift, also observed in the Tevatron during injection. These effects are caused by field drifts in the superconducting magnets. Understanding of the behavior of the tune, coupling, and chromaticity at the start of the ramp is an important part of understanding the observed 5-10% loss in beam intensity at the start of the Tevatron ramp. In addition modifications in the Tevatron shot set-up procedure are being implemented to allow for a gain in integrated luminosity. In this context we conducted several beam-studies, during the period of April to August 2004, in which we measured the drift in the Tevatron chromaticity, tune and coupling during the injection porch. In some case we also measured the snapback at the start of the ramp. We will present the results of these studies data and put them into context of the results of off-line magnetic measurements conducted in spare Tevatron dipoles at the same time. Finally we will propose optimized feed-forward algorithms that successfully compensate for the drift effects in the Tevatron.  
MOPC004 Dynamics of a High Density Ion-Beam with Electron Cooling in HIMAC Synchrotron ion, beam-losses, betatron, electron 416
  • T. Uesugi, T. Fujisawa, K. Noda, D. Tann
    NIRS, Chiba-shi
  • Y. Hashimoto
    KEK, Ibaraki
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
  • S. Ninomiya
    RCNP, Osaka
  • S. Shibuya, H. Uchiyama
    AEC, Chiba
  High density circulating-ion beam was obtained with electron-cooling and cool-stacking injection in HIMAC synchrotron. The ion density was saturated at 1.0e9/cm2. Coherent transverse instability was observed when ion- and electron-beam density was high. The dynamics of the cooled ion-beam are described in this report.  
MPPE005 Dynamic Aperture and Resonance Correction for JPARC-RCS resonance, sextupole, dynamic-aperture, quadrupole 979
  • A.Y. Molodojentsev, E. Forest, S. Machida
    KEK, Ibaraki
  • H. Hotchi, F. Noda, M.J. Shirakata, Y. Shobuda, H. Suzuki, K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y. Ishi
    Mitsubishi Electric Corp, Energy & Public Infrastructure Systems Center, Kobe
  Main intrinsic field nonlinearities, which are common for synchrotrons with large aperture, are the nonlinear field of the bending magnets, the fringing field of the magnets and the sextupole field nonlinearity, used for the chromaticity correction. The particle motion in the ring bending magnets has been analyzed by two methods: (1) by direct integration of the particle motion equations in the 3D magnetic field (Tosca output), based on the 4th order Runge-Kutta integrator and (2) by determination the transfer 8th order map of the bending magnet by using the Gaussian wavelet in the 3D space. The second technique allows us to use powerful tools such as the normal form analysis, to define the resonance driving terms, which can be used for the resonance correction. As the result of this study it was shown that the main limitation of the RCS dynamic aperture can be caused by the structure normal sextupole-order resonance and the normal octupole-order resonance. Other high-order resonances have smaller effects on the particles motion than the resonances mentioned above. The correction scheme to improve the dynamic aperture near the normal sextupole-order resonance has been analyzed.  
MPPE011 Expected Emittance Growth and Beam Tail Repopulation from Errors at Injection into the LHC emittance, betatron, coupling, simulation 1266
  • B. Goddard, H. Burkhardt, V. Kain, T. Risselada
    CERN, Geneva
  The preservation of the transverse emittance of the proton beam at injection into the LHC is crucial for luminosity performance. The population of the beam tails is also important for beam losses and collimation. The transfer and injection process is particularly critical in this respect, and several effects can contribute to the expected emittance increase and tail repopulation, like optical and geometrical mismatch, injection offsets and coupling, etc. The various effects are described, together with the tolerance limits on the parameters, and the expected contributions evaluated analytically where possible. The emittance growth and tail distributions are also simulated numerically using realistic errors. The implications for the tolerances on the matching of the transfer lines are discussed.  
MPPE017 Longitudinal Acceptance in Linear Non-Scaling FFAGs acceleration, emittance, longitudinal-dynamics, extraction 1532
  • J.S. Berg
    BNL, Upton, Long Island, New York
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-98CH10886.

Linear Non-Scaling FFAGs have, particularly for muon acceleration, a unique type of longitudinal motion. This longitudinal motion can be approximated by a parabolic dependence time-of-flight on energy. This motion can be described in dimensionless variables with two parameters. I describe the relationship between the parameters and the distortion of ellipses in longitudinal space. I discuss the relationship between the longitudinal acceptance and the time spent in the FFAG, the latter being especially relevant for decays in muon accelerators. I discuss what improvement one can expect to achieve by adding higher-harmonic RF systems to the accelerator.

MPPE022 Modification to the Lattice of the Fermilab Debuncher Ring To Improve the Performance of the Stochastic Cooling Systems lattice, quadrupole, sextupole, antiproton 1799
  • G. Dugan
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • B. Ashmanskas
    Fermilab, Batavia, Illinois
  Funding: Supported by the Department of Energy and the National Science Foundation.

The Fermilab Debuncher is used to collect antiprotons from the production target, reduce the momentum spread of the beam by an RF bunch rotation, and stochastically cool the transverse and longitudinal emittances of the beam prior to transfer to the Accumulator. A large value of the slip factor of the ring lattice is favored to provide a larger momentum acceptance for the bunch rotation process, while a small value of the slip factor is desirable for stochastic cooling. A dynamic change in the lattice from a large slip factor at injection to a smaller slip factor at extraction would optimize both processes and could lead to an improvement in antiproton stacking rate. This paper discusses the details of lattice modifications to the Debuncher, achievable with the existing hardware, which would result in a 60% increase in the slip factor, while maintaining the tunes and chromaticities fixed, and keeping the betatron functions within an acceptable range.

MPPE035 Transfers from High Power Hadron Linacs to Synchrotrons linac, proton, SNS, acceleration 2375
  • G.P. Jackson
    Hbar Technologies, LLC, West Chicago, Illinois
  The Fermilab Proton Driver is an example of a high power H- linear accelerator proposed as a new source of high brightness protons for the Main Injector synchrotron. Because of the elevated radioactive activation of accelerator components associated with beam losses during injection and acceleration, extra attention must be paid to RF manipulations wherein small losses were once deemed acceptable. Especially when injecting into existing synchrotrons from upgraded injectors, instabilities and beam loading make loss free manipulations especially problematic. This paper discusses some options for reducing the losses associated with common longitudinal beam manipulations.  
MPPE042 6-D BEAM DYNAMICS IN AN ISOCHRONOUS FFAG RING acceleration, factory, closed-orbit, resonance 2693
  • F. Meot
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • F. Lemuet
    CERN, Geneva
  • G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  Funding: CEA/DAPNIA and CERN.

Numerical ray-tracing tools for 6-D tracking in FFAG accelerators have been developed. They are applied to the simulation of muon acceleration in the newly introduced isochronous type of FFAG ring designed for 16-turn, 8 to 20~GeV muon acceleration in the Neutrino Factory.

MPPE043 The Status of Optics Design and Beam Dynamics Study in J-PARC RCS beam-losses, simulation, extraction, space-charge 2759
  • F. Noda, N. Hayashi, H. Hotchi, J. Kishiro, P.K. Saha, Y. Shobuda, K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida, A.Y. Molodojentsev
    KEK, Ibaraki
  The 3GeV RCS at J-PARC is designed to provide proton beam of 3GeV and a goal of output beam power is 1MW. The beam commissioning starts on May 2007. At present, more qualitative studies concerning beam dynamics are in progress: core beam handlings, halo beam handlings, instabilities and so on. In this paper, the RCS optics design and the present status of beam dynamics studies are summarized.  
MPPE044 Damping Wiggler Study at KEK-ATF wiggler, emittance, damping, power-supply 2809
  • T. Naito, H. Hayano, Y. Honda, K. Kubo, M. Kuriki, S. Kuroda, T. Muto, N. Terunuma, J.U. Urakawa
    KEK, Ibaraki
  • M. Korostelev, F. Zimmermann
    CERN, Geneva
  • N. Nakamura, H. Sakai
    ISSP/SRL, Chiba
  • M.C. Ross
    SLAC, Menlo Park, California
  The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.  
MPPE047 Optics Flexibility and Matching at LHC Injection optics, quadrupole, alignment, emittance 2983
  • H. Burkhardt, O.S. Brüning, B. Goddard, V. Kain, V. Mertens, T. Risselada, A. Verdier
    CERN, Geneva
  An excellent match between the SPS, the several kilometers long transfer lines and the LHC will be required to minimise emittance blow-up at injection. Several optics changes in the SPS and the LHC injection insertions had to be accommodated in the design phase. The new 3-phase collimation system in the transfer lines results in additional phase advance constraints. It will be important to maintain some tuning range for the LHC commissioning phase and to accommodate possible further optics changes. We analyse the requirements, the constraints, the current status and options to enhance the optics flexibility.  
MPPE048 Beam Based Alignment of the LHC Transfer Line Collimators alignment, beam-losses, simulation, proton 3034
  • V. Kain, H. Burkhardt, B. Goddard, S. Redaelli
    CERN, Geneva
  At LHC injection energy the aperture available in the transfer lines and in the LHC is small and the intensities of the injected beams are an order of magnitude above the damage level. The setting of protection elements such as the transfer line collimators is therefore very critical; mechanical and optical tolerances must be taken into account to define the nominal setting. Being able to measure and control the collinearity of the collimator jaws with the beam relaxes the requirement on the settings considerably. A method to measure angular misalignment of the collimator jaws in the transfer line based on a transmission measurement is discussed. Simulations have been made and are compared with the results of an alignment test performed with beam during the 2004 commissioning of the transfer line TI 8.  
MPPE052 Study on Coupling Issues in the Recycler at Fermilab coupling, simulation, lattice, multipole 3209
  • M. Xiao, Y. Alexahin, D.E. Johnson, M.-J. Yang
    Fermilab, Batavia, Illinois
  We have been working and trying to answer the following questions: where are the coupling sources in the Recycler and is the existing correcting system working fine? In this paper, we report the analysis on the sources from both modeling by code MAD based on nonlinear lattice and real machine. From the first turn flesh orbit, we fit the off-plane orbits by third order polynomial, then separate 1st, 2nd and 3rd order coefficients to see different effects. On the other hand, we present the analysis from turn by turn data, which is to verify the phase of two skew quads families are more or less orthogonal, and to make sure the minimum tune split is small enough, and is consistent with the measurement.  
MPPE060 Quadrupole Beam-Based Alignment at RHIC quadrupole, alignment, optics, heavy-ion 3493
  • J. Niedziela, C. Montag, T. Satogata
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U.S. Department of Energy

Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm is used to calibrate BPM centers relative to interaction region (IR) quadrupoles to maximize aperture. It is also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first application during the RHIC 2005 run.

MPPE062 Measurement and Optimization of Local Coupling from RHIC BPM Data coupling, dipole, quadrupole, betatron 3553
  • R. Calaga, S. Abeytunge, M. Bai, W. Fischer
    BNL, Upton, Long Island, New York
  • F. Franchi
    GSI, Darmstadt
  • R. Tomas
    CELLS, Bellaterra (Cerdanyola del Vallès)
  Funding: U.S. Department of Energy.

Global coupling in RHIC is routinely corrected by using three skew quadrupole families to minimize the tune split. In this paper we aim to re-optimize the coupling at top energy by minimizing resonance driving terms and the C-matrix in two steps: 1. Find the best configuration of the three skew quadrupole families and 2. Identify locations with coupling sources by inspection of the driving terms and the C-matrix around the ring. The measurements of resonance terms and C-matrix are presented.

MPPE064 Dynamic Aperture Study and Lifetime Improvement at the Advanced Photon Source dynamic-aperture, sextupole, coupling, resonance 3632
  • V. Sajaev, L. Emery
    ANL, Argonne, Illinois
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

Over past few years, the optics of the Advanced Photon Source storage ring was optimized to provide lower natural emittance. Presently, APS operates at 2.5 nm-rad emittance. The optimization was done at the expense of stronger sextupoles and shorter lifetime. Here we present our work on measurement and understanding the dynamic aperture of APS in low-emittance mode. We found good agreement between the dynamic aperture measurements and that of the model derived from the response matrix analysis. Based on the model, we were able to increase the lifetime significantly by optimizing sextupoles, correcting optics, moving working point, and adjusting rf voltage. The higher lifetime allowed us to decrease operating coupling from 2.5% to 1%.

MPPE067 Refined Calculation of Beam Dynamics During UMER Injection dipole, simulation, quadrupole, electron 3733
  • G. Bai, S. Bernal, T.F. Godlove, I. Haber, R.A. Kishek, P.G. O'Shea, B. Quinn, J.C. Tobin Thangaraj, M. Walter
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
  Funding: This work is funded by U.S. Dept. of Energy under grants DE-FG02-94ER40855 and DE-FG02-92ER54178.

The University of Maryland Electron Ring (UMER) is built as a low-cost testbed for intense beam physics for benefit of larger ion accelerators. The beam intensity is designed to be variable, spanning the entire range from low current operation to highly space-charge-dominated transport. The ring has recently been closed and multi-turn commissioning has begun. Although we have conducted many experiments at high space charge during UMER construction, lower-current beams have become quite useful in this commissioning stage for assisting us with beam steering, measurement of phase advance, etc. One of the biggest challenges of multi-turn operation of UMER is correctly operating the Y-shaped injection section, hence called the Y-section, which is specially designed for UMER multi-turn operation. It is a challenge because the system requires several quadrupoles and dipoles in a very stringent space, resulting in mechanical, electrical, and beam control complexities. This paper presents a simulation study of the beam centroid motion in the injection region.

MPPE074 Commissioning of a Locally Isochronous Lattice at ALS lattice, quadrupole, sextupole, coupling 3922
  • W. Wan, W.E. Byrne, H. Nishimura, G.J. Portmann, D. Robin, F. Sannibale, A. Zholents
    LBNL, Berkeley, California
  Funding: Work supported by the Director, Office of Energy Research, Office of Basic Energy Science, Material Sciences Division, U.S. Department of Energy, under Contract No. DE-AC03-76SF00098.

With the advance of ultrafast science, manipulating electron beam at the sub-micron and nanometer scale has been actively pursued. A special lattice of the ALS storage ring was conceived to studythe sub-micron longitudinal structure of the beam. It contains sections that are isochronous to the firstorder. Due to the practical constraints of the accelerator, sextupoles have to be off and the dispersion at the injection point is 60 cm, which make commissioning a highly nontrivial task. After a few months of tuning, we have been able to store at 30 mA of beam at the life time of 2 hours. After a brief introduction to the motivation of the experiment and the design of the lattice, the process and more detailed results of the commissioning will be presented. Future plan will also be discussed.

MPPE075 Simulation of the Effect of an In-Vacuum Undulator on the Beam Dynamics of the ALS undulator, simulation, dynamic-aperture, lattice 3949
  • W. Wan, C. Steier
    LBNL, Berkeley, California
  Funding: Work supported by the Director, Office of Energy Research, Office of Basic Energy Science, Material Sciences Division, U.S. Department of Energy, under Contract No. DE-AC03-76SF00098.

The femtosecond slicing project at the Advanced Light Source (ALS) requires that a short period (3 cm) and narrow gap (5.5 mm) in vacuum undulator to be installed. The combination of the short period and the narrow gap raised concern of the impact on the beam dynamics. A 3D field model was established based on numerical data using 8 longitudinal and 4 transverse harmonics. At first fourth-order symplectic integrator was used. It was to our surprise that the dynamic aperture decreased by a fact of 3. To understand the cause of the drastic change in the dynamic aperture, the field model was implemented in a differential algebraic code and the Taylor map of the undulator was obtained. Tracking result using the Taylor map showed little change in the dynamic aperture, which was latter corroborated by that using the symplectic integrator with 150 slices per period (as opposed to 10 before). Yet it is simply too time consuming to use the symplectic integrator with such thin slices. For this case, Taylor proves to be a much faster alternative.

MPPE081 The Comparison of a New Beam-Tracking Code to the Acceleration Test linac, acceleration, simulation, dipole 4072
  • K. Yamamoto, S. Yamada, K. Yamamoto
    NIRS, Chiba-shi
  • T. Hattori
    RLNR, Tokyo
  • M. Okamura
    RIKEN, Saitama
  A new beam-tracking code using a 3D electro-magnetic field map of a linac is being developed. In this code, beam dynamics including non-linear and dipole effects can be easily estimated based on simulated field maps provided by commercial 3D analysis software. To verify the code, we manufactured an IH-linac and acceleration test of the linac was carried out with proton beam. The simulated results were compared with the tested acceleration performances.  
MPPP001 A Vertical Multi-Bunch Feedback System for ANKA feedback, kicker, storage-ring, synchrotron 761
  • P. Wesolowski, I. Birkel, E. Huttel, A.-S. Müller, M. Pont, F. Pérez
    FZK, Karlsruhe
  ANKA is a synchrotron light source with a top energy of 2.5 GeV. The maximum electron current at ANKA is presently limited by multi-bunch instabilities to 200 mA. In order to overcome this barrier a transverse analog multi-bunch feedback system is presently being commissioned. A BPM is used for beam detection. The vertical position signal passes a notch filter, is amplified, and subsequently fed to a vertical beam kicker. The present paper shows the layout of ANKA feedback system and discusses the first results of its operation.  
MPPP012 First-Principles Simulation and Comparison with Beam Tests for Transverse Instabilities and Damper Performance in the Fermilab Main Injector simulation, damping, dipole, betatron 1300
  • D.J. Nicklaus, G.W. Foster, V.S. Kashikhin
    Fermilab, Batavia, Illinois
  An end-to-end performance calculation and comparison with beam tests was performed for the bunch-by-bunch digital transverse damper in the Fermilab Main Injector. Time dependent magnetic wakefields responsible for "Resistive Wall" transverse instabilities in the Main Injector were calculated with OPERA-2D using the actual beam pipe and dipole magnet lamination geometry. The leading order dipole component was parameterized and used as input to a bunch-by-bunch simulation which included the filling pattern and injection errors experienced in high-intensity operation of the Main Injector. The instability growth times, and the spreading of the disturbance due to newly mis-injected batches was compared between simulations and beam data collected by the damper system. Further simulation models the effects of the damper system on the beam.  
MPPP015 Operational Performance of a Bunch by Bunch Digital Damper in the Fermilab Main Injector antiproton, proton, damping, diagnostics 1440
  • P. Adamson, P. Adamson
    UCL, London
  • B. Ashmanskas, G.W. Foster, S. U. Hansen, A. Marchionni, D.J. Nicklaus, A. Semenov, D. Wildman
    Fermilab, Batavia, Illinois
  • H. Kang
    Stanford University, Stanford, Califormia
  We have implemented a transverse and longitudinal bunch by bunch digital damper system in the Fermilab Main Injector, using a single digital board for all 3 coordinates. The system has been commissioned over the last year, and is now operational in all MI cycles, damping beam bunched at both 53MHz and 2.5MHz. We describe the performance of this system both for collider operations and high-intensity running for the NuMI project.  
MPPP031 The CERN-SPS Experiment on Microwave Transmission Through the Beam Pipe electron, cyclotron, resonance, dipole 2212
  • T. Kroyer, T. Kroyer
    TU Vienna, Vienna
  • F. Caspers, E. Mahner
    CERN, Geneva
  Funding: Ministry for Education, Science and Culture, Austria.

In the CERN SPS microwave transmission measurements through beampipe sections with a length of 30 m and 7 m meter respectively have been carried out in the frequency range 2-4 GHz since spring 2003. Here we report on new results obtained with improved measurement techniques during the 2004 run. Observation techniques include a fast real time scope, spectrum analyser IF and video output signal registration and baseband signal observation using a PC soundcard. The unexpected beam induced amplitude modulation has been confirmed on all kinds of available beams including single bunches. It was found that there is a correlation between the amount of beam induced signal attenuation and the beam losses registered by external scintillators. Potential theoretical models are discussed.

MPPP033 Beam Transfer Functions and Beam Stabilisation in a Double RF System synchrotron, damping, beam-loading, space-charge 2300
  • E.N. Shaposhnikova, T. Bohl, T.P.R. Linnecar
    CERN, Geneva
  The high intensity proton beam for LHC accelerated in the CERN SPS is stabilised against coupled-bunch instabilities by a 4th harmonic RF system in bunch-shortening mode. Bunch-lengthening mode, which could also be useful to reduce peak line density and alleviate problems from e-cloud and kicker heating does not give desirable results for beam stability. In this paper an analysis of the limitations of these two different modes of operation is presented together with measurements of the Beam Transfer Function for the double RF system. As predicted by theory, for sufficiently long bunches with the same noise excitation, the measured amplitude of the beam response in bunch-lengthening mode is an order of magnitude higher than that for bunch-shortening mode or for a single RF system.  
MPPP035 Investigation of APS PAR Vertical Beam Instability ion, linac, synchrotron, electron 2393
  • C. Yao, Y.-C. Chae, N. Sereno, B.X. Yang
    ANL, Argonne, Illinois
  Funding: This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

The Advanced Photon Source (APS) particle accumulator ring (PAR) is a 325-MeV storage ring that collects and compresses linac pulse trains into a single bunch for booster injection. A vertical beam instability has been observed when only a single linac bunch is injected and the total beam charge is from 0.15 to 0.7 nC. The instability starts about 80 ms after the injection, lasts about 160 ms, and is highly reproducible. We performed spectral measurement and time-resolved imaging with both a gated-intensified camera and a streak camera in order to characterize this instability. Initial analysis of the data indicates that the instability is due to ion trapping. A stable lattice was established as result of the investigation. This report summarizes the experimental results and gives some preliminary analysis.

MPPP042 Landau Damping of the Weak Head-Tail Instability at Tevatron damping, octupole, betatron, proton 2714
  • P.M. Ivanov, Y. Alexahin, J. Annala, V. Lebedev, V.D. Shiltsev
    Fermilab, Batavia, Illinois
  Landau damping of the head-tail modes in Tevatron beam with the help of octupole-generated betatron tune spreads permits to reduce chromaticity from 15-20 units to zero thus significantly improving the beam lifetime. The octupole strengths have been experimentally optimized at different stages of the Tevatron operation, from proton injection to collision. Predictions of the analytical Landau damping model are compared with the experimental results.  
MPPP043 Betatron Tune Spread Generation and Differential Chromaticity Control by Octupole at Tevatron octupole, betatron, proton, antiproton 2756
  • P.M. Ivanov, Y. Alexahin, J. Annala, V. Lebedev
    Fermilab, Batavia, Illinois
  Application of octupoles for Landau damping of the unstable head-tail modes requires careful consideration at their combination into separate families to insure maximum effectiveness and avoid degradation of the dynamic aperture due to the non-linear magnetic fields. Existing octupolar magnets around the machine have been arranged into four functional families with individual power supplies. Two of these families generate betatron tune spreads in the vertical and horizontal planes whereas the other two control the differential chromaticity between the proton and antiproton helices. The calculated effect on tunes and chromaticity is compared with direct measurements. Analytical formulas for betatron tune spectral density functions are presented.  
MPPP052 Longitudinal Impedance Measurements of the Components for the BEPCII impedance, kicker, storage-ring, vacuum 3212
  • D.M. Zhou, W. Kang, J.Q. Wang, L.J. Zhou
    IHEP Beijing, Beijing
  • G. Huang
    TUB, Beijing
  Funding: Work supported by the National Natural Science Foundation of China (NSFC) under contract No.10375076.

A longitudinal impedance measurement system was established for the BEPCII. The measurements, done in the frequency domain, are based on the coaxial wire method using HP/Agilent 8720ES network analyzer. The applications of the TRL calibration technique and absorbers were investigated to find a good approach for impedance measurements. The impedance, larger than 20 Ohm and below 6 GHz, can be measured using the TRL calibration technique in the experiment. And better measurement results were got using the reference pipes with the absorbers. So, this system satisfies the requirements of the BEPCII. This paper gives a review on this impedance measurements system for the BEPCII. The measurements results show that there are no serious impedance problems for BEPCII bellows and injection kickers, agreeing well with the numerical simulations. More improvements on this system are in progress.

  • N. Li
    SLAC, Menlo Park, California
  • F. Huang, H. Qu
    IHEP Beijing, Beijing
  Funding: DOE National Institutes of Health.

Few problems occurred during the SPEAR3 magnets production at IHEP, China. It was very hard to find resolution from existing knowledge of those problems. It was possible that similar problems might happen in building accelerator magnet in other institutes before, but they were not addressed in public papers. Those problems were discussed and solved by engineers from both SSRL and IHEP after conducting certain experiments. Traditionally, the magnet design and measurement data have been always well documented and addressed in the papers, but the production experiences have not been recorded adequately. It is the goal of this paper to record the problems and their resolutions during SPEAR3 magnet production, which will certainly benefit future magnet projects.

MPPT005 A New Slotted-Pipe Kicker Magnet for BEPCII Storage Ring kicker, impedance, vacuum, storage-ring 955
  • W. Kang, Y. Hao
    IHEP Beijing, Beijing
  The requirements of BEPCII injecting kicker magnets are so severe. In the range of ?x=±20mm, the field uniformity is required to be better than ±1% in the central plane, ±2% in the y=5mm plane and ±5% in y=10mm plane, while the effective beam impedance of each kicker magnet must be lower than 0.025O. For the large aperture of vacuum chamber and the fast risetime of kicker magnetic field, the two schemes of low impedance kicker magnets used in other accelerator labs in the world are not adaptive to the BEPCII storage ring. A new slotted-pipe kicker magnet, which uses the ceramic bars with metal coating films as the image current conducting paths, proposed in this article solves the difficult problems of BEPCII kicker magnet design. And the successful construction of a prototype has demonstrated that the new scheme of kicker magnets is viable and the structure design of the kicker magnet is reasonable.  
MPPT007 Design of the Pulse Bending Magnets for the Injection System of the 3-GeV RCS in J-PARC power-supply, linac, extraction, beam-losses 1048
  • T. Takayanagi, Y. Irie, J. Kamiya
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • T. Kawakubo, I. Sakai
    KEK, Ibaraki
  The pulse bending magnets for the injection system of the 3-GeV RCS in J-PARC has been designed using a 3D magnetic analysis code. The injection system consists of the pulse bending magnets for the injection bump orbit, which are four horizontal bending magnets (shift bump), four horizontal painting magnets (h-paint bump), and two vertical painting magnets (v-paint bump). The injection beam energy and the extraction beam power are 400 MeV and 1 MW at 25-Hz repetition rate, respectively. The beam orbit area with a full acceptance beam of the injection beam, painting beam and the circulating beam at the shift bump points is a 400 mm width and a 250 mm height.The shift bump has accomplished 1.0% good field region at 0.22 T.  
MPPT013 New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron booster, vacuum, quadrupole, linac 1341
  • J.R. Lackey, D.J. Harding, J.A. John, V.S. Kashikhin, A. Makarov, E. Prebys
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH03000.

The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

MPPT014 Design Concept for AGS Injection Kicker Upgrade to 2 GeV kicker, proton, impedance, simulation 1380
  • G.D. Wait, R.B. Armenta, M.J. Barnes, E.W. Blackmore, O. Hadary
    TRIUMF, Vancouver
  • L. Ahrens, C.J. Gardner, W. Zhang
    BNL, Upton, Long Island, New York
  Funding: Canada Foundation for Innovation, U.S. Dept of Energy.

The present AGS injection kickers at A5 location were designed for 1.5 GeV proton injection. Recent high intensity runs have pushed the transfer kinetic energy to 1.94 GeV, but with an imperfect matching in transverse phase space. Space charge forces result in both fast and slow beam size growth and beam loss as the size exceeds the AGS aperture. A proposed increase in the AGS injection energy to 2 GeV with adequate kick strength would greatly reduce the beam losses making it possible to increase the intensity from 70 TP (70 * 1012 protons/s) to 100 TP. R&D studies are being undertaken by TRIUMF, in collaboration with BNL, to design two new kicker magnets for the AGS A10 location to provide an additional kick of 1.5 mrad to 2 GeV protons. TRIUMF has proposed a design for a 12.5 W transmission line kicker magnet with rise and fall times of 100 ns, 3% to 97% and field uniformity of ±3% over 90% of the aperture, powered by matched 12.5 W pulse-forming lines. This paper describes the present status of a prototype design including the results of detailed 2D and 3D electromagnetic modeling of a transmission line kicker magnet and PSpice time domain analysis of the magnetic kick strength.

MPPT016 Beam Injection for the PF-AR with a Single Pulsed Quadrupole Magnet quadrupole, kicker, dipole, emittance 1517
  • K. Harada, Y. Kobayashi, T. Mitsuhashi, T. Miyajima, S. Nagahashi, T. Obina, A. Ueda
    KEK, Ibaraki
  We develop the injection system for PF-AR (Photon Factory Advanced Ring for Pulsed X-ray) with single pulse quadrupole (PQ) magnet without pulse local bump of the stored beam with four dipole kickers. The pulse quadrupole magnet has the length of 30cm, the field gradient of 3T/m, half-sine-form pulse width of 2.4mSec, measured inductance of 1.8mH and the peak current of about 2000A. With this magnet, the amplitude of the injected beam can be reduced to about the half of that only with septum magnets and the reduced amplitude is almost the same as the case of the usual injection with the pulse bump of the stored beam. We installed PQ-magnet at the short straight section near the south symmetric point of PF-AR in this summer of 2004 and succeeded to inject beam to the storage ring during the machine study in autumn, 2004.  
MPPT020 Magnetic Field Measurement on a Refined Kicker kicker, radiation, storage-ring, synchrotron 1682
  • T.-C. Fan, C.-S. Hwang, F.-Y. Lin
    NSRRC, Hsinchu
  To prepare for the operation of top-up mode and increase the efficiency of injection at storage ring, National Synchrotron Radiation Research Center (NSRRC) has upgraded the kicker magnets and power supply. We have built up a new magnetic field measurement system to test the kicker. This system, including a search coil and a coil loop, can map the field and take the first integral of field automatically. We also simulate the trajectory of electron beam by pulsed wire method of field measurement. We analyze the performance of the kicker system in this paper.  
MPPT036 R&D of Short-Period NbTi and Nb3Sn Superconducting Undulators for the APS undulator, vacuum, electron, photon 2419
  • S.H. Kim, C. Doose, R. Kustom, E.R. Moog, I. Vasserman
    ANL, Argonne, Illinois
  Funding: Work supported by the U.S. Department of Energy under Contract No. W-31-109-ENG-38.

A superconducting undulator (SCU) with a period of 14.5 mm is under development at the Advanced Photon Source (APS). The undulator is designed to achieve a peak field on the beam axis of 0.8 T with an 8 mm pole gap and an average current density of 1 kA/mm2 in the NbTi coil. A 22-period half-section of a SCU has been fabricated. The SCU half-section was charged up to near the average critical current density jc of 1.4 kA/mm2, and the stability margin was measured by imposing external heat fluxes on the coil at 4.2 K in pool boiling LHe. The magnetic fields along the midplane of the SCU were measured using a Hall-probe field-mapping unit installed in a vertical dewar. The first test of a Nb3Sn short-section SCU reached an average current density of 1.45 kA/mm2, slightly higher than the jc for the NbTi SCU.

MPPT040 The LHC Magnetic Field Model dipole, coupling, sextupole, superconducting-magnet 2648
  • N.J. Sammut, L. Bottura
    CERN, Geneva
  • J. Micallef
    University of Malta, Faculty of Engineering, Msida
  The compensation of the dynamic field changes during the proton and ion beam injection and acceleration in the LHC requires an accurate forecast and an active control of the magnetic field in the accelerator. The LHC Magnetic Field Model is the core of this magnetic prediction system. This open loop control scheme will provide the desired field components at a given time, magnet operating current, magnet ramp-rate, magnet temperature and magnet powering history to the required precision. The model is based on the identification and physical decomposition of the effects that contribute to the total field in the magnet aperture of the LHC dipoles. By using data obtained from series measurements, these components are then quantified theoretically or empirically depending on the complexity of the physical phenomena involved. This paper presents the developments of the newly fine-tuned magnetic field model and evaluates its accuracy, reproducibility and predicting capabilities.  
MPPT055 The LANSCE Switchyard Kicker Project kicker, diagnostics, vacuum, power-supply 3310
  • M.S. Gulley, H.W. Alvestad, W.C. Barkley, D.B. Barlow, D.S. Barr, G.A. Bennett, L.J. Bitteker, E. Bjorklund, M.J. Borden, M.J. Burns, G. Carr, J.L. Casados, S. Chacon, S. Cohen, J.F. Cordova, J.A. Faucett, L.E. Fernandez, D.H. Fitzgerald, M. Fresquez, F.R. Gallegos, R.W. Garnett, J.D. Gilpatrick, F. Gonzales, F.W. Gorman, M.J. Hall, D.J. Hayden, D. Henderson, G.D. Johns, D.M. Kerstiens, M.D. Lusk, A.J. Maestas, H.P. Marquez, D. Martinez, M.P. Martinez, J.B. Merrill, R.E. Meyer, E.A. Morgan, A.C. Naranjo, J.F. O'Hara, F.R. Olivas, M.A. Oothoudt, T.D. Pence, E.M. Perez, C. Pillai, B.J. Roller, A.M. Romero, D.B. Romero, F.P. Romero, G. Sanchez, J.B. Sandoval, S. Schaller, F.E. Shelley, R.B. Shurter, J.R. Sims, J.L. Stockton, J. Sturrock, V.P. Vigil, J. Zaugg
    LANL, Los Alamos, New Mexico
  Until 2003, the existing configuration of the LANSCE switchyard did not allow simultaneous delivery of the H- beam to Lines D and X. In the late 1990’s, with increased activities in Areas B and C, which serve the ultracold neutron experiments (UCN) and proton radiography (PRad), respectively, planning began to increase beam availability to all areas by installing a kicker system, dubbed the "Switchyard Kicker." The Switchyard Kicker is a system of two pulsed and two direct current magnets that enables simultaneous, uninterrupted beam delivery to Line D for the Lujan Center and the Weapons Neutron Research (WNR) Facility and, on request, a tailored H- beam pulse to Line X for the pRad and UCN research areas. The project received funding in July 2001 for design and implementation. During the 2003 Extended Maintenance Period this upgrade was installed in the Switchyard and commissioned during the Accelerator Turn-On period in the summer of 2003. With the commissioning successful, LANSCE now routinely operates in "Kick" mode, delivering simultaneous beam to Line X and Line D, increasing beam availability to all areas and simplifying production scheduling.  
MPPT067 Stray Field Reduction in ALS Eddy Current Septum Magnets septum, storage-ring, dipole, extraction 3718
  • D. Shuman, W. Barry, S. Prestemon, R.D. Schlueter, C. Steier, G.D. Stover
    LBNL, Berkeley, California
  Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Stray field from an eddy current septum magnet adversely affects the circulating beam and can be reduced using several techniques. The stray field time history typically has a fast rise section followed by a long exponential decay section when pulsed with a half sine drive current. Changing the drive current pulse to a full sine has the effect of both reducing peak stray field magnitude by ~3x, and producing a quick decay from this peak to a lower field level which then has a similar long decay time constant as that from the half sine only drive current pulse. A method for tuning the second half sine (reverse) drive current pulse to eliminate the long exponential decay section is given.

MPPT073 Field Distribution of Injection Chicane Dipoles in SNS Ring simulation, dipole, multipole, SNS 3907
  • J.-G. Wang
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

3D computing simulations have been performed to study the magnetic field distribution of the injection chicane dipoles in the SNS ring.* The simulation studies have yielded the performance characteristics of the magnets and generated the magnetic field data in three dimensional grids, which can be used for detailed investigation of beam dynamics. Based on the simulation data, a 3D multipole expansion of the chicane dipole field, consisting of generalized gradients and their derivatives, has been made. The harmonic and pseudo-harmonic components in the expansion give much insight into the magnet physics. The expansion is quasi-analytical by fitting numeric data into a few interpolation functions. A 5th-order representation of the field is generated, and the effects of even higher order terms on the field representation are discussed.

*The injection chicane dipoles were designed at BNL by Y.Y. Lee, W. Meng, et al. See "Injection into the SNS Accumulator Ring: Minimizing Uncontrolled Losses and Dumping Stripped Electrons," D.T. Abell, Y.Y. Lee, W. Meng, EPAC 2000.

MPPT085 Fast Magnets for the NSLS-II Injection kicker, septum, electron, storage-ring 4165
  • I.P. Pinayev, T.V. Shaftan
    BNL, Upton, Long Island, New York
  Funding: Under Contract with the U.S. Department of Energy Contract Number DE-AC02-98CH10886.

Third generation light sources require top-off operation in order to provide proper stability of the photon beam. In this paper we present the conceptual design of the fast pulsed magnets used for injection into the 3 GeV storage ring.

MOPB004 Progress on Test EBIS and the Design of an EBIS-Based RHIC Preinjector ion, electron, cathode, gun 363
  • J.G. Alessi, E.N. Beebe, O. Gould, A. Kponou, R. Lockey, A.I. Pikin, K. Prelec, D. Raparia, J. Ritter, L. Snydstrup
    BNL, Upton, Long Island, New York
  Funding: Work supported under the auspices of the U.S. DOE.

Following the successful development of the Test EBIS at BNL,* we now have a design for an EBIS-based heavy ion preinjector which would serve as an alternative to the Tandem Van de Graaffs in providing beams for RHIC and the NASA Space Radiation Laboratory. This baseline design includes an EBIS producing mA-level currents of heavy ions (ex. Au 32+) in ~ 10-20 microsecond pulses, injecting into an RFQ which accelerates the beams to 300 keV/amu, followed by an IH linac accelerating to 2 MeV/amu. Some details of this design will be presented, as well recent experimental results on the Test EBIS.

*E.N. Beebe et al., Proc. Ninth International Symposium on Electron Beam Ion Sources and Traps, Journal of Physics: Conference Series 2 (2004) 164–173.

TOAA007 SNS Injection and Extraction Devices septum, proton, extraction, kicker 553
  • D. Raparia
    BNL, Upton, Long Island, New York
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The Spallation Neutron Source (SNS) is a second generation pulsed neutron source (1.5 MW) and is presently in the sixth year of a seven-year construction cycle at Oak Ridge National Laboratory. The operation of the facility will begin in 2006. The most stringent requirement for the SNS accelerator complex is to allow hands-on maintenance. Operational experiences show that the most losses occur in the injection and extraction. SNS accumulator ring injection and extraction has been design with grate care to reduce uncontrolled losses. Injection systems consist of fast programmable kicker magnets and DC dump magnets to paint the beam in transverse phase space. Extraction systems consist of fast kicker magnets and a Lamberton magnet to extract beam in single turn. Paper will discuss design, construction and testing of these devices.

TOAA009 Recent Test Results of the Fast-Pulsed 4 T COSO Dipole GSI 001 dipole, coupling, sextupole, synchrotron 683
  • G. Moritz, J. Kaugerts
    GSI, Darmstadt
  • B. Auchmann, S. Russenschuck, R. de Maria
    CERN, Geneva
  • J. Escallier, G. Ganetis, A.K. Jain, A. Marone, J.F. Muratore, R.A. Thomas, P. Wanderer
    BNL, Upton, Long Island, New York
  • M. Wilson
    Oxford Instruments, Accelerator Technology Group, Oxford, Oxon
  For the FAIR-project at GSI a model dipole was built at BNL with the nominal field of 4 T and a nominal ramp rate of 1 T/s. The magnet design was similar to the RHIC dipole with some changes for loss reduction and better cooling. The magnet was already successfully tested in a vertical cryostat with good training behaviour. Cryogenic losses were measured and first results of field harmonics were published. However, for a better understanding of the cooling process quench currents at several ramp rates were investigated. Detailed measurements of the field harmonics at different ramp rates and at several cycles were performed. To separate the effects of the coil and the iron yoke the magnet was disassembled and tested as collared coil only. Recent test results will be presented.  
TPAE003 Numerical Study of Injection Mechanisms for Generation of Mono-Energetic Femtosecond Electron Bunch from the Plasma Cathode electron, plasma, laser, acceleration 859
  • T. Ohkubo, M. Uesaka, G. Zhidkov
    UTNL, Ibaraki
  Acceleration gradients of up to the order of 100GV/m and mono-energetic electron bunch up to 200MeV have recently been observed in several plasma cathode experiments. However, mechanisms of self-injection in plasma are not sufficiently clarified, presently. In this study, we carried out 2D PIC simulation to reveal the mechanisms of mono-energetic femtosecond electron bunch generation. We found two remarkable conditions for the generation: electron density gradient at vacuum-plasma interface and channel formation in plasma. Steep electron density gradient (~ plasma wave length) causes rapid injection and produces an electron bunch with rather high charge and less than 100fs duration. The channel formation guides an injected laser pulse and decreases the threshold of laser self-focusing, which leads to high electric field necessary for wave-breaking injection.  
TPAE064 Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator electron, plasma, laser, scattering 3644
  • S.-Y. Chen, C.-L. Chang, W.-T. Chen, T.-Y. Chien, C.-H. Lee, J.-Y. Lin, J. Wang
    IAMS, Taipei
  Funding: National Science Council, Taiwan

Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated with a transverse plasma waveguide driven by Coulomb explosion.

TPAE065 Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility electron, shielding, acceleration, controls 3673
  • S.H. Gold
    NRL, Washington, DC
  • H. Chen, Y. Hu, Y. Lin, C. Tang
    TUB, Beijing
  • W. Gai, C.-J. Jing, R. Konecny, J.G. Power
    ANL, Argonne, Illinois
  • A.K. Kinkead
  • C.D. Nantista, S.G. Tantawi
    SLAC, Menlo Park, California
  Funding: Work supported by DOE and ONR.

This paper will describe a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by the high-power 11.424-GHz magnicon that was developed by NRL and Omega-P, Inc. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW.* The facility will include a 5-MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to ~8 MV/m.** SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The initial goal is to produce a compact 20-MeV dielectric-loaded test accelerator.

*O. A. Nezhevenko et al., Proc. PAC 2003, p. 1128.**S. H. Gold et al., AIP Conf. Proc. 691, p. 282.

TPAP002 Summary of Recent Studies of Cryosorbers for LHC Long Straight Sections vacuum, collider, hadron, electron 791
  • R.V. Dostovalov, V.V. Anashin, A.A. Krasnov
    BINP SB RAS, Novosibirsk
  Funding: This work was supported by CERN AT Division vacuum group.

The vacuum chamber inside some cryogenic elements in the LHC long straight sections will have cold bore (CB) at 4.5K and a beam screen (BS) at temperature between 5 and 20K. The gas molecules desorbed due to photons and electrons will pass through the slots on the BS to the shadowed part between the CB and BS. All desorbed gases except H2 could be adsorbed on the CB and BS but a cryosorber is required to pump H2. The new types of anodized aluminum, porous copper and charcoal-based materials were developed and studied to cryopump H2 at temperatures between 10 and 20K. The advantages and disadvantages of cryosorbers and technological problems of development of new similar cryosorbers were defined. The vacuum parameters of LHC vacuum chamber prototypes with charcoal and two types of carbon fiber cryosorbers were measured. The dynamic pressure behavior at BS temperature oscillations was studied for BS with woven carbon fiber to predict the dynamic pressure at nonstandard or transient regimes of the LHC operation. A main result is that woven carbon fiber cryosorber meets the LHC requirements and can be proposed as cryosorber for LHC. The summary results of these studies are presented.

TPAP004 Mechanical Design for Robustness of the LHC Collimators proton, simulation, collimation, beam-losses 913
  • A. Bertarelli, O. Aberle, R.W. Assmann, S. Calatroni, A. Dallocchio, T. Kurtyka, M. Mayer, R. Perret, S. Redaelli, G. Robert-Demolaize
    CERN, Geneva
  The functional specification of the LHC Collimators requires, for the start-up of the machine and the initial luminosity runs (Phase 1), a collimation system with maximum robustness against abnormal beam operating conditions. The most severe cases to be considered in the mechanical design are the asynchronous beam dump at 7 TeV and the 450 GeV injection error. To ensure that the collimator jaws survive such accident scenarios, low-Z materials were chosen, driving the design towards Graphite or Carbon/Carbon composites. Furthermore, in-depth thermo-mechanical simulations, both static and dynamic, were necessary.This paper presents the results of the numerical analyses performed for the 450 GeV accident case, along with the experimental results of the tests conducted on a collimator prototype in Cern TT40 transfer line, impacted by a 450 GeV beam of 3.1·1013 protons, with impact parameters from 1 to 5 mm.  
TPAP009 Collimation in the Transfer Lines to the LHC septum, optics, simulation, collimation 1135
  • H. Burkhardt, B. Goddard, Y. Kadi, V. Kain, T. Risselada, W.J.M. Weterings
    CERN, Geneva
  Injection intensities for the LHC are over an order of magnitude above damage level. The TI 2 and TI 8 transfer lines between the SPS and LHC are each about 2.5 km long and comprise many active elements running in pulsed mode. The collimation system in the transfer lines is designed to dilute the beam energy sufficiently in case of accidental beam loss or mis-steered beam. A system using three collimator families spaced by 60 degrees in phase advance, both in the horizontal and the vertical plane has been chosen. We discuss the reasons for this choice, the layout and, the expected performance of the system in terms of maximum amplitudes and energy deposition.  
TPAP015 Commissioning of the LHC Beam Transfer Line TI 8 optics, instrumentation, proton, extraction 1461
  • J.A. Uythoven, G. Arduini, B. Goddard, D. Jacquet, V. Kain, M. Lamont, V. Mertens, A. Spinks, J. Wenninger
    CERN, Geneva
  • Y.-C. Chao
    Jefferson Lab, Newport News, Virginia
  The first of the two LHC transfer lines was commissioned in autumn 2004. Beam reached an absorber block located some 2.5 km downstream of the SPS extraction point at the first shot, without the need of any threading. The hardware preparation and commissioning phase will be summarised, followed by a description of the beam tests and their results regarding optics and other line parameters, including the experience gained with beam instrumentation, the control system and the machine protection equipment.  
TPAP017 Beam Stability of the LHC Beam Transfer Line TI8 extraction, proton, septum, alignment 1523
  • J. Wenninger, B. Goddard, V. Kain, J.A. Uythoven
    CERN, Geneva
  Injection of beam into the LHC at 450 GeV/c proceeds over two 2.7 km long transfer lines from the SPS. The small aperture of the LHC at injection imposes tight constraints on the stability of the beam transfer. The first transfer line TI8 was commissioned in the fall of 2004 with low intensity beam. Since the beam position monitor signal fluctuations were dominated by noise with low intensity beam, the beam stability could not be obtained from a simple comparison of consecutive trajectories. Instead model independent analysis (MIA) techniques as well as scraping on collimators were used to estimate the intrinsic stability of the transfer line. This paper presents the analysis methods and the resulting stability estimates.  
TPAP019 Aperture Studies of the SPS to LHC Transfer Lines optics, simulation, dipole, alignment 1664
  • B. Goddard, V. Kain, J. Wenninger
    CERN, Geneva
  • R. Schmid
    Bowdoin College, Brunswick, Maine
  The SPS to LHC transfer lines TI 2 and TI 8 are each several km in length and use magnets with small apertures. An aperture model for the lines has been developed in MAD-X format, with a full description of all installed vacuum elements and the possibility to interpolate at any length interval. This model has been used with tolerances and errors to simulate the expected line aperture available for the beam. The model features and simulation results are presented, with derived aperture limits. The results from aperture measurements made during the TI 8 line beam commissioning in 2004 are presented and compared to the expectations.  
TPAP022 Mixed pbar Source Operation at the Fermilab Tevatron acceleration, collider, luminosity, simulation 1763
  • C.M. Bhat, D. Capista, B. Chase, J.E. Dey, I. Kourbanis, K. Seiya, V. Wu
    Fermilab, Batavia, Illinois
  Funding: Work supported by the Universities Research Association, Inc., under contract DE-AC02-76CH03000 with the U.S. Department of Energy.

Recently, we have adopted a scheme called "Mixed pbar Source Operation" to transfer 2.5 MHz pbar bunches from the Recycler and the Accumulator to the Fermilab Main Injector (MI). In this scheme, 2.5MHz pbar bunches are captured adiabatically in 53 MHz buckets at 8 GeV in the MI and accelerated to 150 GeV before bunch coalescing and transfer to the Tevatron collider stores. A special magnet ramp was needed in the MI to allow for pbar beam of slightly different 8 GeV energies from the Recycler and the Accumulator. Here we present the details of the scheme and its advantage over the method used for past several years.

TPAP029 Measurements of Field Decay and Snapback Effect on Tevatron Dipole and Quadrupole Magnets sextupole, quadrupole, dipole, octupole 2098
  • G. Velev, G. Ambrosio, G. Annala, P. Bauer, R. H. Carcagno, J. DiMarco, H.D. Glass, R. Hanft, R.D. Kephart, M.J. Lamm, M.A. Martens, P. Schlabach, C. Sylvester, M. Tartaglia, J. Tompkins
    Fermilab, Batavia, Illinois
  Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility to understand dynamic effects in the Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field "snapback" during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 20 s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.  
TPAP032 Beam-beam Effects in the Tevatron Run II antiproton, proton, emittance, luminosity 2245
  • V.D. Shiltsev, Y. Alexahin, V. Lebedev, P. Lebrun, R. Moore, T. Sen, A. Valishev, X. Zhang
    Fermilab, Batavia, Illinois
  Funding: Work supported by the Universities Research Assos., Inc., under contract DE-AC02-76CH03000 with the U.S. Dept. of Energy.

The Tevatron in Collider Run II (2001-present) is operating with many times higher beam intensities and luminosities than in previous Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance at upgraded beam parameters and luminosity and discuss possible improvements.

TPAP035 Energy Deposition Issues at 8 GeV H- Beam Collimation and Injection to the Fermilab Main Injector kicker, proton, collimation, quadrupole 2372
  • A.I. Drozhdin, M.A. Kostin, N.V. Mokhov
    Fermilab, Batavia, Illinois
  The energy deposition and radiation issues at 8 GeV H- beam collimation in the beam transfer line and at stripping injection to the Fermilab Main Injector are analyzed. Detailed calculations with the STRUCT and MARS15 codes are performed on heating of collimators, stripping foils and other critical components, as well as on beam line and accelerator element radioactivation both at normal operation and accidental beam loss. Extraction of the unstripped part of the beam to the external beam dump and loss of the excited-state Ho atoms in the Main Injector are also studied.  
TPAP040 Feasibility Study of Beam-Beam Compensation in the Tevatron with Wires antiproton, simulation, beam-losses, lattice 2645
  • T. Sen
    Fermilab, Batavia, Illinois
  • B. Erdélyi
    Northern Illinois University, DeKalb, Illinois
  Funding: Dept. of Energy.

At large distances the field profile of a current carrying wire matches the profile of the field of a round beam. We consider the practical applicability of this principle in compensating long-range beam-beam effects in the Tevatron. Changes in the helix and beam separation from injection energy to collision energy require that different wire configurations at these different energies. Due to the seventy or more long-range interactions, each set of wires must compensate several interactions. We first develop the principles of non-local compensation with a small set of wires. Next we use these principles in detailed simulation studies with beam-beam interactions and wire fields to determine the feasibility of the compensation in the Tevatron.

TPAP044 Observations of Snake Resonance in RHIC resonance, polarization, betatron, proton 2839
  • M. Bai, H. Huang, W. Mac Kay, V. Ptitsyn, T. Roser, S. Tepikian
    BNL, Upton, Long Island, New York
  • S.-Y. Lee, F. Lin
    IUCF, Bloomington, Indiana
  Funding: The work was performed under the auspices of the U.S. Department of Energy.

Siberian snakes now become essential in the polarized proton acceleration. With proper configuration of Siberian snakes, the spin precession tune of the beam becomes $\frac{1}{2}$ which avoids all the spin depolarizing resonance. However, the enhancement of the perturbations on the spin motion can still occur when the betatron tune is near some low order fractional numbers, called snake resonances, and the beam can be depolarized when passing through the resonance. The snake resonances have been confirmed in the spin tracking calculations, and observed in RHIC with polarized proton beam. Equipped with two full Siberian snakes in each ring, RHIC provides us a perfect facility for snake resonance studies. This paper presents latest experimental results. New insights are also discussed.

TPAP051 Principle of Global Decoupling with Coupling Angle Modulation coupling, quadrupole, simulation, betatron 3132
  • Y. Luo, S. Peggs, F.C. Pilat, T. Roser, D. Trbojevic
    BNL, Upton, Long Island, New York
  Funding: Work supported by U.S. DOE under contract No. DE-AC02-98CH10886.

The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). A new scheme coupling phase modulation is found. It introduces a rotating extra coupling into the coupled machine to detect the residual coupling. The eigentune responses are measured with a high resolution phase lock loop (PLL) system. From the minimum and maximum tune splits, the correction strengths are given. The time period occupied by one coupling phase modulation is less than 10 seconds. So it is a very promising solution for the global decoupling on the ramp. In this article the principle of the coupling phase modulation is given. The simulation with the smooth accelerator model is also done. The practical issues concerning its applications are discussed.

TPAP054 Helium Flow Induced Orbit Jitter at RHIC monitoring, heavy-ion, quadrupole, emittance 3262
  • C. Montag, P. He, L. Jia, T. Nicoletti, T. Satogata, J. Schmalzle, T. Tallerico
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the US Department of Energy.

Horizontal beam orbit jitter at frequencies around 10 Hz has been observed at RHIC for several years. The distinct frequencies of this jitter have been found at superconducting low-beta qudrupole triplets around the ring, where they coincide with mechanical modes of the cold masses. Recently, we have identified liquid helium flow as the driving force of these oscillations.

TPAT014 A Novel Technique for Multiturn Injection in a Circular Accelerator Using Stable Islands in Transverse Phase Space extraction, resonance, simulation, septum 1377
  • M. Giovannozzi, J. Morel
    CERN, Geneva
  By applying a time-reversal to the multiturn extraction recently proposed a novel approach to perform multiturn injection is proposed. It is based on the use of stable islands of the horizontal phase space generated by means of sextupoles and octupoles. A particle beam can be injected into stable islands of phase space, and then a slow tune variation allows merging the beam trapped inside the islands. The results of numerical simulations will be presented and discussed in details, showing how to use the proposed approach to generate hollow bunches.  
TPAT029 RIA Beam Dynamics: Comparing TRACK to IMPACT linac, simulation, lattice, ion-source 2095
  • B. Mustapha, V.N. Aseev, P.N. Ostroumov
    ANL, Argonne, Illinois
  • J. Qiang, R.D. Ryne
    LBNL, Berkeley, California
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. W-31-109-ENG-38.

In order to benchmark the newly developed beam dynamics code TRACK we have performed comparisons with well established existing codes. During code development, codes like TRANSPORT, COSY, GIOS and RAYTRACE were used to check TRACK's implementation of the different beam line elements. To benchmark the end-to-end simulation of the RIA driver linac, the simulation of the low-energy part (from the ion source to the entrance of the SC linac) was compared with PARMTEQ and found to agree well. For the simulation of the SC linac the code IMPACT is used. Prior to these simulations, the code IMPACT had to be updated to meet the special requirements of the RIA driver linac. Features such as multiple charge state acceleration, stripper simulation and beam collimation were added to the code. IMPACT was also modified to support new types of rf cavities and to include fringe fields for all the elements. This paper will present a comparison of the beam dynamics simulation in the RIA driver linac between the codes TRACK and IMPACT. A very good agreement was obtained which represents another validation of both codes.

TPAT031 Painting Self-Consistent Beam Distributions in Rings SNS, space-charge, quadrupole, lattice 2194
  • J.A. Holmes, S.M. Cousineau, V.V. Danilov
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

We define self-consistent beam distributions to have the following properties: 1) time-independence or periodicity, 2) linear space charge forces, and 3) maintainance of their defining shape and density under all linear transformations. The periodic condition guarantees zero space-charge-induced halo growth and beam loss during injection. Some self-consistent distributions can be manipulated into flat, or even point-like, beams, which makes them interesting to colliders and to heavy-ion fusion. This paper presents methods for painting 2D and 3D self-consistent distributions and for their manipulation to produce flat and point-like beams.

TPAT032 Transverse Stability Studies of the SNS Ring space-charge, SNS, impedance, extraction 2254
  • J.A. Holmes, V.V. Danilov
    ORNL, Oak Ridge, Tennessee
  • L.K. Jain
    UW/Physics, Waterloo, Ontario
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

Detailed studies of the transverse stability of the SNS ring have been carried out for realistic injection scenarios. For coasting beam models and single harmonic impedances, analytic and computational results including phase slip, chromaticity, and space charge are in excellent agreement. For the dominant extraction kicker impedance and bunched beams resulting from injection, computationally determined stability thresholds are significantly higher than for coasting beams. At this time, we have no analytic model to treat the bunched beam case, but we present a formulation that provides an approach to this problem.

TPAT050 Beam Dynamics Design of the L3BT for J-PARC space-charge, linac, simulation, emittance 3091
  • T. Ohkawa
    JAERI, Ibaraki-ken
  • M. Ikegami
    KEK, Ibaraki
  L3BT is beam transportation line from the linac to the 3-GeV RCS which is the part of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC.In this paper, especially results of the beam simulation of the injection section of the L3BT are presented. And the matching of rms envelopes and dispersion function for space charge dominated beams are also discussed.  
TPAT054 Dispersion Matching of a Space Charge Dominated Beam at Injection into the CERN PS Booster optics, space-charge, simulation, booster 3283
  • K. Hanke, J. Sanchez-Conejo, R. Scrivens
    CERN, Geneva
  In order to match the dispersion at injection into the CERN PS Booster, the optics of the injection line was simulated using two different codes (MAD and TRACE). The simulations were benchmarked versus experimental results. The model of the line was then used to re-match the dispersion. Experimental results are presented for different optics of the line. Measurements with varying beam current show the independence of the measured quantity of space-charge effects.  
TPAT055 On Start to End Simulation and Modeling Issues of the Megawatt Proton Beam Facility at PSI simulation, space-charge, cyclotron, proton 3319
  • A. Adelmann, S.R.A. Adam, H. Fitze, R. Geus, M. Humbel, L. Stingelin
    PSI, Villigen
  At the Paul Scherrer Institut (PSI) we routinely extract a one megawatt (CW) proton beam out of our 590 MeV Ring Cyclotron. In the frame of the ongoing upgrade program, large scale simulations have been undertaken in order to provide a sound basis to assess the behaviour of very intense beams in cyclotrons. The challenges and attempts towards massive parallel three dimensional start-to- end simulations will be discussed. The used state of the art numerical tools (mapping techniques, time integration, parallel FFT and finite element based multigrid Poisson solver) and their parallel implementation will be discussed. Results will be presented in the area of: space charge dominated beam transport including neighbouring turns, eigenmode analysis to obtain accurate electromagnetic fields in large the rf cavities and higher order mode interaction between the electromagnetic fields and the particle beam. For the problems investigated so far a good agreement between theory i.e. calculations and measurements is obtained.  
TPAT059 Space Charge Experiments and Simulation in the Fermilab Booster booster, simulation, space-charge, resonance 3453
  • J.F. Amundson, P. Spentzouris
    Fermilab, Batavia, Illinois
  Funding: Scientific Discovery through Advanced Computing project, "Advanced Computing for 21st Century Accelerator Science and Technology," U.S. DOE/SC Office of High Energy Physics and the Office of Advanced Scientific Computing Research.

We have studied space charge effects in the Fermilab Booster. Our studies include investigation of coherent and incoherent tune shifts and halo formation. We compare experimental results with simulations using the 3-D space charge package Synergia.

TPAT060 Overview of the Synergia 3-D Multi-Particle Dynamics Modeling Framework simulation, booster, space-charge, emittance 3490
  • P. Spentzouris, J.F. Amundson
    Fermilab, Batavia, Illinois
  • D.R. Dechow
    Tech-X, Boulder, Colorado
  Funding: Scientific Discovery through Advanced Computing project, "Advanced Computing for 21st Century Accelerator Science and Technology," U.S. DOE/SC Office of High Energy Physics and the Office of Advanced Scientific Computing Research.

High precision modeling of space-charge effects is essential for designing future accelerators as well as optimizing the performance of existing machines. Synergia is a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher-order optics implementation. We describe the Synergia framework and model benchmarks we obtained by comparing to semi-analytic results and other codes. We also present Synergia simulations of the Fermilab Booster accelerator and comparisons with experiment.

TPAT077 Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider luminosity, simulation, collider, positron 4000
  • S. Wang
    IHEP Beijing, Beijing
  • Y. Cai
    SLAC, Menlo Park, California
  It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.  
TOAB006 SPEAR 3 - The First Year of Operation feedback, optics, power-supply, dynamic-aperture 505
  • R.O. Hettel
    SLAC, Menlo Park, California
  Funding: Work supported in part by Department of Energy Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.

The first electrons were accumulated in the new 3-GeV SPEAR 3 storage ring in December, 2003, five days after the beginning of commissioning. By mid-January of 2004, the phas·10-1 current of 100 mA were stored. Ring characterization and tuning continued until early March when the first photon beam line was opened for users. By the end of the first run in July, SPEAR 3 beam properties and ring performance had been extensively measured by the accelerator and beam line groups. These included micron stability using slow orbit feedback, an emittance coupling of ~0.1% and 30-h lifetimes at 100 mA. During the present 2005 user run, turn-by-turn BPMs, fast orbit feedback, a high resolution UV synchrotron light monitor, and beam scrapers are being commissioned and 500-mA operation will be established. A modified lattice that will incorporate a double vertical waist chicane has been designed that will enable future installation of two small gap insertion devices. A study of top-off injection modes will also commence this year. The performance of SPEAR 3 during its first year of commissioning and operation, together with plans to improve performance, are described.

TOAD002 Novel Tune Diagnostics for the Tevatron antiproton, proton, pick-up, betatron 140
  • C.-Y. Tan
    Fermilab, Batavia, Illinois
  The Tevatron collides protons and antiprotons in the same beam pipe. This poses a challenge in the measurement of tunes for both species simultanously because of the possibility of signal contamination from the other species. On top of this, since both beams are in the same beam pipe, tunes of individual bunches are also important because tune shifts from the beam-beam effect affects each bunch differently. Three different tune diagnostics used in the Tevatron will be discussed in this paper: 1.7GHz Schottky pickups, 21.4 MHz Schottky pickups and 27 kHz baseband pickups. These pickups look at the tune spectrum at different frequency bands and provide useful physics information for each frequency regime.  
TOAD003 Development of the Beam Diagnostics System for the J-PARC Rapid-Cycling Synchrotron proton, vacuum, linac, beam-losses 299
  • N. Hayashi, S.H. Hiroki, J. Kishiro, Y.T. Teruyama, R. Toyokawa
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • D.A. Arakawa, S. Lee, T. Miura, T. Toyama
    KEK, Ibaraki
  Development of the beam diagnostics system for the J-PARC (Japan Proton Accelerator Research Complex) Rapid-Cycling Synchrotron is described. The system consists of Beam Position Monitor (BPM), Beam Loss Monitor (BLM), Current monitors (DCCT, SCT, MCT, FCT, WCM), Tune meter system, 324MHz-BPM, Profile monitor, and Halo monitor. BPM electrode is electro-static type and its electronics is designed for both COD and turn-by-turn measurements. Five current monitors have different time constants in order to cover wide frequency range. The tune meter is consisted of RFKO and the beam pick-up electrode. For the continuous injected beam monitoring, 324MHz-BPM detects Linac frequency. Two types of profile monitor are multi-wire for low intensity tuning and the residual gas monitor for non-destructive measurement.  
TOPC004 Tevatron Beam Position Monitor Upgrade pick-up, antiproton, proton, controls 410
  • S.A. Wolbers, B. Banerjee, B. Barker, S. Bledsoe, T. Boes, M. Bowden, G.I. Cancelo, G. Duerling, B. Forster, B. Haynes, B. Hendricks, T. Kasza, R.K. Kutschke, R. Mahlum, M.A. Martens, M. Mengel, M. Olsen, V. Pavlicek, T. Pham, L. Piccoli, J. Steimel, K. Treptow, M. Votava, R.C. Webber, B. West, D. Zhang
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980s, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.

TPPE007 Energy Correction for High Power Proton/H Minus Linac Injectors linac, SNS, space-charge, feedback 1075
  • D. Raparia, Y.Y. Lee, J. Wei
    BNL, Upton, Long Island, New York
  High-energy proton/H minus (> GeV) linear accelerators suffer from energy jitter due to RF amplitude and phase stability. For high-power operations, such energy jitter often results in beam losses at more than 1 W/m level required for hands-on maintenance. Depending upon the requirements for next accelerator in the chain, this energy jitter may or may not require correction. This paper discusses the sources of energy jitter and correction feasibility with specific examples of the Spallation Neutron Source linac and a higher-energy H minus linac.  
TPPE017 A New Broadband Microwave Frequency Device for Powering ECR Ion Sources ion, ion-source, radiation, electron 1529
  • Y. Kawai, G. Alton, Y. Liu
    ORNL, Oak Ridge, Tennessee
  Funding: Research at ORNL is supported by the U.S. DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

The multiple discrete frequency technique has been used to improve the performance of conventional B-field configuration ECR ion sources. However, the practical application of this technique is very costly, requiring multiple independent single-frequency rf power supplies and complicated rf injection systems. Broadband sources of rf power offer a low-cost and more effective method for increasing the physical size of the ECR zone within these ion sources. An Additive White Gaussian Noise Generator (AWGNG) system for injecting broadband rf power into these ion sources has been developed in conjunction with a commercial firm. The noise generator, in combination with an external oscillator and a traveling wave tube amplifier, can be used to generate broadband rf power without modifying the injection system. The AWGNG and its use for enhancing the performance of conventional B-field configuration ECR ion sources will be described.

TPPE031 60 mA Carbon Beam Acceleration with DPIS rfq, ion, plasma, laser 2206
  • M. Okamura, R.A. Jameson, K. Sakakibara, J. Takano
    RIKEN, Saitama
  • T. Fujimoto, S. Shibuya, T. Takeuchi
    AEC, Chiba
  • Y. Iwata, K. Yamamoto
    NIRS, Chiba-shi
  • H. Kashiwagi
    JAERI/ARTC, Gunma-ken
  • A. Schempp
    IAP, Frankfurt-am-Main
  We have studied "direct plasma injection scheme (DPIS)" since 2000. This new scheme is for producing very intense heavy ions using a combination of an RFQ and a laser ion source. An induced laser plasma goes directly into the RFQ without an extraction electrode nor any focusing devices. Obtained maximum peak current of Carbon 4+ beam reached 60 mA with this extremely simple configuration. The details of the experimental result will be presented.  
TPPE034 Possible Scheme of the Analyzing Part of a Cyclotron Injection Beamline with Higher Energy ion, emittance, focusing, vacuum 2345
  • Yu. Kazarinov
    JINR, Dubna, Moscow Region
  • J.W. Stetson, P.A. Zavodszky
    NSCL, East Lansing, Michigan
  Funding: This work was supported in part by the National Science Foundation under grant PHY-0110253.

The ion beam produced with an ECR ion source (ECRIS) with an extraction voltage of 30 kV may be additionally accelerated using a negative voltage of -30 kV applied to the last electrode of the extraction system, connected to the beamline biased to the same -30 kV potential. In this way the kinetic energy of the beam is increased to 60 keV/q, decreasing to half the space charge effect on the beam emittance. Using a large gap analyzing magnet placed right after the ECRIS and no focusing element, the transmission is still close to 100%. The voltage on the beamline must be kept constant from the ECRIS till the image focal plane of the analyzing magnet where the full separation of the beam charge states is achieved. An insulator break separates the biased beamline from the downstream section, which is at zero potential. Passing through this section of the beamline, the ion beam is decelerated to 30 keV/q, the energy necessary for the injection in the cyclotron. In order to prevent the increase of the beam divergence, a focusing solenoid is installed behind the break point. This work will present the results of a simulation of the transport of an argon beam in the proposed beamline.

TPPE048 The Injection System of SAGA Light Source septum, storage-ring, linac, kicker 3007
  • Y. Iwasaki, S. Koda, T. Okajima, Y. Takabayashi, T. Tomimasu, K. Yoshida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  • H. Ohgaki
    Kyoto IAE, Kyoto
  Saga light Source is a 1.4-GeV electron storage ring with a circumference of 75.6m. The injector is a 250-MeV linac producing 1 ms macro-pulse with a peak current of 12mA and repetition rate of 1Hz. The output beam from the linac is transported though a transport line, and injected into the ring though a septum magnet with a bending angle of 20-degree. The transport line consists of two bending magnets, two quadrupole doublelets, and a quadrupole singlet. The bump orbit is formed by four kicker magnets, two of which are installed at both sides of septum magnet, and other two are positioned apart by one magnet cell of the ring. They are excited by sinusoidal electric currents with a half width of 0.5 ms. The beam optics for the injection trajectory is computed and shown at control room, the parameters for which are provided directly from the power supply control server PC. The operator is able to see real-time result of the beam trajectory calculation. This tool is quite effective to optimize the magnets parameter setting. The commissioning of the light source was started in August 2004, and 250-MeV electrons ware stored first time on November 2004.  
TPPE050 Beam Injection in Recirculator SALO electron, quadrupole, gun, focusing 3109
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, F.A. Peev, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
  Possible antetypes of injectors for electron recirculator SALO,* intended for nuclear-physical research, are analyzed. The plan injection of beams in recirculator is offered. Expected parameters of beams are designed.

*I.S. Guk, A.N. Dovbnya, S.G. Kononenko, A.S. Tarasenko, M. van der Wiel, J.I.M. Botman, NSC KIPT accelerator on nuclear and high energy physics, Proceedings of EPAC 2004, Lucerne, Switzerland, p. 761-764.

TPPE054 Status of the Injection System for the Australian Synchrotron Project booster, synchrotron, quadrupole, sextupole 3271
  • S.P. Møller, H. Bach, F. Bødker, T.G. Christiansen, A. Elkjaer, S. Friis-Nielsen, N. Hauge, J. Kristensen, L.K. Kruse, S.P. Møller, B.R. Nielsen
    Danfysik A/S, Jyllinge
  DANFYSIK A/S designs and builds the complete injection system for the Australian Synchrotron Project. The full-energy booster will accelerate the beam from the injection energy of 100 MeV. to a maximum of 3.0 GeV. The booster is using combined function magnets. The status of the project is presented.  
TPPP007 Recent Progress at KEKB luminosity, vacuum, feedback, beam-losses 1045
  • Y. Funakoshi, K. Akai, K. Ebihara, K. Egawa, A. Enomoto, J.W. Flanagan, H. Fukuma, K.  Furukawa, T. Furuya, J. Haba, S. Hiramatsu, T. Ieiri, N. Iida, H. Ikeda, T. Kageyama, S. Kamada, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, M. Masuzawa, T. Mimashi, A. Morita, T.T. Nakamura, H. Nakayama, Y. Ogawa, K. Ohmi, Y. Ohnishi, N. Ohuchi, K. Oide, M. Ono, M. Shimada, S. Stanic, M. Suetake, Y. Suetsugu, T. Sugimura, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, N. Yamamoto, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, M. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki
  • F. Zimmermann
    CERN, Geneva
  We summarize the machine operation of KEKB during past one year. Progress for this period, causes of present performance limitations and future prospects are described.  
TPPP011 Investigations of Injection Orbits at CESR Based on Turn-By-Turn BPM Measurements electron, positron, betatron, optics 1228
  • M.G. Billing, J.A. Crittenden, M.A. Palmer
    Cornell University, Department of Physics, Ithaca, New York
  Funding: National Science Foundation.

Development of a data acquisition permitting turn-by-turn orbit measurements has been employed at CESR to study the optics of the injected electron beam. An optimization algorithm uses these measurements to determine the effective lattice functions describing the behavior of the injected electrons. We present comparisons of these measurements to tracking calculations of injection acceptance envelopes which account for the parasitic beam-beam interactions with the stored positron beam.

TPPP035 Performance of the PEP-II B-Factory Collider at SLAC luminosity, beam-beam-effects, electron, positron 2369
  • J. Seeman, J. Browne, Y. Cai, S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, N. Li, A. Novokhatski, M.C. Ross, P. Schuh, T.J. Smith, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • C. Steier, A. Wolski
    LBNL, Berkeley, California
  • G. Wormser
    IPN, Orsay
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has reached 9.2 x 1033/cm2/s. PEP-II has delivered an integrated luminosity of 710/pb in one day. It operates in continuous injection mode for both beams boosting the integrated luminosity. The peak positron current has reached 2.55 A in 1588 bunches. The total integrated luminosity since turn on in 1999 has reached 256/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.

TPPT003 Development of a Normal Conducting CH-DTL linac, proton, diagnostics, impedance 883
  • G. Clemente, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt-am-Main
  • L. Groening
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
  Funding: GSI, EU (CARE, contract number RII3-CT-2003-506395).

The normal conducting "Crossbar H-Type" (CH) accelerating structure is a good candidate for pulsed, high intensity linac application, covering the energy range from 3 to 100 MeV. H Mode cavities are outstanding in the low-beta range with respect to shunt impedance, high acceleration fields, and compact design, That's why we propose to base the 70 ma, 70 MeV, 352 MHz proton linan for GSI FAIR project on that structure. The actual design consists of 11 CH-DTL's for a total length of around 25 m. Latest results from beam dynamics optimisation will be discussed. Moreover, this paper describes the CH-DTL cavity design with enphasis on the optimisation with MacroWave Studio (single cell cross section, as well as multi cell cavity simulation), and on the achieved progress in the development of mechanical design concepts. A stainless steel multicell model cavity is presently fabricated by our institute in collaboration with GSI, in order to investigate manufacturing and assembly details. Based on this experience, the design of a CH prototipe power cavity will be optimised.

TPPT005 Dual Harmonic Operation with Broadband MA Cavities in J-PARC RCS impedance, acceleration, linac, vacuum 931
  • M. Yamamoto, M. Nomura, A. Schnase, F. Tamura
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Anami, E. Ezura, K. Hara, Y. Hashimoto, C. Ohmori, A. Takagi, M. Yoshii
    KEK, Ibaraki
  In the J-PARC RCS RF system, the fundamental rf acceleration voltage and the 2nd higher harmonic one are applied to each cavity. This is possible, because the magnetic alloy loaded cavities have a broadband characteristic and require no resonant frequency tuning. The tube amplifier provides both rf components. We calculate the operation of the tube under the condition of the dual harmonic, the non-pure resistive load and the class AB push-pull mode.  
TPPT019 Numerical Study of Coupling Slot Effects on Beam Dynamics in Industrial Accelerator Prototype coupling, quadrupole, simulation, electron 1622
  • V.V. Tarnetsky, V. Auslender, I. Makarov, M.A. Tiunov
    BINP SB RAS, Novosibirsk
  Funding: The work is supported by ISTC grant #2550.

At Budker INP, the work is in progress on development of high-efficiency, high-power electron accelerator named ILU-12. The accelerator has a modular structure and consists of a chain of accelerating cavities connected by on-axis coupling cavities with coupling slots in the common walls (the coupling constant is about 0.08). Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The paper presents results of 3D electromagnetic field numerical simulations for ILU-12 accelerating structure with recovery of quadrupole filed disturbance because of large coupling holes. The results show that accelerating cell geometry chosen eliminates coupling slot influence on the beam dynamics.

TPPT037 A Coaxial Subharmonic Cavity Design for Direct Injection at the Advanced Photon Source booster, linac, electron, higher-order-mode 2497
  • G.J. Waldschmidt, A. Nassiri
    ANL, Argonne, Illinois
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

Coaxial subharmonic cavity designs are being investigated at the Advanced Photon Source to improve injector reliability by injecting beam directly from the linac to the booster in storage ring top-up mode. The subharmonic system must operate jointly with the present 352-MHz booster to accelerate the beam to 7 GeV with minimal beam degradation. Design considerations must be made to ensure that bunch purity is maintained and that a large percentage of the linac macropulse is captured. An analysis of rf cavity designs using electromagnetic simulation software has been conducted at 58 MHz and 117 MHz. The final design evaluates the total power loss, field uniformity, and peak surface fields to achieve the required gap voltage.

TPPT053 Low-Beta SC Quarter-Wave Resonator and Cryomodule for SPIRAL 2 linac, alignment, vacuum, simulation 3238
  • S. Chel, P.-E. Bernaudin, P. Bosland, G. Devanz, P. Hardy, F. Michel, A. Mosnier
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  In the framework of the SPIRAL 2 project to be built in GANIL, we studied a complete cryomodule for the low beta (0.07) superconducting linac. The 88 MHz quarter wave resonators were optimised for RF, mechanical and thermal considerations. A prototype resonator, which differs from the final resonator by the Helium tank and the removable end-plate geometry and material, has been built. We present the equipments developped for the preparation of this prototype as well as the results of the RF tests. We also detail the mechanical calculation and measurements of the tuning system, and the main aspects of the cryomodule designed to save longitudinal space.  
TPPT066 Successful Operation of the 500 MHz SRF Module at TLS synchrotron, electron, photon, klystron 3706
  • C. Wang, L.-H. Chang, S.-S. Chang, C.-T. Chen, F.-T. Chung, F.-Z. Hsiao, G.-Y. Hsiung, K.-T. Hsu, C.-C. Kuo, H.C. Li, M.-C. Lin, R.J. Lin, Y.K. Lin, G.-H. Luo, M.H. Tsai, J.Y. Yang, T.-T. Yang, M.-S. Yeh
    NSRRC, Hsinchu
  A superconducting radio frequency (SRF) cavity of CESR-III design was installed sucessfully in the electron storage ring at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. The project goals are to double the photon flux by raising the electron beam current and to increase the beam stability by taking advantage of the well-damped high-order modes of SRF cavity. Nowadays, SRF cavity has become the key technology for new synchrotron light sources under construction or planning worldwide. The first operational experience of the SRF cavity at the NSRRC will be presented.  
TOPA001 Mono Energetic Beams from Laser Plasma Interactions laser, electron, plasma, simulation 69
  • C.G.R. Geddes, E. Esarey, W. Leemans, C.B. Schroeder, C. Toth
    LBNL, Berkeley, California
  • J.R. Cary, C. Nieter
    Tech-X, Boulder, Colorado
  • J. Van Tilborg
    TUE, Eindhoven
  Funding: Supported by U.S. Dept. of Energy contracts DE-AC03-76SF00098, DE-FG03-95ER40926, DE-FG02-01ER41178, DE-FG02-03ER83857, SciDAC, and NSF 0113907. C. Geddes is also supported by the Hertz foundation.

A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100% electron energy spread. In the present experiments on the L’OASIS laser,* the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing >200pC charge above 80 MeV and with normalized emittance estimated at < 2 pi -mm-mrad were produced.** Data and simulations (VORPAL***) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.

*W.P. Leemans et al., Phys. Plasmas 5, 1615-23 (1998). **C.G.R. Geddes et al., Nature 431, 538-41 (2004). ***C. Nieter et al., J. Comp. Phys. 196, 448-73 (2004).

TOPD003 Cooler Storage Ring at China Institute of Modern Physics ion, dipole, heavy-ion, lattice 271
  • J.W. Xia
    IMP, Lanzhou
  • B.W. Wei, W.L. Zhan
    IHEP Beijing, Beijing
  CSR, a new ion cooler-storage-ring project in China IMP, is a double ring system, and consists of a main ring (CSRm) and an experimental ring (CSRe). The two existing cyclotrons SFC (K=69) and SSC (K=450) of the Heavy Ion Research Facility in Lanzhou (HIRFL) will be used as its injector system. The heavy ion beams with the energy range of 7–30 MeV/nucleus from the HIRFL will be accumulated, cooled and accelerated to the higher energy range of 100–500 MeV/ nucleus in CSRm, and then extracted fast to produce radioactive ion beams or highly charged heavy ions. Those secondary beams will be accepted and stored or decelerated by CSRe for many internal-target experiments or high precision spectroscopy with beam cooling. On the other hand, the beams with the energy range of 100–1000MeV/ nucleus will also be extracted from CSRm by using slow extraction or fast extraction for many external-target experiments. CSR project was started in the end of 1999 and will be finished in 2006. In this paper the outline and the activities of the project will be described.  
WPAE007 Commissioning of the LNLS 2 T Hybrid Wiggler wiggler, storage-ring, vacuum, photon 1072
  • R.H.A. Farias, J.F. Citadini, M.J. Ferreira, J.G.R.S. Franco, A.F.A. Gouveia, L.C. Jahnel, L. Liu, R.T. Neuenschwander, X.R. Resende, P.F. Tavares, G. Tosin
    LNLS, Campinas
  • N.P. Abreu
    UNICAMP, Campinas, São Paulo
  Funding: MCT-CNPq, FAPESP.

We present the results of the commissioning of a 28-pole 2 T Hybrid Wiggler at the 1.37 GeV electron storage ring of the Brazilian Synchrotron Light Source. The wiggler will be used mainly for protein crystallography and was optimized for the production of 12 keV photons. The very high field and relatively large gap (22 mm) of this insertion device led to a magnetic design that includes large main and side magnets and heavily saturated poles. We present the results of the commissioning with beam, with special attention to the correction of the large linear tune-shift perturbations produced by the wiggler as well as on the reduction of beam lifetime at full energy. Since the injection at the LNLS storage ring is performed at 500 MeV we also focus on the effects of non-linearities and their impact on injection efficiency.

WPAE008 Redesign of a Low Energy Probe Head emittance, simulation, proton, cyclotron 1105
  • Y.-N. Rao, G.H. Mackenzie, T.C. Ries
    TRIUMF, Vancouver
  The present situation of the low energy probe L·102 in TRIUMF cyctron is that the thickness of finger 5 is uniform in the radial direction and its weight which amounts to ~447 g is affecting its re-circulating ball mechanism and causing it to fall below the median plane over its range of movement (13.890 to 161.515 inch). We first made simulations to determine the optimum thickness of the probe head vs the radial length so as to reduce its weight. And then, we compared the simulation results with experimental measurements made. Finally, we calculated the temperature rise caused by the beam power dumped on the probe, and figured out the maximum beam current that can be dumped on the finger.  
WPAE017 Installation of the LHC Long Straight Sections (LSS) insertion, shielding, quadrupole, vacuum 1563
  • S. Bartolome-Jimenez, G. Trinquart
    CERN, Geneva
  The LHC long straight sections (LSS) serve as experimental or utility insertions. There are two high luminosity experimental insertions located at points 1 and 5 and two more experimental insertions at points 2 and 8 which also contain the injection systems. The beams only cross at these four locations and are focused by superconducting low-beta triplets. Insertions 3 and 7 each contain two collimation systems. Insertion 4 contains two RF systems. Insertion 6 contains the beam dumping system. The installation of the LSS is a challenge due to the compact layout that characterises these areas and the difficulties related to the underground work mainly in zones of restricted access. Specific devices are required for handling and installing various heavy and voluminous elements. This paper reviews the installation scenarios, describes the sequences presently planned and highlights the potential problem areas. The particular case of sector 7-8 where the LSS elements will be installed in parallel with the cryogenic distribution line (QRL) is used as an example of a ‘rapid’ installation scheme to illustrate how resources are used. The consequences of possible shortcuts are also mentioned.  
WPAE019 How to Fill a Narrow 27 km Long Tube with a Huge Number of Accelerator Components? site, laser, civil-engineering, extraction 1634
  • Y. Muttoni, J.-P. Corso, R. V. Valbuena
    CERN, Geneva
  As in large scale industrial projects, research projects, such as giant and complex particle accelerators, require intensive spatial integration studies using 3D CAD models, from the design to the installation phases. The future management of the LHC machine configuration during its operation will rely on the quality of the information, produced during these studies.This paper presents the powerful data-processing tools used in the project to ensure the spatial integration of several thousand different components in the limited space available.It describes how the documentation and information generated have been made available to a great number of users through a dedicated Web site and how installation nonconformities were handled.  
WPAE025 Design for a 1.3 MW, 13 MeV Beam Dump for an Energy Recovery Linac vacuum, electron, linac, synchrotron 1877
  • C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
  • Y. He, C.H. Smith
    Cornell University, Ithaca, New York
  Funding: Work supported by Cornell University.

The electron beam exiting an Energy Recovery Linac (ERL) is dumped close to the injection energy. This energy is chosen as low as possible while allowing the beam quality specifications to be met. As ERLs are designed for high average beam current, beam dumps are required to handle high beam power at low energy. Low energy electrons have a short range in practical dump materials, requiring the beam size at the dump face be enlarged to give acceptable power densities and heat fluxes. Cornell University is developing a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy requires a 1.3 MW beam dump. We present a mature design for this dump, using an array of water-cooled extruded copper tubes. This array is mounted in the accelerator vacuum normal to the beam. Fatigue failure resulting from abrupt thermal cycles associated with beam trips is a potential failure mechanism. We report on designs for a 75 kW, 750 keV tube-cooled beryllium plate dump for electron gun testing, and a 500 kW, 5 to 15 MeV copper tube dump for use with the prototype injector under development. We expect to test the beryllium dump within a year, and the higher power copper dump within 2-1/2 years.

WPAE035 SNS Ring Injection Stripped Electron Collection: Design Analysis and Technical Issues electron, SNS, dipole, beam-losses 2384
  • Y.Y. Lee, G.J. Mahler, W. Meng, D. Raparia, L. Wang, J. Wei
    BNL, Upton, Long Island, New York
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

This paper describes the simulation studies on the motions of stripped electrons generated in the injection section of the Spallation Neutron Source (SNS) accumulator ring and the effective collection mechanism. Such studies are important for high intensity machines, in order to reduce beam loss and protect other components in the vicinity. The magnetic field is applied to guide electrons to a collector, which is located at the bottom of the beam chamber. Part of the study results with and without considering the interactions between electrons and materials are presented and discussed. The final engineering design of the electron collector (catcher) is also presented and described.

WPAE058 High Voltage Measurements on Nine PFNs for the LHC Injection Kicker Systems kicker, simulation, collider, power-supply 3402
  • M.J. Barnes, G.D. Wait
    TRIUMF, Vancouver
  • L. Ducimetière
    CERN, Geneva
  Funding: National Research Council of Canada

Each of the two LHC injection kicker magnet systems must produce a kick of 1.3 T.m with a flattop duration variable up to 7.86 microseconds, and rise and fall times of less than 900 ns and 3 microseconds, respectively. A kicker magnet system consists of four 5 Ohm transmission line magnets with matching terminating resistors, four 5 Ohm Pulse Forming Networks (PFN) and two Resonant Charging Power Supplies (RCPS). Nine PFNs, together with associated switch tanks, and dump switch terminating resistors have been built at TRIUMF and all have been tested at high voltage (54 kV) to ensure that the performance is within specification. This paper describes the HV measurements, compares these results with low voltage measurements and analyses the pulse performance of the PFNs. The measurements are compared with results from PSpice simulations and small discrepancies between the predictions and measurements are explained.

WPAE069 The APS Septum Magnet Power Supplies Upgrade septum, power-supply, feedback, booster 3795
  • B. Deriy, A.L. Hillman, G.S. Sprau, J. Wang
    ANL, Argonne, Illinois
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

The higher requirements for beam injection stability at the APS storage ring demand improvement of pulsed power supplies for the septum magnets. The upgrade will be performed in two stages. In the first stage we will implement a new power supply circuit with a new regulation timing sequence that will provide better voltage regulation performance. A common design was made for all of the septum magnet power supplies at the APS. The new regulation module has already been tested on both thin and thick septum magnet power supplies. This test showed that the new target for the current regulation stability, 1/2000 with less than 10-ns jitter, is achievable with this approach. In the second stage we will implement an embedded microprocessor system that will provide digitally controlled shot-to-shot current regulation of the power supply. The system comprises modules for communication with EPICS, data acquisition, and precise timing. A prototype has already been built and will also be discussed.

WPAE071 Power Supply for Magnet of Compact Proton and/or Heavy Ion Synchrotron for Radiotherapy power-supply, dipole, synchrotron, acceleration 3859
  • S. Yamanaka
    NIRS, Chiba-shi
  • K. Egawa, K. Endo, Z. Fang
    KEK, Ibaraki
  A resonant type pulse power supply, for an application to a compact proton and/or heavy ion synchrotron with a several Hz repetition rate, is attractive from the view point of attaining an average beam current that is enough for the radiation therapy. Maximum ampere-turn of the dipole magnet is as large as 200 kAT to make the bending radius as small as possible. Pulse current is generated by discharging the stored energy in a capacitor bank through a pulse transformer. Moreover, the auxiliary power supply for the dipole magnets which adds the flat magnetic field (10-20μs) for the multi-turn beam-injection is being developed. The power supply for the quadrupole magnets is the high switching frequency (20 kHz × 5) switching-mode Power Supply for the adjusting tune and the tracking between the quadrupole and the dipole fields.Detailed analyses on these pulse power supplies will be presented.  
WPAE072 Installation and Testing of SNS Magnet Power Supplies power-supply, SNS, linac, dipole 3889
  • K.R. Rust, W.E. Barnett, R.I. Cutler, J. T. Weaver
    ORNL, Oak Ridge, Tennessee
  • S. Dewan, R. Holmes, S. Wong
    IE Power Inc., Mississauga, Ontario
  • R.F. Lambiase, J. Sandberg
    BNL, Upton, Long Island, New York
  • J. Zeng
    Digital Predictive Systems Inc., Toronto
  Funding: This work was supported by SNS through UT-Batelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

This paper describes the types and quantities of magnet power supplies required for the SNS Linear Accelerator, High-Energy Beam Transport (HEBT), Ring and the Ring-Target Beam Transport (RTBT). There are over 600 magnets and more than 550 magnet power supplies. These magnet power supplies range in size from the bipolar-corrector supplies rated at 35 volts, 20 amps to the main-ring dipole supply that is rated at 440 volts, 6000 amps. The Linac power supplies have a ripple/stability specification of 1000 parts per million while the ring supplies have a specification of 100 parts per million. There are also pulsed power supplies for beam injection and beam extraction. The paper will show acceptance test results from the manufacturers as well as test results performed by the SNS magnet power supply group.

WPAE079 Dual Power Supplies for PEP-II Injection Kickers kicker, power-supply, luminosity, background 4045
  • J. Olszewski, F.-J. Decker, R.H. Iverson, A. Kulikov, G.C. Pappas
    SLAC, Menlo Park, California
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.

Originally the PEP-II injection kickers where powered by one power supply. Since the kicker magnets where not perfectly matched, the stored beam got excited by about 7% of the maximum kicker amplitude. This led to luminosity losses which were especially obvious for trickle injection when the detector is on for data taking. Therefore two independant power supplies with thyratrons in the tunnel next to the kicker magnet were installed. This also reduces the necessary power by about a factor of five since there are no long cables that have to be charged. The kickers are now independantly adjustable to eliminate any non-closure of the kicker system and therefore excitation of the stored beam. Setup, commissioning and fine tuning of this system are discussed.

WPAP016 High Brightness Electron Gun for X-Ray Source target, electron, focusing, brightness 1488
  • S. Ohsawa, M. Ikeda, T. Sugimura, M. Tawada
    KEK, Ibaraki
  • Y. Hozumi
    GUAS/AS, Ibaraki
  • K. Kanno
    AET Japan, Inc., Kawasaki-City
  A new electron-gun system is under development in order to increase X-ray from a rotating target. In commercial X-ray sources electron beams usually hit targets at the outer part. Owing to deformation by centrifugal force, there has been a limit on electron beam intensities. In order to overcome this difficulty, we adopted a new injection system which strikes inside of a ring-shape projection on a rotating target. It has an advantage in that heated-up points have supports back side against centrifugal force. This merit allows us to raise electron beam to give stronger X-rays.  
WPAP046 Injection Options for 12 GeV CEBAF Upgrade gun, simulation, recirculation, electron 2911
  • R. Kazimi, J. F. Benesch, Y.-C. Chao, J.M. Grames, G.A. Krafft, M. Tiefenback, B.C. Yunn, Y. Zhang
    Jefferson Lab, Newport News, Virginia
  Funding: Work supported by DOE Contract DE-AC05-84ER40150.

Jefferson Lab is planning to upgrade the CEBAF accelerator from 6 to 12 GeV. In order to achieve this, the beam energy at injection into the main accelerator needs to increase from 67 MeV to either 123 or 134 MeV depending on the location of the new experimental hall relative to the accelerator. The present 100 keV electron source and beam formation to 5 MeV will remain unchanged; however, the present accelerating cryomodules in the injector cannot reach the higher injection energies. Consequently, two options for attaining these energies are considered: (1) replacing the present injector cryomodules with new, higher gradient cryomodules, or (2) re-circulating the beam through the existing cryomodules to achieve the necessary energy gain in two passes. In this paper we present simulation results and list the advantages and disadvantages of these two options.

WPAT019 Beam Tests of a New Digital Beam Control System for the CERN LEIR Accelerator acceleration, pick-up, booster, proton 1649
  • M.-E. Angoletta, J. Bento, A. Blas, A. Findlay, P. Matuszkiewicz, F. Pedersen, A. Salom.Sarasqueta
    CERN, Geneva
  • J. DeLong
    BNL, Upton, Long Island, New York
  We are developing a digital beam control and cavity servo system for controlling the RF acceleration in CERN’s Low Energy Ion Ring (LEIR), a major component in the LHC lead ion injector chain. As the LEIR ring will only start during summer 2005, we have tested a simplified prototype of the system with low intensity beams on the CERN PS Booster (PSB). The hardware and software have been developed within the framework of a CERN-BNL collaboration. This fully digital beam control system is contained in VME mother boards which can accommodate several daughter boards. The fast signal processing is implemented in Field Programmable Gate Arrays (FPGAs), while the slower signal processing and communication with the software layer above is implemented in programmable Digital Signal Processors (DSPs). The objectives of the tests with beam in the PSB are to verify the multiple DSP and FPGA architecture, the sampling rates and data flows and the feedback loop dynamics. An additional goal is to integrate a number of highly complex intelligent VME modules with many sub-functions in the CERN controls environment to provide adequate signal acquisition, control and diagnostics to operate the system.  
WPAT024 First Results from the Use of Dual Harmonic Acceleration on the ISIS Synchrotron synchrotron, acceleration, proton, beam-losses 1871
  • A. Seville, D. Bayley, R.G. Bendall, M.G. Glover, A. Morris, J.W.G. Thomason
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  • D.J. Adams, I.S.K. Gardner, C.M. Warsop
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  The ISIS facility at the Rutherford Appleton Laboratory in the UK is currently the most intense pulsed, spallation, neutron source. The accelerator consists of a 70 MeV H- Linac and an 800 MeV, 50 Hz, rapid cycling, proton Synchrotron. The synchrotron beam intensity is 2.5x1013 protons per pulse, corresponding to a mean current of 200 μA. The synchrotron beam is accelerated using six, ferrite loaded, RF cavities with harmonic number 2. Four additional, harmonic number 4, cavities have been installed to increase the beam bunching factor with the potential of raising the operating current to 300 μA. This paper reports on the hardware commissioning and the first beam tests.  
WPAT053 Results of a High-Power Klystron Dip Test in the KEK Linac klystron, cathode, linac, space-charge 3235
  • K. Nakao, S. Fukuda, H. Katagiri, T. Matsumoto, S. Michizono, T. Takenaka, Y. Yano, M. Yoshida
    KEK, Ibaraki
  Dip test, which is the measurement of a klystron heater activity, is recently adopted as the standard measurement to maintain the klystron operation in the KEK electron-positron linac. In 2003, we began to use a dip test as the quick way to measure the emission characteristics from the klystron cathode. After the successful results, we made the dedicated measuring systems and measured the dips of the cathode emission of 60 operating klystrons in KEK electron-positron linac. These data are important to estimate the klystron cathode life and used to select the candidate klystrons of replacement in the summer maintenance period.  
WPAT066 ALS Booster Ring RF System Upgrade for Top-Off Mode of Operation booster, linac, synchrotron, storage-ring 3709
  • S. Kwiatkowski, K.M. Baptiste
    LBNL, Berkeley, California
  Funding: Supported by the U.S. Department of Energy under Contract No.DE-AC03-76SF00098.

ALS is one of the first third generation synchrotron light sources which has been operating since 1993 at Berkeley Lab. In the present ALS operation scenario 1.5GeV electron beam is injected from the booster into the storage ring every 8 hours where is accelerated to the final energy of 1.9GeV. The beam decays between fills from 400mA to 200mA with the time average current of 250mA. In order to increase the beam brighthess ALS team plans to increase the beam current to 500mA and maintain it constant during machine operation ("Top-Off" mode of operation). This operation scenario will require full energy injection from the booster ring into the storage ring and constant operation of the injector (10 bunches with the total charge of 1nC every 30 to 35 seconds). In this paper we will present the results of the ALS injector RF system analysis fo Top-Off mode of operation and describe the way we intent to implement the necessary modifications to the booster RF system.

WPAT070 500 MHz Coaxial Transition Between the ELETTRA Input Coupler and the Transmission Waveguide vacuum, resonance, storage-ring, insertion 3810
  • C. Pasotti, A. Fabris, M. Svandrlik
    ELETTRA, Basovizza, Trieste
  The investigations have shown that the 500 MHz ELETTRA input power coupler can safely sustain more than 150 KW. The critical component limiting the increase of the trasmitted RF power is the connection element between the input power coupler and the transmission line. An optimized design has been studied to overcome this limit. During the optimization process, the entire RF chain (input power coupler, connection element and transition to the standard waveguide WR1800) has been verified. The analysis has been carried out to check the performances of the whole lay-out in terms of efficiency of transmitted power and sensitivity to any signal coming from the cavity ( HOMs included). A prototype with an improved cooling system has been realized and tested.  
WOAB001 The Australian Synchrotron Project - Update synchrotron, storage-ring, site, vacuum 102
  • A. Jackson
    ASP, Clayton, Victoria
  The Australian Synchrotron – a synchrotron light facility based on a 3-GeV electron storage ring – is under construction at a site in the Metropolitan District of Melbourne. Building preparation started on a “green-field” site in September 2003 and staff moved in to their new offices in February 2005. Installation of the technical equipment started in April 2005 with all accelerator contracts expected to be completed before April 2006. Storage Ring commissioning with beam will start in June 2006, and project completion is scheduled for March 2007. In this paper we present an overview of the facility and discuss progress to date in meeting this very aggressive schedule.  
WOAB002 Status of the Shanghai Synchrotron Radiation Facility storage-ring, booster, synchrotron, linac 214
  • Z. Zhao, H. Ding, H. Xu
    SINAP, Shanghai
  The Shanghai Synchrotron Radiation Facility (SSRF) made its ground breaking at Zhang-Jiang High Tech Park on Dec.25, 2004 and moved into its construction phase with the plan of commencing user’s operation from April 2009. The SSRF complex is based on a 3.5GeV storage ring optimized to operate with top-up injection, mini-gap undulators and superconducting RF system, the 432m circumference storage ring provides 18 ID straight sections (4X12.0m and 16X6.5m), and four of them will be used for the first SSRF beam lines. The SSRF project was proposed in 1995, and since then it has experienced the conceptual design stage, the R&D program and the design optimization phase. This paper presents the updated design specifications and the construction status of the SSRF project.  
WOAB003 The Brazilian Synchrotron Light Source synchrotron, storage-ring, booster, insertion 325
  • P.F. Tavares, J.A. Brum
    LNLS, Campinas
  The Brazilian Synchrotron Radiation Laboratory has been operating the only light source in the southern hemisphere since July 1997. Over this 7 year period, approximately 22000 hours of beam time were delivered to users from all over Brazil as well as from 10 other countries. In this article, we report on the present configuration of the 1.37 GeV electron storage ring and associated instrumentation, describe recent improvements to the light source and analyze future prespectives including the installation of insertion devices and additional beamlines.  
WOAB007 SESAME in Jordan dipole, sextupole, synchrotron, vacuum 586
  • G. Vignola, A. Amro, M. Attal, F. Makahleh, M.M. Shehab, S. Varnasseri
    SESAME, Amman
  An overview of the status of SESAME is presented. SESAME (Synchrotron-light for Experimental Science and Application in the Middle East) is an Independent Intergovernmental Organization developed and officially established under the auspices of UNESCO. It involves at the present the following Member States: Bahrain, Egypt, Islamic Republic of Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey and United Arab Emirates. Moreover the following States are Observer of SESAME Council: France, Germany, Greece, Italy, Kuwait, Russian Federation, Sweden, UK and United States of America. SESAME will become a major international research center in the Middle East, located in Allan, Jordan. The machine design is based on a 2.5 GeV 3rd generation Light Source with an emittance of 26 nm.rad and 11 straights for insertion devices. The conceptual design of the accelerator complex has been frozen and the engineering design is started. The Phase I scientific program for SESAME has also been finalized and it foresees 6 beamlines. The construction of SESAME building is in progress and the beneficial occupancy is expected by the first half of 2006. The completion of the accelerators complex construction is scheduled for the end of 2009.  
WOAB010 BUNCH TRACING BY BUNCH BY BUNCH MEASUREMENT SYSTEM IN HLS wiggler, feedback, simulation, storage-ring 719
  • K. Zheng, W. Li, J.H. Liu, L. Liu, B. Sun, J.H. Wang, Y.L. Yang
    USTC/NSRL, Hefei, Anhui
  Funding: Supported by National Natural Science Project (10175063)

In this paper, we introduce a bunch tracing system which is based on a bunch-by-bunch (BxB) measurement system in Hefei Light Source (HLS), and present the analysis of the experiment results. Using an in-phase gate signal and a double balance mixer to control an external trigger of ADC, we test the reliability of the BxB system. By this system, we can trace all marked bunches in a set time slot or in manual burst mode. We can record all bunches’ data during the injection, ramping, wiggler excitation and normal operation, and provide a powerful facility for machine study.

WOAC005 Application of Independent Component Analysis for Beam Diagnosis betatron, synchrotron, booster, lattice 489
  • X. Huang, S.-Y. Lee
    IUCF, Bloomington, Indiana
  • E. Prebys, R.E. Tomlin
    Fermilab, Batavia, Illinois
  Funding: This work is supported in part by grants from DE-AC02-76CH03000, DOE DE-FG02-92ER40747 and NSF PHY-0244793.

The independent component analysis (ICA)* is applied to analyze simultaneous multiple turn-by-turn beam position monitor (BPM) data of synchrotrons. The sampled data are decomposed to physically independent source signals, such as betatron motion, synchrotron motion and other perturbation sources. The decomposition is based on simultaneous diagonalization of several unequal time covariance matrices, unlike the model independent analysis (MIA),** which uses equal-time covariance matrix only. Consequently the new method has advantage over MIA in isolating the independent modes and is more robust under the influence of contaminating signals of bad BPMs. The spatial pattern and temporal pattern of each resulting component (mode) can be used to identify and analyze the associated physical cause. Beam optics can be studied on the basis of the betatron modes. The method has been successfully applied to the Booster Synchrotron at Fermilab.

*A. Belouchrani et al., IEEE Trans. on Signal Processing, {\bf 45}, 434-444, (1997). **J. Irwin, et al., Phys. Rev. Lett. {\bf 82}, 1684 (1999); Chun-xi Wang, et al., Phys. Rev. ST Accel. Beams} {\bf 6}, 104001 (2003).

WOAC009 Techniques for Measurement and Correction of the SNS Accumulator Ring Optics betatron, quadrupole, SNS, optics 674
  • S. Henderson, P. Chu, S.M. Cousineau, V.V. Danilov, J.A. Holmes, T.A. Pelaia, M.A. Plum
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge.

The Spallation Neutron Source (SNS) Accumulator Ring will reach peak intensities of 1.5x1014 protons/pulse through multi-turn charge-exchange injection. Accumulation of these unprecedented beam intensities must be accomplished while maintaining extremely low losses (less than 1 W/m). It is anticipated that the control of the ring optics will be important for achieving these low loss rates. We describe our plans for measuring and correcting the optical functions of the accumulator ring lattice.

WOAD002 Lepton Collider Operation with Constant Currents background, luminosity, collimation, linac 149
  • U. Wienands
    SLAC, Menlo Park, California
  Funding: Work supported by US DOE under contract DE-AC03-76SF00515

Traditionally, electron-positron colliders have been operating in a top-off-and-coast fashion with a cycle time depending on the beam life time, typically on the order of an hour. Each top-off involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity is typically 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by constant operation at peak luminosity. Constant beam currents reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement special gating procedures in the detectors, minimizing dead time. Bunch-injection control decides which bunch to inject into next while maintaining small charge variation between bunches. Beam collimation can reduce injection noise but also cause an increase in background rates. A challenge can be determining beam lifetime, important to maintain tuning of the beams. The paper will discuss the special features of continuous injection in both KEKB and PEP-II.

ROAA001 DAFNE Operation and Plans for DAFNE2 luminosity, factory, damping, coupling 112
  • M. Zobov, D. Alesini, G. Benedetti, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, A. Clozza, G.O. Delle Monache, G. Di Pirro, A. Drago, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, C. Vaccarezza, M. Vescovi
    INFN/LNF, Frascati (Roma)
  • J.D. Fox, D. Teytelman
    SLAC, Menlo Park, California
  • E. Levichev, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
  The e+e- collider DAFNE, a 1.02 Gev c.m. Phi-factory, has exceeded 1.2 1032 cm-2s-1 peak luminosity with 7.5 pb-1 maximum daily integrated luminosity. At the present performance the physics program of the three main experiments DEAR, FINUDA and KLOE will be completed by mid 2007. In this paper we describe the steps which have led to the luminosity improvement and present proposals for the upgrade of the collider towards higher energy and/or luminosity. The main accelerator issues on which we are planning to rely for this purpose, such as lattices with negative momentum compaction, strong RF focusing, design of high field magnets and Linac upgrade, are discussed in detail.  
ROAC005 Present Status of J-PARC Ring RF Systems synchrotron, extraction, power-supply, feedback 475
  • M. Yoshii, S. Anami, E. Ezura, K. Hara, Y. Hashimoto, C. Ohmori, A. Takagi, M. Toda
    KEK, Ibaraki
  • M. Nomura, A. Schnase, F. Tamura, M. Yamamoto
    JAERI, Ibaraki-ken
  The accelerator of the J-PARC complex consists of the 400 MeV (initially 181 MeV) linac, the rapid cycling 3 GeV Synchrotron and the 50 GeV main Synchrotron. To accelerate an ultra-high intense proton beam, the synchrotrons require a high field gradient rf system (~25kV/m). Alleviating space charge effects is a key issue for minimizing beam losses during a cycle. Longitudinal bunch manipulation is also considered as well as acceleration. Magnetic alloy loaded cavities are the most practical choice for the J-PARC. Such system provides high field gradient, and broadband behavior. It is a stable passive system without tuning control. Multi-tone signals can be fed into the same cavity for acceleration and bunch manipulation. However, the harmonics of circulating beam current within the cavity bandwidth must be taken into account. A feed-forward scheme is used for compensating the beam induced voltages. The low level rf system is fully digital to provide precise control. The specification is based on high reliability and reproductivity. The design consideration of the whole rf system will be described and the current status presented.  
RPAE003 Optimization and Modeling Studies for Obtaining High Injection Efficiency at the Advanced Photon Source septum, optics, booster, quadrupole 871
  • L. Emery
    ANL, Argonne, Illinois
  Funding: This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

In recent years, the optics of the Advanced Photon Source storage ring has changed to lower equilibrium emittance (2.5 nm-rad) but at the cost of stronger sextupoles and stronger nonlinearities, which have reduced the injection efficiency from 100% in the high emittance mode. Over the years we have developed a series of optimization, measurement and modeling studies of the injection process, which allows us to obtain or maintain low injection losses. For example, the trajectory in the storage ring is optimized with trajectory knobs for maximum injection efficiency. This can be followed by collecting first-turn trajectory data, from which we can fit the initial phase-space coordinates. The model of the "optimized" trajectory would show whether the beam comes too close to a physical aperture in the injection magnets. Another modeling step is the fit and correction of the transfer line optics, which has a significant impact on phase-space matching.

RPAE027 Linear Optics Measurements in the ESRF Booster booster, sextupole, optics, dipole 1973
  • Y. Papaphilippou, L. Farvacque, E. Plouviez
    ESRF, Grenoble
  • A. Mostacci, A. Patriarca
    Rome University La Sapienza, Roma
  A series of experiments has been conducted in the ESRF booster in order to measure its linear optics. A steerer response matrix was developed and used to optimise the orbit correction at injection by developing a refined model. This matrix was also used to measure the beta functions along the accelerating cycle and the steerer calibration. Dispersion was also measured with classical RF scans and compared to theory. Finally, chromaticity measurements were performed for different sextupole settings enabling their calibration and optimisation.  
RPAE030 Status of the SOLEIL Booster Synchrotron booster, power-supply, dipole, quadrupole 2155
  • A. Loulergue
    SOLEIL, Gif-sur-Yvette
  Funding: SOLEIL.

SOLEIL is a 2.75 GeV third generation synchrotron radiation facility under construction near Paris. The injection system is composed of a 100 MeV electron Linac pre-accelerator followed by a full energy (2.75 GeV) booster synchrotron. The booster lattice is based on a FODO structure with missing magnet. With a circumference of 157 m and low field magnets (0.74 T), the emittance is of 150 nm.rad at 2.75 GeV. A flexible and economic ramping switched mode procedure for the main supply cycled up to 3 Hz and a 35 kW-352 MHz solid state amplifier powering the RF system are used. At present time, all the magnets, supports and vacuum have been received and tested. Half of the ring is already assembled and installation is the tunnel will begin in January 05. The pulsed elements and their pulser will be received and tested from January to April. The four main magnet power supplies will be received in February and tested in Marsh. We plan the booster commissioning with beam in May 2005.

RPAE034 Storage Ring Fill Patterns for Femtoslicing Applications laser, electron, radiation, single-bunch 2327
  • S. Khan
    BESSY GmbH, Berlin
  Funding: Funded by the Bundesministerium für Bildung und Forschung and by the Land Berlin.

The generation of laser-induced ultrashort synchrotron radiation pulses ("femtoslicing") during user operation at the BESSY II storage ring requires to add several bunches with enhanced charge to the routinely used multibunch fill. The paper addresses these specialized fill patterns in view of beam stability against multibunch oscillations and ion effects, beam lifetime, and the effect of beam loading on the synchronous phase angles.

RPAE037 Operation with a Low Emittance Optics at ANKA optics, emittance, storage-ring, resonance 2467
  • E. Huttel, A. Ben Kalefa, I. Birkel, A.-S. Müller, P. Wesolowski
    FZK, Karlsruhe
  • M. Giovannozzi
    CERN, Geneva
  • M. Pont, F. Pérez
    CELLS, Bellaterra (Cerdanyola del Vallès)
  ANKA is a synchrotron light source operating in an energy range from 0.5 to 2.5 GeV. The electron storage ring at ANKA is designed as a variation of an eightfold Double Bend Achromat structure. Since its commissioning the facility has been operated with zero dispersion in the long straight sections resulting in an emittance of about 100 nmrad. Since mid 2004 ANKA is operated with dispersion distributed over the complete ring thus reducing the emittance to 40 nmrad. In the course of the re-design of the storage ring optics a compensation of higher order field components leads to a visibly increased momentum acceptance. Optics calculations and measurements as well as operational experience will be discussed.  
RPAE042 Optimization of Kicker Pulse Bump by Using a SR Monitor at the Photon Factory sextupole, kicker, photon, factory 2717
  • T. Mitsuhashi, A. Ueda
    KEK, Ibaraki
  We plan to operate the Photon Factory storage ring by top-up injection mode from 2006. To realize this operation mode, remaining coherent oscillation of the stored beam due to error in the injection pulse bump is one of most serious problem. To reducing the error in the injection pulse bump, we calibrated kicking angles of the injection kicker magnets by means of the term by term instantaneous observation of beam profile. We have a SR monitor inside of injection pulse bump. By measureing the tern by tern beam position after the excitation of kicker magnet, we can calibrate the kick angle of the kicker magnet. By using this calibration, we optimized injection pulse bump. As a result, we reduced amplitude of remaining coherent oscillation less than 1/4 of the 1??of the beam size.  
RPAE044 Operation and Recent Developments of the Photon Factory Advanced Ring single-bunch, vacuum, emittance, betatron 2845
  • T. Miyajima, T. Abe, W.X. Cheng, K. Ebihara, K. Haga, K. Harada, Y. Hori, T. Ieiri, S. Isagawa, T. Kageyama, T. Kasuga, T. Katoh, H. Kawata, M. Kikuchi, Y. Kobayashi, K. Kudo, T. Mitsuhashi, S. Nagahashi, T.T. Nakamura, H. Nakanishi, T. Nogami, T. Obina, Y. Ohsawa, M. Ono, T. Ozaki, H. Sakai, Y. Sakamoto, S. Sakanaka, M. Sato, M. Satoh, T. Shioya, M. Suetake, R. Sugahara, M. Tadano, T. Takahashi, S. Takasaki, Y. Tanimoto, M. Tejima, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, N. Yamamoto, S. Yamamoto, S.I. Yoshimoto
    KEK, Ibaraki
  The Photon Factory Advanced Ring (PF-AR) is a synchrotron light source dedicated to X-ray research. The PF-AR is usually operated at a beam energy of 6.5 GeV, but a 5.0 GeV mode is also available for medical application. In 6.5 GeV mode the typical lifetime of 15 hrs and the beam current of 60 mA with a single-bunch have been archived. Almost full-time single-bunch operation for pulse X-ray characterize the PF-AR. However, single-bunch high-current caused several problems to be solved, including the temperature rise of the some of the vacuum component, a pressure increase in the ring, and a sudden drop in lifetime. In order to avoid these issues the developments of new methods have been continued. In this paper, the status and the recent developments of the PF-AR will be presented. It concerns: the successful operation with two-bunch high-current in 5.0 GeV mode; varying the vertical beam size for the medical application; modulating the RF acceleration phase in order to elongate the length of bunch; stabilizing temperature in the ring tunnel; the study for medium emittance operation with 160 nmrad; moving the RF cavities in order to install a new insertion device; an innovative injection scheme using a pulsed quadrupole magnet.  
RPAE046 Operational Status at the PLS: Recent Improvements and Changes storage-ring, closed-orbit, feedback, electron 2923
  • E.S. Park, J. Choi, H.-S. Kang, M. Kim, E.-H. Lee, T.-Y. Lee
    PAL, Pohang, Kyungbuk
  PLS has been operated 10 years since 1994. A few improvements has been made to stabilize the reference orbit drifts caused by insertion devices and other sources: The control system has been upgraded to 20 bit capability from 12 bit. The slow global orbit feedback is employed routinely in the user run times. These improvements and the operational status changes will be presented in this report.  
RPAE049 Revision of Booster to Storage Ring Transport Line Design and Injection Scheme for Top-Up Operation at NSRRC kicker, booster, quadrupole, extraction 3085
  • M.-H. Wang, H.-P. Chang, J. Chen, J.-R. Chen, K.-T. Hsu, C.-C. Kuo, G.-H. Luo
    NSRRC, Hsinchu
  In order to help the operation of constant current, the optics of booster to storage ring transport line (BTS) design is reinvestigated. The initial twiss parameters are derived by measurement. The optics of the transport line is readjusted according to the measured initial beam parameters. The design of pulse width of the injection kicker is also changed from 1.2μsecond to 2.0μsecond. The injection scheme is reviewed and the effects of the kicker error on both injected beam and stored beam are investigated and shown in this report.  
RPAE055 Results of Preliminary Tests of PAR Bunch Cleaning booster, storage-ring, synchrotron, linac 3307
  • C. Yao, M. Borland, A. Grelick, A.H. Lumpkin, N. Sereno
    ANL, Argonne, Illinois
  Funding: This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

A particle accumulator ring (PAR) is used at the Advanced Photon Source (APS) to collect multiple linac bunches and compress them into a 0.3-ns (rms) single bunch for booster injection. A 9.77-MHz fundamental rf system and a 117.3-MHz harmonic rf system are employed for initial beam capture and bunch length compression. Satellite bunches with very low charge form due to rf phase drifts or beam loading change. These satellites, when injected into the booster and then into the storage ring (SR), cause bunch impurity at three buckets from the target bucket. Storage ring and booster bunch cleaning was tried but proved to be difficult due to the top-up mode of operation in the storage ring and tune drift in the booster synchrotron. Recently we implemented a PAR bunch-cleaning system with tune-modulated harmonic rf knockout. Preliminary tests gave a measured SR bunch purity of better than 10-6, which shows that the cleaning method is feasible and could achieve a bunch purity goal of 10-8. This report describes the system configuration, test results, and system performance.

RPAE058 NSLS-II Injection Concept linac, booster, emittance, storage-ring 3408
  • T.V. Shaftan, A. Blednykh, S. Chouhan, E.D. Johnson, S.L. Kramer, S. Krinsky, J.B. Murphy, I.P. Pinayev, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T. Tanabe, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
  Currently the facility upgrade project is under progress at the NSLS (Brookhaven National Laboratory). The goal of NSLS-II is a 3 GeV ultra-low emittance storage ring that will provide three orders of magnitude increase in brightness over the present NSLS X-ray beamlines. The low emittance of the high brightness ring lattice results in quite short lifetimes, which makes operation in top-off injection mode a necessity. The NSLS-II injection system must be able to provide an electron beam at the high repetition rate and with good injection efficiency. In this paper we present a concept of the NSLS-II injection system and discuss conditions and constraints for the injector design. Various injection system parameters are estimated from the point of view of SR user demand.  
RPAE059 Design of 3 GeV Booster for NSLS-II booster, lattice, dipole, sextupole 3473
  • T.V. Shaftan, E.D. Johnson, J.B. Murphy, I.P. Pinayev, J. Rose, X.J. Wang
    BNL, Upton, Long Island, New York
  We present preliminary design of full energy booster for NSLS-II. In the paper we analyze single- and multi-bunch modes of the booster operations. The booster lattice consists of 24 TME cells with two dispersion suppressors. Initial design of the magnets, power supply specifications, Eddy current contribution to the booster chromaticity are discussed.  
RPAE061 Beam Loss Simulation Studies for ALS Top-Off Operation simulation, radiation, electron, storage-ring 3532
  • H. Nishimura, R.J. Donahue, D. Robin, C. Steier
    LBNL, Berkeley, California
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

The ALS is planning to operate with top-off injection at higher beam currents and smaller vertical beam size. As part of a radiation safety study for top-off, we carried out two kinds of tracking studies: (1) to confirm that the injected beam cannot go into users’ photon beam lines, and (2) to control the location of beam dump when the storage ring RF is tripped. (1) is done by tracking electrons from a photon beam line to the injection sector inversely by including the magnetic field profiles, varying the field strength with geometric aperture limits to conclude that it is impossible. (2) is done by tracking an electron with radiation in the 6-dim space for different combinations of vertical scrapers for the realistic lattice with errors.

RPAE067 Investigations, Experiments, and Implications for Using Existing Pulse Magnets for 'topoff' Operation at the Advanced Light Source septum, booster, storage-ring, simulation 3727
  • G.D. Stover, K.M. Baptiste, W. Barry, J. Gath, J. Julian, S. Kwiatkowski, S. Prestemon, R.D. Schlueter, D. Shuman, C. Steier
    LBNL, Berkeley, California
  Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

ALS top-off mode of operation will require injection of the electron beam from the Booster Ring into the Storage Ring at the full ALS energy level of 1.9GeV. Currently the Booster delivers a beam at 1.5GeV to the Storage Ring where it is then ramped to the full energy and stored for the user operation. The higher Booster beam energy will require the pulse magnets in the Booster and Storage Rings to operate at proportionally higher magnetic gap fields. Our group studied and tested the possible design and installation modifications required to operate the magnets and drivers at "top-off" levels. Our results and experiments show that with minor electrical modifications all the existing pulse magnet systems can be used at the higher energy levels, and the increased operational stresses should have a negligible impact on magnet reliability. Furthermore, simple electrical modifications to the storage ring thick septum will greatly reduce the present level of septum stray leakage fields into the storage ring beam.

RPAE071 Touschek Lifetime and Undulator Damage in the Advanced Photon Source scattering, simulation, radiation, lattice 3835
  • M. Borland, L. Emery
    ANL, Argonne, Illinois
  Funding: Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

The Advanced Photon Source (APS) has two insertion devices (IDs) with small-aperture vacuum chambers. The full vertical aperture in these chambers is 5 mm, while the inboard horizontal aperture is 15 mm. These devices suffer significant radiation damage, requiring frequent retuning. We recently hypothesized that the damage resulted from loss of Touschek-scattered particles on the horizontal aperture of the chambers. This results partly from the smallness of the aperture and partly from the pattern of the dispersion and beta functions in the low-emittance APS lattice. The horizontal scrapers were originally at a high-dispersion location, but, in the low-emittance lattice, they are at a fairly low-dispersion location. Similarly, the dispersion at the IDs was originally zero but is now close to the maximum for the lattice. In this paper, we summarize simulations and experiments that support our hypothesis and discuss plans to remedy the problem.

RPAE074 Recommissioning of Duke Storage Ring with a HOM-Damped RF Cavity and a New Straight Section Lattice for FELs wiggler, storage-ring, lattice, vacuum 3934
  • Y.K. Wu, M.D. Busch, M. Emamian, J.F. Faircloth, J. Gustavsson, S.M. Hartman, C. Howell, M. Johnson, J. Li, S. Mikhailov, O. Oakeley, J. Patterson, M. Pentico, V. Popov, V. Rathbone, G. Swift, P.W. Wallace, P. Wang
    DU/FEL, Durham, North Carolina
  Funding: This work is supported by the U.S. AFOSR MFEL grant F49620-001-0370 and by U.S. DoE grant DE-FG02-01ER41175.

The Duke FEL lab operates a unique UV/VUV storage ring FEL and an FEL driven, nearly monochromatic, highly polarized, high intensity Compton gamma-ray source. The Duke storage ring light source is undergoing several phases of upgrade in order to significantly improve light source capabilities and performance. The 2004 phase included an upgrade of the RF system with a high-order mode damped RF cavity and a new 34 meter long straight section lattice to host new FEL wigglers in the next phase. This upgrade was completed in August 2004 and storage ring and light source commissioning were completed in November 2004. This paper will provide an overview of this upgrade project and report our commissioning experience of the storage ring and light sources.

RPAE076 The Commission of Hefei Light Source After Reconstruction closed-orbit, octupole, radiation, electron 3967
  • H. Xu, H. He, W. Li, G. Liu, L. Liu, S. Shang, B. Sun, L. Wang
    USTC/NSRL, Hefei, Anhui
  After the new four-kicker injection bump system was mounted, it was found that the magnetic field of four–kicker magnet through the same pulse current is different each other, the reason is which the width of pulse magnet fields is not same, so the four-kickers can not form completely local bump, and produce large global orbit distortion,and lead to beam loss. At last we found that the films of ceramic chambers were not plated evenly. The new rf system have two low level control circle circuits, which are the frequency and amplitude automatic adjustment systems. Because the energy of injection electron beam is 200MeV, and radiation damping is weak, so the gain of amplitude circuit was adjusted to the small value not to disturb beam.The beam load is large,and Robinson instability happen easily, so the small detune angle is preset. The Octupoles were inserted in ring for damping instability, and over compensated chromaticity was adjusted.Superconductor wiggler bring the variation of beta function, and the beam life time decreased from 8 hours to about 3 hours. By adjusting the beta functions close to situation ago, the beam lifetime was improved.  
RPAE078 Commissioning of SAGA Light Source linac, electron, vacuum, septum 4021
  • T. Tomimasu, Y. Iwasaki, S. Koda, Y. Takabayashi, K. Yoshida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  • H. Ohgaki
    Kyoto IAE, Kyoto
  • H. Toyokawa, M.Y. Yasumoto
    AIST, Ibaraki
  The SAGA Light Source (SAGA-LS) consists of a 250-MeV electron linac injector and an eight-hold symmetry 1.4-GeV storage ring with eight double-bend (DB) cell and eight 2.93-m long straight sections. The DB cell structure with a distributed dispersion system was chosen to produce a compact ring of 75.6-m long circumference. The machine construction begun September 29, 2003. The ring magnets of steel laminated structure, vacuum chambers made of aluminum alloy, pumping systems and four temperature controlled cooling water systems for the linac accelerating wave guides etc. were installed in March, 2004. The injector, a 500-MHz ring rf damped cavity, rf klystrons, beam transport systems for injection and their controlled systems were installed in July, 2004. The commissioning begun August 25, 2004. A 250-MeV beam was accelerated on September 29. The beam size is 1-mm in diameter and the energy spread is 0.8 % (FWHM). The first revolution of 250-MeV beam around the ring took place October 22. Beam was stored on November 12. The commissioning continues for beam storage and ramping to 1.4-GeV. We report a brief description of SAGA light source and early commissioning activities.  
RPAE080 Diagnostic Systems Plan for the Advanced Light Source Top-Off Upgrade kicker, betatron, diagnostics, monitoring 4066
  • T. Scarvie, W. Barry, M.J. Chin, D. Robin, F. Sannibale, C. Steier
    LBNL, Berkeley, California
  Funding: This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

The Advanced Light Source (ALS) will soon be upgraded to enable top-off operation,* in which electrons are quasi-continuously injected to produce constant stored beam current. We will upgrade our injector from 1.5GeV to full-energy 1.9GeV, and top-off operation will also require more precise injector beam characterization and control than we are capable of using our current diagnostics system. Therefore, a diagnostics upgrade will be crucial for the success of top-off, and our plan for it is described in this paper. Among the improvements will be the integration of all existing beam current monitors along the accelerator chain into an injection efficiency monitoring application. New booster ring diagnostics will include a tune kick and monitoring system, updated beam position monitor electronics, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line, and a dedicated bunch purity monitoring system will be installed in the storage ring. Together, these important diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.

*Please see the ALS Top-off Upgrade presentation at this conference.

RPAE084 Beam Dynamics Aspects of the ASP Booster emittance, closed-orbit, booster, synchrotron 4150
  • S. Friis-Nielsen, S.P. Møller
    Danfysik A/S, Jyllinge
  In the present contribution, beam dynamics aspects of the 3 GeV ASP booster designed and produced by Danfysik A/S are presented. The booster synchrotron, based on a lattice with combined-function magnets, will have a very small emittance of around 30 nm. The dynamical aperture (and admittance) of the booster has been investigated with tracking, and results for different tunes and chromaticities will be presented. Also the reduction in admittance caused by alignment errors of the magnets will be discussed. The nominal tunes and chromaticities are mainly determined by the combined-function magnets to (9.20, 3.25) and (1,1), respectively. Using the trim quadrupoles and sextupoles, the tunes can be adjusted in the ranges (9.05-9.45, 3.05-3.45) and the chromaticities in the range (0-2, 0-2).  
RPAP002 A CW RFQ Accelerator for Deuterons rfq, simulation, alignment, vacuum 794
  • P. Fischer, A. Schempp
    IAP, Frankfurt-am-Main
  • J. Haeuser
    NTG Neue Technologien GmbH & Co KG, Gelnhausen
  Funding: BMBF

A four-rod RFQ accelerator is being built to accelerate deuterons from 20 keV to 3 MeV. At an operating frequency of 176 MHz the length is 3.8 m and the power consumption 250 kW, the beam current 5 mA. A special feature is the CW-mode operation. The status of the project and properties of the RFQ will be discussed.

RPAP007 Alternating-Phase-Focused Linac with Interdigital H-Mode Structure for Medical Injectors rfq, linac, electromagnetic-fields, medical-accelerators 1084
  • Y. Iwata, T. Fujisawa, T. Furukawa, S. H. Hojo, T. Honma, M. Kanazawa, N. M. Miyahara, T. Murakami, M. Muramatsu, K. Noda, H. Ogawa, M. Torikoshi, S. Yamada, K. Yamamoto
    NIRS, Chiba-shi
  • Y.F. Fujii, T. Mitsumoto, H. Tsutsui
    SHI, Tokyo
  • T. Fujimoto, H.O. Ogawa
    AEC, Chiba
  • V.V. Kapin
    MEPhI, Moscow
  Tumor therapy using Heavy Ion Medical Accelerator in Chiba (HIMAC) has been performed at National Institute of Radiological Sciences (NIRS). With the successful clinical results over ten years, a project on developing compact accelerators has been started. To design these compact accelerators, a size of an injector as well as construction and operation costs plays an important role. To satisfy these requirements, we propose a compact injector consisting of a RFQ and Interdigital H-mode Drift-Tube-Linac (IH-DTL) having the resonant frequency of 200 MHz. The injector will accelerate carbon ion up to 4.0 AMeV. For the beam focusing of the IH-DTL, the method of Alternating-Phase-Focusing was employed. With the IH structure and rather high operating-frequency, the size of the cavities is compact; the radius is approximately 0.4 m, and the length of the RFQ and IH-DTL will be 2.5m and 3.5m respectively. The fabrication of the RFQ is in progress. For the IH-DTL, the full-scale model was fabricated. With the encouraging results of the electric field measurements, we are developing the final design of the IH-DTL. The fabrication of the entire injector will be completed at the end of 2005. The present status of our project will be shown.  
RPAP008 The CBS–The Most Cost Effective and High Performance Carbon Beam Source Dedicated for a New Generation Cancer Therapy ion, extraction, electron, synchrotron 1108
  • M. Kumada
    NIRS, Chiba-shi
  • B.I. Grishanov, E.B. Leivichev, V.V. Parkhomchuk, F.V. Podgorny, S. Rastigeev, V.B. Reva, A.N. Skrinsky, V.A. Vostrikov
    BINP SB RAS, Novosibirsk
  A Carbon ion beam is a superior tool to x-rays or a proton beam in both physical and biological doses in treating a cancer. A Carbon beam has an advantage in treating radiation resistant and deep-seated tumors. Its radiological effect is of a mitotic independent nature. These features improve hypofractionation, typically reducing the number of irradiations per patient from 35 to a few. It has been shown that a superior QOL(Quality Of Life) therapy is possible by a carbon beam.The only drawback is its high cost. Nevertheless, tens of Prefectures and organizations are eagerly considering the possibility of having a carbon ion therapy facility in Japan. Germany, Austria, Italy, China, Taiwan and Korea also desire to have one.A carbon beam accelerator of moderate cost is about 100 Million USD. With the "CBS" design philosophy, which will be described in this paper, the cost could be factor of 2 or 3 less, while improving its performance more than standard designs. Novel extraction techniques, a new approach to a high intensity beam, a new scanning method of a superμbeam and an extremely light weight carbon rotating gantry will be presented.This new CBS will have an impact on the medical accelerator community.  
RPAP015 Modeling of Internal Injection and Beam Dynamics for High Power RF Accelerator electron, simulation, cathode, focusing 1419
  • M.A. Tiunov, V. Auslender, M.M. Karliner, G.I. Kuznetsov, I. Makarov, A.D. Panfilov, V.V. Tarnetsky
    BINP SB RAS, Novosibirsk
  Funding: The work is supported by ISTC grant #2550.

A new high power electron accelerator for industrial applications is developed in Novosibirsk. Main parameters of the accelerator are: operating frequency of 176 MHz, energy of electrons of 5 MeV, average beam power up to 300 kW. The accelerator consists of a chain of accelerating cavities, connected by the on-axis coupling cavities with coupling slots in the walls. A triode RF gun on the base of grid-cathode unit placed on the wall of the first accelerating cavity is used for internal injection of electrons. The paper presents the results of modeling and optimization of the accelerating structure, internal injection, and beam dynamics.

RPAP016 High Power Electron Accelerator Prototype electron, cathode, gun, feedback 1502
  • V.O. Tkachenko, V. Auslender, V.G. Cheskidov, G.I. Korobeynikov, G.I. Kuznetsov, A.N. Lukin, I. Makarov, G. Ostreiko, A.D. Panfilov, A. Sidorov, V.V. Tarnetsky, M.A. Tiunov
    BINP SB RAS, Novosibirsk
  Funding: The work is supported by ISTC grant #2550.

In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

RPAP027 Portable X-Band Linear Electron Accelerators for Radiographic Applications radiation, linac, coupling, electron 1985
  • A.J. Saverskiy, H. Deruyter, M. Hernandez, A.V. Mishin, D. Skowbo
    AS&E, Billerica, Massachusetts
  The MINAC series portable linear electron accelerator systems designed and manufactured at American Science and Engineering, Inc. High Energy Systems Division (AS&E HESD) are discussed in this paper. Each system can be configured as either an X-ray or electron beam source. The powerful 4 MeV and 6 MeV linacs powered by a 1,5 MW magnetron permit operation in a dose rate range from 100 R/min at 80 cm to 600 R/min at 80 cm. Each MINAC is a self-contained source with radiation leakage outside of the X-ray head less than 0,1% of the maximum dose. Along with these systems a 1 MeV ultra compact MINAC has been successfully tested. The unit is available with radiation leakage less then 0.01% and permits producing X-ray beam in an energy range (1…2) MeV at a high output dose rate. Design and experimental parameters are presented. The common and system specific features are also discussed.  
RPAP034 Use Recirculator "SALO" in the Mode of the Neutron Source target, electron, alignment, emittance 2354
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, F.A. Peev, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
  The opportunity of use developed in NSC KIPT recirculator SALO* with superconducting accelerating structure TESLA for reception of intensive neutron streams surveyed. As an injector it is supposed to use RF-gun with superconducting accelerating structure. An electron beam with the peak energy 130 ??? is transported on a target located apart of 100 m from recirculator. System of the focusing are designed allowing to gain on a target the required density of a beam. Tolerances on precision of an alignment of magnetooptical devices are calculated.

*I. S. Guk, A. N. Dovbnya, S. G. Kononenko, A. S. Tarasenko, M. van der Wiel, J. I. M. Botman, NSC KIPT Accelerator on Nuclear and High Energy Physics, Proceedings of EPAC 2004, Lucerne, Switzerland, p.761-764.

RPAT015 First Results of a Digital Beam Phase Monitor at the Tevatron proton, antiproton, synchrotron, controls 1428
  • J.-P. Carneiro, S. U. Hansen, A. Ibrahim, V.D. Shiltsev, J. Steimel, R.C. Webber
    Fermilab, Batavia, Illinois
  A digital Beam Phase Monitor has been installed on the Tevatron ring. This device will be mainly use to diagnose the energy oscillations of each of the 36 × 36 protons and antiprotons bunches as well as to study the transient beam loading. The first results obtained from the Beam Phase Monitor will be presented on the paper.  
RPAT017 Using Time Separation of Signals to Obtain Independent Proton and Antiproton Beam Position Measurements Around the Tevatron antiproton, proton, acceleration, closed-orbit 1557
  • R.C. Webber
    Fermilab, Batavia, Illinois
  Funding: Fermilab is operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

Independent position measurement of the counter-circulating proton and antiproton beams in the Tevatron presents a challenge to upgrading the Tevatron Beam Position Monitor (BPM) system. The inherent directionality of the Tevatron BPM pickup design provides 26dB isolation between signals from the two beams. At the present typical 10:1 proton-to-antiproton bunch intensity ratio, this isolation alone is insufficient to support millimeter accuracy antiproton beam position measurements due to interfering proton signals. An accurate and manageable solution to the interfering signal problem is required for antiproton measurements now and, as machine improvements lead to increased antiproton intensity, will facilitate future elimination of antiproton bias on proton beam position measurements. This paper discusses the possibilities and complications of using time separation of the two beam signals at the numerous Tevatron BPM locations and given the dynamic longitudinal conditions of Tevatron operation. Results of measurements results using one such method are presented.

RPAT018 Simultaneous Position Measurements of Protons and Anti-Protons in the Tevatron proton, antiproton, pick-up, closed-orbit 1613
  • R.K. Kutschke, J. Steimel, R.C. Webber, S.A. Wolbers
    Fermilab, Batavia, Illinois
  Fermilab has embarked upon a program to upgrade the electronics of the Beam Position Monitor (BPM) system that measures the transverse position of the beams inside the Tevatron collider. The new system improves on the current system in precision, accuracy and reliability. A new feature in the upgraded system is the ability, when both protons and anti-protons are present in the Tevatron, make simultaneous measurements of the closed orbit position of both beam species. The method chosen for achieving the simultaneous measurement is an algorithm that deconvolutes the imperfect directionality of the BPM pickups from the raw measurements. This paper will discuss the algorithm, the calibration of the parameters used by the algorithm and the robustness of the algorithm. It will also present results from the upgraded system which demonstrate that the system meets the requirements set out at the start of the upgrade project.  
RPAT019 Use of a Reconfigurable VME Module To Measure Beam Energy at the Los Alamos Proton Storage Ring linac, proton, storage-ring, pick-up 1658
  • R. Merl, T. Spickermann
    LANL, Los Alamos, New Mexico
  Funding: U.S. Department of Energy.

Custom instrumentation has been developed at the Los Alamos Neutron Science Center to measure the Proton Storage Ring (PSR) beam energy. The PSR accumulates up to 4x1013 protons from the linear accelerator for delivery to a spallation neutron source. The energy of the beam injected into the PSR must be adjusted so that the revolution frequency matches the ring buncher frequency, otherwise a large momentum spread will cause increased losses in high-dispersion areas. Errors in injected beam energy appear as deviations from the ideal revolution frequency. A low-cost, custom, reconfigurable VME module has been adapted to calculate the PSR revolution frequency in real-time. The module connects directly to an analog wall current monitor output and uses analog signal conditioning electronics, an analog to digital converter, field programmable gate arrays, and an embedded floating-point digital signal processor to calculate the revolution frequency. This is an improvement over the previously used method of manually measuring the frequency with an oscilloscope. Accelerator physicists can now simply observe the PSR frequency, which is dependent on beam energy, on a control room display.


RPAT028 RHIC BPM System Modifications and Performance alignment, radiation, quadrupole, instrumentation 2021
  • T. Satogata, R. Calaga, P. Cameron, P. Cerniglia, J. Cupolo, A.J. Curcio, W.C. Dawson, C. Degen, J. Gullotta, J. Mead, R.J. Michnoff, T. Russo, R. Sikora
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U.S. Department of Energy.

The RHIC beam position monitor (BPM) system provides independent average orbit and turn-by-turn (TBT) position measurements. In each ring, there are 162 measurement locations per plane (horizontal and vertical) for a total of 648 BPM planes in the RHIC machine. During 2003 and 2004 shutdowns, BPM processing electronics were moved from the RHIC tunnel to controls alcoves to reduce radiation impact, and the analog signal paths of several dozen modules were modified to eliminate gain-switching relays and improve signal stability. This paper presents results of improved system performance, including stability for interaction region and sextupole beam-based alignment efforts. We also summarize performance of improved million-turn TBT acquisition channels for nonlinear dynamics and echo studies.

RPAT032 An Ionization Profile Monitor for the Tevatron vacuum, electron, ion, collider 2227
  • A. Jansson, M. Bowden, K. Bowie, A. Bross, R. Dysert, T. Fitzpatrick, R. Kwarciany, C. Lundberg, H. Nguyen, C.H. Rivetta, D. Slimmer, L. Valerio, J.R. Zagel
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U.S. Department of Energy.

Primarily to study emittance blowup during injection and ramping, an ionization profile monitor has been developed for the Tevatron. It is based on a prototype installed in the Main Injector, although with extensive modifications. In particular, the electromagnetic shielding has been improved, the signal path has been cleaned up, and provisions have been made for an internal electron source. Due to the good Tevatron vacuum, a local pressure bump is introduced to increase the primary signal, which is then amplified by a microchannel plate and detected on anode strips. For the DAQ, a custom ASIC developed for the CMS experiment is used. It is a combined charge integrator and digitizer, with a sensitivity of a few fC, and a time-resolution that allows single bunch measurement. Digitization is done in the tunnel to reduce noise. Preparations for detector installation were made during the long 2004 shutdown, with the installation of magnets, vacuum chambers, vacuum pumps and cabling. The actual detector will be installed sometime during the spring fo 2005. This paper describes the design of the detector and associated electronics and presents various bench test results.

RPAT035 Development of an Optical Transition Radiation Detector for Profile Monitoring of Antiproton and Proton Beams at FNAL proton, target, antiproton, radiation 2381
  • V.E. Scarpine, C.W. Lindenmeyer, G. R. Tassotto
    Fermilab, Batavia, Illinois
  • A.H. Lumpkin
    ANL, Argonne, Illinois
  Funding: Work Supported by the U.S. Department of Energy under Contract No. DE-AC02-CH03000 and by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

Optical transition radiation (OTR) detectors are being developed at Fermi National Acceleratory Laboratory (FNAL) as part of the collider Run II upgrade program and as part of the NuMI primary beamline. These detectors are designed to measure 150 GeV antiprotons as well as 120 GeV proton beams over a large range of intensities. Design and development of an OTR detector capable of measuring beam in both directions down to beam intensities of ~5·109 particles for nominal beam sizes is presented. Applications of these OTR detectors as an on-line emittance monitor for both antiproton transfers and reverse-injected protons, as a Tevatron injection profile monitor, and as a high-intensity beam profile monitor for NuMI are discussed. In addition, different types of OTR foils are being evaluated for operation over the intensity range of ~5·109 to over 1·1013 particles per pulse and these are described.

RPAT054 Beam Position Monitor at the PLS BTL linac, electron, monitoring, pick-up 3289
  • S.-C. Kim, M.-H. Chun, Y.J. Han, J.Y. Huang, D.T. Kim, W.W. Lee
    PAL, Pohang, Kyungbuk
  Funding: Work supported by the Ministry of Science and Technology, Korea.

Electron Linac at the Pohnag Accelerator Laboratory (PAL) has been operated continuously as the full energy injector for storage ring. Linac and storage ring energy has been 2.0 GeV since Dec. 1994, and 2.5 GeV since Oct. 2002. In Aug. 2004, thirteen BPMs are newly installed at BTL(Beam Transport Line) for beam trajectory measurement and feedback. These BPMs consist of 100mm strip-line electrodes in 150mm long chamber, and 500MHz log-ratio signal processing circuits. BPM data acquisition system is developed as EPICS IOC using NI S-series data acquisition board and NI LabView 7.1. BTL BPMs will be used for optic correction and beam energy feedback for PLS beam injection. This paper describes on design, test results, installation and data acquisition system of the PLS BTL BPM.

RPAT068 Proposed Diagnostics for the NSLS-II electron, radiation, synchrotron, diagnostics 3760
  • I.P. Pinayev, S.L. Kramer, J. Rose, T.V. Shaftan
    BNL, Upton, Long Island, New York
  Funding: The U.S. Department of Energy under contract No. DE-AC02-98CH10886.

The National Synchrotron Light Source is performing R&D of a new 3 GeV electron storage ring to be used for the facility upgrade. To satisfy the demands for the brightness and stability of the future light source a state-of-the-art diagnostics system is a necessity. We present our preliminary design with focus on the requirements for instrumentation and technical solutions to achieve them.

RPAT093 Libera Electron Beam Position Processor feedback, electron, instrumentation, booster 4284
  • R. Ursic, A. Kosicek
    Instrumentation Technologies, Solkan
  Libera is a product family delivering unprecedented possibilities for either building powerful single station solutions or architecting complex feedback systems in the field of accelerator instrumentation and controls. This paper presents functionality and field performance of its first member, the electron beam position processor. It offers superior performance with multiple measurement channels delivering simultaneously position measurements in digital format with MHz kHz and Hz bandwidths. This all-in-one product, facilitating pulsed and CW measurements, is much more than simply a high performance beam position measuring device delivering micrometer level reproducibility with sub-micrometer resolution. Rich connectivity options and innate processing power make it a powerful feedback building block. By interconnecting multiple Libera electron beam position processors one can build a low-latency high throughput orbit feedback system without adding additional hardware. Libera electron beam position processor is ideally suited for the Third and the Fourth generation light sources.  
ROAB002 Advances of Transmission Line Kicker Magnets kicker, impedance, coupling, extraction 235
  • L. Ducimetière
    CERN, Geneva
  Fast pulsed magnets or kickers are widely used in circular accelerators for injection, fast extraction and beam excitation. As from the early 60’s transmission line type kicker magnets have been employed to produce rectangular field pulses with good rise time. Over some 40 years this technology has evolved with the rising requirements. Whilst the necessary kick strength has increased with the particle beam energies the strive for efficiency has pushed developments towards lower impedance systems and/or short circuited magnets. The flat top ripple is constrained by the maximally tolerable beam oscillation. The beam intensity can impose a screening of the magnet yoke. The most advanced features implemented in recent transmission line kicker magnets are reviewed and illustrated with examples from different laboratories. Ongoing and potential future developments are briefly discussed.  
ROAB009 NuMI Proton Kicker Extraction System kicker, coupling, extraction, magnet-design 692
  • C.C. Jensen, G. E. Krafczyk
    Fermilab, Batavia, Illinois
  Funding: Fermilab is operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy.

This system extracts up to 9.6 us of 120 GeV beam every 1.87 seconds for the NuMI beamline neutrino experiments. A pulse forming network consisting of two continuous wound coils and 68 capacitors was designed and built to drive three kicker magnets. The field stability requirement is better than ± 1% with a field rise time of 1.6 us. New kicker magnets were built based on the successful traveling wave magnets built for the Main Injector. Two of these magnets, which have a propagation time of 550 ns, are in series making the risetime of the pulser a serious constraint. A forced cooling system using Fluorinert® was designed for the magnet termination resistors to maintain the field flatness and amplitude stability. The system has been commissioned and early results will be presented.

RPPE005 Ions for LHC: Beam Physics and Engineering Challenges ion, electron, luminosity, linac 946
  • S. Maury, M.-E. Angoletta, V. Baggiolini, A. Beuret, A. Blas, J. Borburgh, H.-H. Braun, C. Carli, M. Chanel, T. Fowler, S.S. Gilardoni, M. Gourber-Pace, S. Hancock, C.E. Hill, M. Hourican, J.M. Jowett, K. Kahle, D. Kuchler, E. Mahner, D. Manglunki, M. Martini, M.M. Paoluzzi, J. Pasternak, F. Pedersen, U. Raich, C. Rossi, J.-P. Royer, K. Schindl, R. Scrivens, L. Sermeus, E.N. Shaposhnikova, G. Tranquille, M. Vretenar, Th. Zickler
    CERN, Geneva
  The first phase of the heavy ion physics program at the LHC aims to provide lead-lead collisions at energies of 5.5 TeV per colliding nucleon pair and ion-ion luminosity of 1027 cm-2s-1. The transformation of CERN’s ion injector complex (Linac3-LEIR-PS-SPS) presents a number of beam physics and engineering challenges. Conversion of the Low Energy Antiproton Ring (LEAR) to a Low Energy Ion Ring (LEIR) is under way: the high-current electron cooling system, novel broad-band RF cavities and vacuum equipment to achieve 10-12 mbar are the major challenges. Commissioning of LEIR with beam will start in the middle of 2005. Major hardware changes in Linac3 include the installation of the new ECR ion source and of the energy ramping cavity. The PS will have a new injection system and RF gymnastics. A stripping insertion between PS and SPS must not disturb the proton operation. In the LHC itself, there are fundamental performance limitations due to various beam loss mechanisms. To study these without risk of damage there will be an initial period of operation with a reduced number of nominal intensity bunches. While reducing the work required to commission the LHC with ions in 2008, this will still enable early physics discoveries.  
RPPE016 Protection Level During Extraction, Transfer and Injection into the LHC extraction, septum, simulation, kicker 1505
  • V. Kain, B. Goddard, R. Schmidt, J. Wenninger
    CERN, Geneva
  Failures during the LHC transfer and injection process cannot be excluded and beam loss with the foreseen intensities and energies, which are an order of magnitude above the damage limit, could cause serious equipment damage. Consequences of equipment failures such as kicker erratics, power converter faults, etc. are investigated by means of a Monte Carlo based on MAD-X tracking with a full aperture model of the transfer line and the injection region. Geometrical and optical mismatch, orbit tolerances, mechanical tolerances for settings of protection elements, power converter ripples, misalignment of elements, etc. are all taken into account. The required performance of the protection system is discussed. The overall protection level for the LHC and the transfer lines during injection is presented.  
RPPE018 Material Damage Test with 450 GeV LHC-Type Beam target, simulation, proton, hadron 1607
  • V. Kain, J. Ramillon, R. Schmidt, K.V. Vorderwinkler, J. Wenninger
    CERN, Geneva
  The design of LHC protection elements is based on assumptions on damage levels, which are derived from simulations. A dedicated experiment was prepared and carried out to cross-check the validity of this approach by trying to damage material in a controlled way with beam. The impact of a 450 GeV beam extracted from the SPS on a specially designed high-Z target with a simple geometry, comprising several typical materials used for LHC equipment, was simulated. The beam intensities for the test were chosen to exceed the damage limits of parts of the target. Results of the simulations are presented and compared with test results.  
RPPE021 The SNS Machine Protection System: Early Commissioning Results and Future Plans SNS, diagnostics, beam-losses, power-supply 1727
  • C. Sibley III, D.J. Armstrong, A. Jones, T.A. Justice, D.H. Thompson
    ORNL, Oak Ridge, Tennessee
  The Spallation Neutron Source under construction in Oak Ridge TN has commissioned low power beam up to 187 Mev. The number of MPS inputs is about 20% of the final number envisioned. Start-up problems, including noise and false trips, have largely been overcome by replacing copper with fiber and adding filters as required. Initial recovery time from Machine Protection System (MPS) trips was slow due to a hierarchy of latched inputs in the system: at the device level, at the MPS input layer, and at the operator interface level. By reprogramming the MPS FPGA such that all resets were at the input devices, MPS availability improved to acceptable levels. For early commissioning MPS inputs will be limited to beam line devices that will prohibit beam operation. For later operation, the number of MPS inputs will increase both software alarms and less intrusive MPS inputs such as steering magnets are implemented. Two upgrades to SNS are on the horizon: a 3 MW upgrade and a second target station. Although these are years away the MPS system as designed should easily accommodate the increase in power and pulse-to-pulse target switching at 120 Hz.

Work supported by the U.S. Department of Energy under contract DE-AC05-00OR22725.

RPPE030 Corrugated Thin Diamond Foils for SNS H- Injection Stripping SNS, ion, lattice, Spallation-Neutron-Source 2152
  • R.W. Shaw, V.A. Davis, R.N. Potter, L.L. Wilson
    ORNL, Oak Ridge, Tennessee
  • C.S. Feigerle, M.E. Peretich
    University of Tennessee, Knoxville, Tennessee
  • C.J. Liaw
    BNL, Upton, Long Island, New York
  Funding: MEP acknowledges a SURE fellowship, supported by Science Alliance, a UT Center of Excellence. RNP acknowledges an appointment to the U.S. DOE SULI Program at the Oak Ridge National Laboratory. SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a collaboration of six US National Laboratories: ANL, BNL, TJNAF, LANL, LBNL, and ORNL.

We have prepared and tested corrugated, thin diamond foils for use in stripping the SNS H- Linac beam. Diamond has shown promise for providing ca. 10X increased lifetime over traditional carbon foils. The preferred foil geometry is 10.5 by 20 mm at 350 microgram/cm2, mechanically supported on preferably one, but no more than two, edges. The foils are prepared by chemical vapor deposition (CVD) on a patterned silicon substrate, followed by chemical removal of the silicon. This yields a foil with trapezoidal corrugations to enhance mechanical strength and foil flatness. Both micro- and nano-crystalline diamond foils have been grown. Microwave plasma CVD methods that incorporate high argon gas content were used to produce the latter. Sixteen foils of a variety of characteristics have been tested using the BNL 750 keV RFQ H- beam to simulate the energy deposition in the SNS foil. Long foil lifetimes, up to more than 130 hours, have been demonstrated. Characterization of the foils after beam testing indicates creation of sp2 defects within the ion beam spot. Current efforts are centered on development of corrugation patterns that will enhance flatness of single-edge supported foils.

RPPE041 Design and Construction of the CERN LEIR Injection Septa septum, vacuum, cathode, ion 2690
  • J. Borburgh, B. Balhan, P. Bobbio, E. Carlier, M. Hourican, T. Masson, T.N. Mueller, A. Prost
    CERN, Geneva
  • M. Crescenti
    TERA, Novara
  The Low Energy Ion Ring (LEIR) transforms long pulses from Linac 3 into high brilliance ion bunches for LHC by means of multi-turn injection, electron cooling and accumulation. The LEIR injection comprises a magnetic DC septum followed by an inclined electrostatic septum. The electrostatic septum has been newly designed and built. The magnetic septum is mainly recovered from the former LEAR machine, but required a new vacuum chamber. Dynamic vacua in the 10-12 mbar range are required, which are hard to achieve due to the high desorption rate of ions lost on the surface. A new interlock and displacement control system has also been developed. The major technical challenges to meet the magnetic, electrical and vacuum requirements will be discussed.  
RPPE042 Aperture and Field Constraints for the Vacuum System in the LHC Injection Septa vacuum, alignment, septum, shielding 2732
  • M. Gyr, B. Henrist, J.M. Jimenez, J.-M. Lacroix, S. Sgobba
    CERN, Geneva
  Each beam arriving from the SPS has to pass through five injection septum magnets before being kicked onto the LHC orbit. The injection layout implies that the vacuum chambers for the two circulating beams pass through the septum magnet yokes at a flange distance from the chamber of the beam to be injected. Specially designed vacuum chambers and interconnections provide the required straightness and alignment precision, thus optimising the aperture for both the circulating and injected beams, without affecting the quality of the magnetic dipole field seen by the injected beam. The circulating beams are shielded against the magnetic stray field by using μ-metal chambers with a thickness of 0.9 mm to avoid saturation of the μ-metal (0.8 T), coated with copper (0.4 mm) for impedance reasons and NEG for pumping and electron cloud purposes. A sufficiently large gap between the iron yoke and the μ-metal chamber allows an in-situ bake-out at 200°C, based on a polyimide/stainless steel/polyimide sandwich structure with an overall thickness of 0.2 mm. The constraints will be described and the resulting vacuum system design, the apertures and the residual stray field will be presented.  
RPPE046 A Summary and Status of the SNS Ring Vacuum Systems vacuum, quadrupole, dipole, target 2929
  • M. Mapes, H.-C. Hseuh, J. Rank, L. Smart, R.J. Todd, D. Weiss
    BNL, Upton, Long Island, New York
  • M.P. Hechler, P. Ladd
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The Spallation Neutron Source (SNS) ring is designed to accumulate high intensity protons. The SNS ring vacuum system consists of the High Energy Beam Transport (HEBT) line, Accumulator Ring and the Ring to Target Beam Transport (RTBT) line. The Accumulator ring has a circumference of 248m with 4 arcs and 4 straight sections, while the RTBT and HEBT have a total length of 350m of beam transport line. Ultrahigh vacuum of 10-9 Torr is required in the accumulator ring to minimize beam-residual gas ionization. To reduce the secondary electron yield (SEY) and the associated electron cloud instability, the ring vacuum chambers are coated with Titanium-Nitride (TiN). This paper describes the design, fabrication, assembly and vacuum processing of the ring and beam transport vacuum systems as well as the associated instrumentation and controls.

RPPE047 Upgrade of RHIC Vacuum Systems for High Luminosity Operation vacuum, ion, electron, luminosity 2977
  • H.-C. Hseuh, M. Mapes, L. Smart, R.J. Todd, D. Weiss
    BNL, Upton, Long Island, New York
  Funding: Work performed under Contract Number DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy.

With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed and summarized.

RPPE049 Summary on Titanium Nitride Coating of SNS Ring Vacuum Chambers cathode, kicker, extraction, SNS 3088
  • R.J. Todd, P. He, H.-C. Hseuh, D. Weiss
    BNL, Upton, Long Island, New York
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The inner surfaces of the 248 m Spallation Neutron Source (SNS) accumulator ring vacuum chambers are coated with ~100 nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. There are approximately 100 chambers and kicker modules, some up to 5 m in length and 36 cm in diameter, coated with TiN. The coating is deposited by means of reactive DC magnetron sputtering using a cylindrical magnetron with internal permanent magnets. This cathode configuration generates a deposition rate sufficient to meet the required production schedule and produces stoichiometric films with good adhesion, low SEY and acceptable outgassing. Moreover, the cathode magnet configuration allows for simple changes in length and has been adapted to coat the wide variety of chambers and components contained within the arc, injection, extraction, collimation and RF regions. Chamber types, quantities and the cathode configurations used to coat them are presented herein. A brief summary of the salient coating properties is given including the interdependence of SEY as a function of surface roughness and its effect on outgassing. Limitations of this coating method are also discussed.

RPPE052 Application of Comb-Type RF-Shield to Bellows Chambers and Gate Valves vacuum, positron, impedance, electron 3203
  • Y. Suetsugu, K.-I. Kanazawa, N. Ohuchi, K. Shibata, M. Shirai
    KEK, Ibaraki
  A comb-type RF-shield, which was recently proposed for high current accelerators, was experimentally applied to bellows chambers and gate valves. The comb-type RF-shield has a structure of nested comb teeth, and has higher thermal strength and lower impedance than usual finger-type RF shields. The shield is suitable for future high intensity accelerators, such as particle factories aiming a luminosity of 1·1035 - 36 /cm2 /s. Seven bellows chambers with a circular or a racetrack cross section had been installed in the KEKB (KEK B-factory) positron ring since 2003 in series. Some bellows chambers are forced to bend up to 20 mrad during the beam operation. No significant problem had been found with a stored beam current up to 1.6 A (1.25 mA/bunch). On the other hand, a circular-type gate valve with the comb-type RF shield will be installed in the ring in January, 2005. Structures, properties and results of the beam test of the bellows chamber and the gate valve are discussed.  
RPPE072 The Improvement and Data Acquisition Systems on Electrical Systems and Grounding Networks in NSRRC septum, storage-ring, electromagnetic-fields, monitoring 3868
  • Y.-H. Liu, J.-C. Chang, J.-R. Chen, Y. Lin, Z.-D. Tsai
    NSRRC, Hsinchu
  Funding: NSRRC.

The purpose of this paper is to declare the improvement on electrical and grounding systems in NSRRC. In electrical power system, an Automated Voltage Regulator (AVR) was established to RF system in 2003. The variation of voltage supply from Taiwan Power Company (TPC) is reduced from 3% to 0.2% through the AVR system. And a Supervisory Control and Data Acquisition (SCADA) system was also setup to monitoring the electrical power conditions in each power station. After the high precision grounding systems were constructed in 2004, the stability of beam line was raised. For comprehending the grounding current and noise control, a grounding monitoring system with 32 channels was built in the storage ring. The grounding currents of 4 kickers, one septum and grounding bus are on-line acquisition. Two Electromagnetic Field (EMF) apparatuses were also installed to collect electrical and magnetic fields in the R1 section. It was observed that the electromagnetic field was correlated to grounding currents in certain locations. Injection effects were clearly found in most monitored data. Some improvement works, including expansion of the grounding monitoring system composing analytical software will integrate in the next step.

RPPE075 Injector Electronics for Multi-Turn Operation of the University of Maryland Electron Ring (UMER) dipole, electron, beam-losses, cathode 3952
  • M. Holloway, T.F. Godlove, P.G. O'Shea, B. Quinn, M. Walter
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
  Funding: This work is funded by U.S. Department of Energy under grants DE-FG02-94ER40855 and DE-FG02-92ER54178.

Progress is described toward the development of pulse generators required for injection and extraction of the University of Maryland Electron Ring (UMER). The geometry, described elsewhere, employs a fast ironless dipole at the junction of a Y-shaped section of the ring. The dipole as developed has an inductance of 600 nH. The required +21 A, long pulse generator for multi-turn operation is installed. A pulser providing -42 A for deflection in the opposite sense during injection is under development. It must have a fall time of ~100 ns in view of the 200 ns circulation time for the beam. A similar pulser, having a 100 ns risetime is required for beam extraction. The fast pulsers employ MOSFET switches.

RPPE076 Overview of Electrical Systems for the University of Maryland Electron Ring (UMER) dipole, quadrupole, electron, cathode 3988
  • B. Quinn, G. Bai, S. Bernal, T.F. Godlove, I. Haber, J.R. Harris, M. Holloway, H. Li, J.G. Neumann, P.G. O'Shea, K. Tian, M. Walter
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
  Funding: This work is funded by the United States Department of Energy under grants DE-FG02-94ER40855 and DE-FG02-92ER54178.

Commissioning of the University of Maryland Electron Ring (UMER) is underway (see general abstract on UMER). We discuss the various electrical systems of UMER. The power system includes 114 supplies for 70 air-core magnetic quadrupoles, 36 bending dipoles and 30+ steering dipoles as well as earth's field compensating coils. Systems for data collection comprise multiplexers and fast digitizers for diagnostics including 15 fast beam position monitors (BPMs)and video capture from fluorescent screen monitors. Several pulsers have been built in-house for injection and extraction magnets. The stringent timing schemes are also presented.

RPPP034 Multi-Stage Bunch Compressors for the International Linear Collider emittance, damping, linac, extraction 2357
  • P. Tenenbaum, T.O. Raubenheimer
    SLAC, Menlo Park, California
  • A. Wolski
    LBNL, Berkeley, California
  We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed.  
RPPT029 Diagnostics for the LCLS Photoinjector Beamline emittance, gun, cathode, diagnostics 2089
  • C. Limborg-Deprey, D. Dowell, J.F. Schmerge
    SLAC, Menlo Park, California
  Funding: This work was supported by U.S. Department of Energy, contract No. DE-AC03-76SF00515A06.

Two spectrometers have been added to the LCLS photoinjector beamline. The first one will be located close to the exit of the Photoinjector RF gun. With this diagnostic, we will measure beam energy, energy spread (correlated and uncorrelated), possibly deleterious structure in the longitudinal phase space induced by longitudinal space charge force, and slice thermal emittance … This extensive characterization of the 5MeV electron bunch will be made possible by combining this spectrometer with other diagnostics (YAG screens and Cerenkov Radiator). A second spectrometer located at the end of the beamline has been designed to characterize the 6 dimensional phase space of the 135MeV beam to be injected in the main accelerator. At that second spectrometer station, we will measure energy, energy spread (correlated and uncorrelated), longitudinal phase space, slice emittances … Those last two measurements require using this spectrometer in combination with the transverse RF deflecting cavity and with the quadrupole scan emittance station. The designs of these two spectrometers have been supported by simulations from MAD and PARMELA.

RPPT030 Alternate Tunings for the Linac Coherent Light Source Photoinjector emittance, laser, cathode, space-charge 2140
  • C. Limborg-Deprey, P. Emma
    SLAC, Menlo Park, California
  Funding: This work was supported by US Department of Energy, contract No. DE-AC03-76SF00515A06.

The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10 ps long electron bunches of 1nC with a normalized transverse emittance of less than 1 mm.mrad for 80% of the slices constituting the core of the bunch at 135 MeV. Tolerances and regulation requirements are tight for this tuning. The main contribution to emittance is the "cathode emittance which counts for 0.72 mm.mrad for the nominal tuning. As the "cathode emittance" scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2nC, we believe we can achieve an emittance closer to 0.4 mm.mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the nominal one. In this paper, we also discuss how emittance could be further reduced by using the appropriate laser pulse shaping.

RPPT045 A Method to Calibrate Beam Position Monitor at HLS 200 MeV LINAC linac, pick-up, simulation, impedance 2896
  • J.-H. Li, Y. Cao, H. He, K. Jin, P. Lu, B. Sun, J. P. Wang, Y. Wang, P. Zheng
    USTC/NSRL, Hefei, Anhui
  In order to improve injection efficiency of HLS 200Mev LINAC, we redesign a new strip line beam position monitor system, which is consisted of a strip line structure and a signal processing system. We decide on an online calibration method based on beam to find out the geometry centre displacement and relative gain offset. Before the BPM testing bench has been prepared, we make a simulation based on the model accounted for all factors influencing signal amplitudes and get the calibrating results. At last, we analyze the nonlinearity effect on the calibration results.  
RPPT048 HLS Turn-By-Turn System and Its Application feedback, accumulation, storage-ring, pick-up 3022
  • J.H. Wang, W. Li, J.H. Liu, L. Liu, B. Sun, Y.L. Yang, K. Zheng
    USTC/NSRL, Hefei, Anhui
  Design and experimental application of the turn-by-turn system of Hefei Light Source (HLS) are presented in this paper. The front-end signal measurement adopts a log-ratio electronics circuitry. The system is designed to be capable of up to 2 seconds data acquisition. Injection kickers are used to excite beam for monitoring ß oscillation and damping rate. Some of experimental applications are also illustrated, in commission of both the upgraded injection system of HLS and the lower frequency feedback system. The results shows that in order to improve the accumulation of the injected beam, it is very necessary to investigate integral magnet fields equilibrium of injected system and proper measures to control restrain remnants ß-oscillation caused by the injected system error.  
RPPT053 Studies of the Injection System in the Decay Ring of Beta-Beam Neutrino Souce Project septum, ion, emittance, factory 3221
  • J. Payet, A. Chance
    CEA/CEN, Gif-sur-Yvette
  After being accelerated the beta radioactive ions are accumulated in a decay ring. The losses due to their decay are compensated with regular injections in presence of filled bucket. Without a damping mechanism, the new particles are injected at a different energy from the stored beam energy, then the old and the new buckets are merged with RF manipulation. This type of injection has to be done, in a dispersive region, in presence of closed orbit bump and a septum magnet. The sizes of the injected beam and of the stored beam have to be adjusted in order to minimize the losses on the septum and to maximize the stored intensity keeping small beam sizes. The dispersion has to be large enough in order to decrease the energy difference. The injection system may be located either in the arc or in a straight section, both possibilities have been studied.  
RPPT065 Beam Loss Estimates and Control for the BNL Neutrino Facility beam-losses, emittance, proton, linac 3647
  • W.-T. Weng, J. Beebe-Wang, Y.Y. Lee, D. Raparia, N. Tsoupas, J. Wei, S.Y. Zhang
    BNL, Upton, Long Island, New York
  Funding: This work is performed under the auspices of the US DOE.

BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW for a very long baseline neutrino oscillation experiment. This increase in beam power is mainly due to the faster repetition rate of the AGS by a new 1.5 GeV superconductiong linac as injector, replacing the existing booster. The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations for achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realising the required goals. The process considered in this paper include the emittance growth in the linac, the H- injection, the transition crossing, the ecectron cloud effect, the coherent instabilities, and the extraction losses. Collimation and shielding are also presented.

ROPA001 XAL Application Programming Structure SNS, linac, lattice, diagnostics 79
  • J. Galambos, C. Chu, S.M. Cousineau, V.V. Danilov, J.G. Patton, T.A. Pelaia, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
  • C.K. Allen
    LANL, Los Alamos, New Mexico
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

XAL is an application programming framework used at the Spallation Neutron Source (SNS) project in Oak Ridge. It is written in Java, and provides users with a hierarchal view of the accelerator. Features include database configuration of the accelerator structure, an online envelope model that is configurable from design or live machine values, an application framework for quick-start GUI development, a scripting interface for algorithm development, and a common toolkit for shared resources. To date, about 25 applications have been written, many of which are used extensively in the SNS beam commissioning activities. The XAL framework and example applications will be discussed.

ROPA006 Terascale Beam-Beam Simulations for Tevatron, RHIC and LHC emittance, simulation, antiproton, proton 535
  • J. Qiang
    LBNL, Berkeley, California
  Funding: This work was supported by a SciDAC project in accelerator physics which is supported by the US DOE/SC Office of High Energy Physics and the Office of Advanced Scientific Computing Research.

In this paper, we report on recent advances in terascale simulations of the beam-beam effects in Tevatron, RHIC and LHC. Computational methods for self-consistent calculation of the beam-beam forces are reviewed. Applications to the studies of the multiple bunch beam-beam interactions in the Tevatron and the RHIC will be presented. The study of emittance growth due to the beam-beam interactions in the LHC will also be presented.

ROPC002 J-PARC Commissioning Results linac, proton, synchrotron, rfq 220
  • K. Hasegawa
    JAERI, Ibaraki-ken
  The J-PARC (Japan Proton Accelerator Research Complex)comprises a 400-MeV linac, a 3-GeV rapid-cycling synchrotron (RCS), a 50-GeV main ring synchrotron (MR) and experimental facilities. A peak current of 30 mA was accelerated up to 20 MeV of the DTL beam commissioning at the KEK site. The buildings and conventional facilities will be completed in succession in the Japanese Fiscal Year 2005, when the installation of the accelerator components will be actually started at Tokai site. The beam commissioning of the 181 MeV linac will be started in September, 2006, followed by the RCS and MR beam commissioning. To achieve the high beam power with low beam loss, the J-PARC accelerators are based on many newly developed technologies; pi-mode stabilizing loops in the RFQ, RF choppers in the medium energy beam transport, magnetic alloy loaded RF cavities in the synchrotrons, etc. The recent results of the developments of these new technologies, the present construction status and the commissioning schedule will be presented.  
ROPC004 Recent Intensity Increase in the CERN Accelerator Chain beam-losses, extraction, acceleration, booster 413
  • E.N. Shaposhnikova, G. Arduini, T. Bohl, M. Chanel, R. Garoby, S. Hancock, K. Hanke, T.P.R. Linnecar, E. Métral, R.R. Steerenberg, B. Vandorpe
    CERN, Geneva
  Future requests for protons from the physics community at CERN, especially after the start-up of the CNGS experiments in 2006, can only be satisfied by a substantial increase in the SPS beam intensity per pulse. In September 2004 a three weeks beam run was dedicated to high intensity; all accelerators in the chain were pushed to their limits to study intensity restrictions and find possible solutions. New record intensities were obtained in the accelerators of the PS & SPS Complex with this fixed-target type beam which is different from the nominal LHC beam. The challenges in producing this high-intensity beam are described together with the measures needed to make it fully operational.  
ROPC008 Experimental Progress in Fast Cooling in the ESR ion, electron, emittance, scattering 615
  • M. Steck, K. Beckert, P. Beller, B.  Franzke, F. Nolden
    GSI, Darmstadt
  The ESR storage ring at GSI is operated with highly charged heavy ions. Due to the high electric charge the ions interact much stronger with electromagnetic fields. Therefore both cooling methods which are applied to stored ions in the ESR, stochastic cooling and electron cooling, are more powerful than for singly charged particles. The experimental results exhibit cooling times for stochastic cooling of a few seconds. For cold ion beams, electron cooling provides cooling times which are one to two orders of magnitude smaller. The beams are cooled to beam parameters which are limited by intrabeam scattering. At small ion numbers, however, intrabeam scattering is suppressed by electron cooling, clear evidence was found that the ion beam forms a one-dimensional ordered structure, a linear chain of ions. The strengths of stochastic cooling and electron cooling are complementary and can be combined favorably. Stochastic cooling is employed for pre-cooling of hot secondary beams followed by electron cooling to provide ultimate beam quality. In a similar manner, first experiments with carbon ions have been performed to use electron cooling as a pre-cooling method in combination with laser cooling.  
FPAE001 Design Work for the High-Energy Storage Ring for Antiprotons of the Future GSI Project antiproton, electron, storage-ring, target 776
  • A. Lehrach, S. An, K. Bongardt, J. Dietrich, R. Eichhorn, B. Lorentz, R. Maier, S. Martin, D. Prasuhn, Y. Senichev, E.A. Senicheva, H. Stockhorst, R. Tölle, E. Zaplatin
    FZJ, Jülich
  • O. Boine-Frankenheim, A. Dolinskii, M. Steck
    GSI, Darmstadt
  • B. Gålnander, D. Reistad
    TSL, Uppsala
  • F.H. Hinterberger
    Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik,, Bonn
  The High-Energy Storage Ring (HESR) of the future international Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an antiproton cooler and storage ring in the momentum range from 1.5 to 15 GeV/c. The design work for the HESR is organized by a consortium with scientists from FZ Jülich, GSI Darmstadt and TSL Uppsala. An important feature of the new facility is the combination of phase space cooled beams with internal targets, resulting in demanding beam parameter in two operation modes: high luminosity mode with beam intensities up to few times 1011, and high resolution mode with a momentum spread down to 10-5, respectively. To reach these beam parameters very powerful phase space cooling is needed, utilizing high-energy electron cooling and high-bandwidth stochastic cooling. In this paper an overview of the design work is given, focusing on recent developments and planned R&D work.  
FPAE005 Characteristics of Injected Beam at HIMAC Synchrotron resonance, simulation, survey, synchrotron 952
  • T.H. Uesugi, T. Furukawa, K. Noda, S. Shibuya
    NIRS, Chiba-shi
  At the HIMAC synchrotron, we have carried out the tune survey with the lifetime measurement in order to obtain the high intensity. Under the relatively high intensity, it was observed that a part of the circulating beam was lost due to the coherent oscillation in both the horizontal and the vertical direction. Taking account of the tune shift and spreads, the working point was optimized so as to avoid resonance line. We will describe the experimental result.  
FPAE007 A Project of the 2.5 GeV Booster-Synchrotron in BINP booster, extraction, synchrotron, quadrupole 1039
  • V.A. Kvardakov, V. Barbashin, V. Kiselev, E.V. Kremyanskaya, E. Levichev, S.I. Mishnev, V. Petrov, A.N. Skrinsky, V.V. Smaluk, I. Zemlyansky
    BINP SB RAS, Novosibirsk
  A project of the 2.5 GeV booster synchrotron to provide effective injection of electron and positron beams into VEPP-2000 and VEPP-4M storage rings, and for future facilities, is developing in BINP. The beams are injected to synchrotron at 510 MeV energy from a damping ring, which is the part of the new injection facility. In this report, the synchrotron parameters are presented, the basic systems are briefly described.  
FPAE010 Barrier RF System and Applications in Main Injector booster, proton, emittance, radiation 1189
  • W. Chou, D. Wildman
    Fermilab, Batavia, Illinois
  • A. Takagi
    KEK, Ibaraki
  • H. Zheng
    CALTECH, Pasadena, California
  Funding: Work supported by the Universities Research Association, INC. under contract with the U.S. Department of Energy NO. DE-AC02-76CH03000 and by the US-Japan Collaboration in High Energy Physics.

A wideband RF system (the barrier RF) has been built and installed in the Fermilab Main Injector. The cavities are made of low Q Finemet cores. The modulators use high voltage fast solid-state switches. It can generate ±7 kV single square voltage pulses. It is used to stack two proton batches to double the bunch intensity for pbar production. The stacked high intensity beams have been successfully accelerated to 120 GeV with small losses. A new test to continuously stack 12 batches for the NuMI experiment is under way.

FPAE011 8 GeV H- Ions: Transport and Injection electron, radiation, proton, SNS 1222
  • W. Chou, A.I. Drozhdin, C. Hill, M.A. Kostin, J.-F. Ostiguy, Z. Tang
    Fermilab, Batavia, Illinois
  • H.C. Bryant
    UNM, Albuquerque, New Mexico
  • R.J. Macek
    LANL, Los Alamos, New Mexico
  • G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • P.S. Yoon
    Rochester University, Rochester, New York
  Funding: Work supported by the Universities Research Association, INC. under contract with the U.S. Department of Energy NO. DE-AC02-76CH03000.

Fermilab is working on the design of an 8 GeV superconducting RF H- linac called the Proton Driver. The energy of the H- beam is an order of magnitude higher than any existing H- beams. This brings up a number of new challenges to the transport, stripping and injection into the next machine (the Main Injector), such as blackbody radiation stripping, magnetic field and residual gas stripping, Stark states of hydrogen atoms, foil stripping efficiency, single and multiple Coulomb scattering, energy deposition, foil heating and stress, radiation activation, collimation, jitter correction, etc. This paper will give a summary of these studies.*

*For details the reader is referred to FERMILAB-TM-2285-AD-T.

FPAE012 Experimental Test of a New Antiproton Acceleration Scheme in the Fermilab Main Injector emittance, acceleration, antiproton, collider 1303
  • V. Wu, C.M. Bhat, B. Chase, J.E. Dey, K.G. Meisner
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U.S. Department of Energy under contract DE-AC02-76CH03000.

In an effort to provide higher intensity and lower emittance antiproton beam to the Tevatron collider for high luminosity operation, a new Main Injector (MI) antiproton acceleration scheme has been developed [1-4].* In this scheme, beam is accelerated from 8 to 27 GeV using the 2.5 MHz rf system and from 27 to 150 GeV using the 53 MHz rf system. This paper reports the experimental results of beam study. Simulation results are reported in a different PAC'05 paper [5]. Experiments are conducted with proton beam from the Booster. Acceleration efficiency, emittance growth and beam harmonic transfer between 2.5 MHz (h=28) and 53 MHz (h=588) buckets have been studied. Beam study shows that one can achieve an overall acceleration efficiency of about 100%, longitudinal emittance growth less than 20% and negligible transverse emittance growth.

*G. P. Jackson, The Fermilab Recycler Ring Technical Design Report, FERMILAB-TM-1991, November 1996.

FPAE014 Acceleration of Polarized Protons in the AGS with Two Helical Partial Snakes resonance, polarization, extraction, dipole 1404
  • H. Huang, L. Ahrens, M. Bai, A. Bravar, K.A. Brown, G. Bunce, E.D. Courant, C.J. Gardner, J. Glenn, R.C. Gupta, A.U. Luccio, W.W. MacKay, V. Ptitsyn, T. Roser, S. Tepikian, N. Tsoupas, E. Willen, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York
  • F. Lin
    IUCF, Bloomington, Indiana
  • M. Okamura
    RIKEN/RARF/CC, Saitama
  • J. Takano
    RIKEN, Saitama
  • D.G. Underwood
    ANL, Argonne, Illinois
  • J. Wood
    UCLA, Los Angeles, California
  Funding: Work supported by U.S. DOE and RIKEN of Japan.

The RHIC spin program requires 2*1011 proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is not enough space in the ring to install a full snake to overcome the numerous depolarizing resonances. An ac dipole and a partial Siberian snake have been used to preserve beam polarization in the past. The correction with this scheme is not 100% since not all depolarizing resonances can be overcome. Recently, two helical snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

FPAE016 Spallation Neutron Source Ring - Design and Construction Summary collimation, SNS, power-supply, extraction 1499
  • J. Wei
    BNL, Upton, Long Island, New York
  Funding: * SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

(J. Wei for the Spallation Neutron Source Collaboration) After six years, the construction of the Spallation Neutron Source (SNS) accumulator ring [1] and the transport lines is completed in March 2005. Designed to deliver 1.5 MW beam power (1.5 x 1014 protons of 1 GeV kinetic energy at a repetition rate of 60 Hz), stringent measures have been implemented in the fabrication, test, and assembly to ensure the quality of the accelerator systems. This paper summarizes the construction of the ring and transport systems with emphasis on the challenging technical issues and their solutions [2].

[1] J. Wei, et al, Phys. Rev. ST-AB, Vol. 3, 080101 (2000). [2] J. Wei, "Synchrotrons and Accumulators for High-Intensity Proton Beams", Rev. Mod. Phys., Vol. 75, 1383 – 1432 (2003).

FPAE021 Alignment and Steering for Injection and Multi-Turn Operation of the University of Maryland Electron Ring (UMER) quadrupole, dipole, electron, alignment 1709
  • M. Walter, G. Bai, S. Bernal, I. Haber, M. Holloway, R.A. Kishek, P.G. O'Shea, B. Quinn
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
  Funding: This work is funded by US Dept. of Energy grant numbers DE-FG02-94ER40855 and DE-FG02-92ER54178.

The injection line and main lattice for the University of Maryland Electron Ring (UMER) has been completed. The electron beam has been guided around the full 360 degrees of the ring. Beam steering and matching in the injection line is achieved with six quadrupole magnets and several small steering dipole magnets. The dipole component of an offset quadrupole and a pulsed dipole are used to achieve the 10 degree bend required from the injection line into the ring. The pulsed dipole is designed to operate with a short pulse (2 kV, -30 A, 100 ns flat top duration) for injection superimposed on a long pulse (300 V, 15 A, 20·10-6 s duration) for multiple beam passes. The beam is controlled in the recirculating ring with a regular lattice of 36 dipole and 72 quadrupole magnets. Initial experimental results of the beam transport and control will be presented.

FPAE022 Cycle-to-Cycle Extraction Synchronization of the Fermilab Booster for Multiple Batch Injection to the Main Injector booster, feedback, extraction, acceleration 1802
  • R.M. Zwaska, S.E. Kopp
    The University of Texas at Austin, Austin, Texas
  • W. Pellico
    Fermilab, Batavia, Illinois
  We report on a system to ensure cycle-to-cycle synchronization of beam extraction from the Fermilab Booster accelerator to the Main Injector. Such synchronization is necessary for multiple batch operation of the Main Injector for the Run II upgrade of anti-proton production using slip-stacking in the Main Injector, and for the NuMI (Neutrinos at the Main Injector) neutrino beam. To perform this task, a system of fast measurement and feedback is used to control the longitudinal progress of the Booster beam throughout its acceleration period by manipulation of the transverse position maintained by the low-level radio frequency system.  
FPAE024 Studies Performed in Preparation for the Spallation Neutron Source Accumulator Ring Commissioning target, beam-losses, proton, multipole 1859
  • S.M. Cousineau, V.V. Danilov, S. Henderson, J.A. Holmes, M.A. Plum
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The Spallation Neutron Source accumulator ring will compress 1.5?1014, 1 GeV protons from a 1 ms bunch train to a single 695 ns proton bunch for use in neutron spallation. Due to the high beam power, unprecedented control of beam loss will be required in order to control radiation and allow for hands-on maintenance in most areas of the ring. A number of detailed investigations have been performed to understand the primary sources of beam loss and to predict and mitigate problems associated with radiation hot spots in the ring. The ORBIT particle tracking code is used to perform realistic simulations of the beam accumulation in the ring, including detailed modeling of the injection system, transport through the measured magnet fields including higher order multipoles, and beam loss and collimation. In this paper we present the results of a number of studies performed in preparation for the 2006 commissioning of the accumulator ring.

FPAE026 Development of FFAG Accelerator at KEK acceleration, extraction, septum, synchrotron 1943
  • Y. Yonemura, N. Ikeda, M. Matoba
    Kyushu University, Fukuoka
  • M. Aiba, S. Machida, Y. Mori, A. Muto, J. Nakano, C. Ohmori, K.O. Okabe, I. Sakai, Y. Sato, A. Takagi, T. Yokoi, M. Yoshii, Y. Yuasa
    KEK, Ibaraki
  • R. Taki
    GUAS/AS, Ibaraki
  • T. Uesugi
    NIRS, Chiba-shi
  • A. Yamazaki
    LNS, Sendai
  • M. Yoshimoto
    JAERI, Ibaraki-ken
  The 150MeV proton FFAG accelerator is constructed and a beam is extracted at the final energy. This is the prototype FFAG for various applications such as proton beam therapy. We are now in preparation for using an extracted beam in the practical applications.  
FPAE029 Setup and Performance of the RHIC Injector Accelerators for the 2005 Run with Copper Ions booster, ion, emittance, extraction 2068
  • C.J. Gardner, L. Ahrens, J.G. Alessi, J. Benjamin, M. Blaskiewicz, J.M. Brennan, K.A. Brown, C. Carlson, J. DeLong, J. Glenn, T. Hayes, W.W. MacKay, G.J. Marr, J. Morris, T. Roser, F. Severino, K. Smith, D. Steski, N. Tsoupas, A. Zaltsman, K. Zeno
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U.S. Department of Energy.

Copper ions for the 2005 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators will be reviewed.

FPAE035 Steps Towards a 3 mA, 1.8 MW Proton Beam at the PSI Cyclotron Facility cyclotron, target, simulation, space-charge 2405
  • P.A. Schmelzbach, S.R.A. Adam, A. Adelmann, H. Fitze, G. Heidenreich, J.-Y. Raguin, U. Rohrer, P.K. Sigg
    PSI, Villigen
  The PSI Cyclotron Facility produces routinely a 1.8-1.9 mA proton beam at 590 MeV. The beam power reaches 1.1 MW at the the pion production targets and 0.7 MW at the neutron spallation target SINQ. The accelerator complex will be analysed in respect to his potential for future improvements. The ongoing developments aiming to increase the beam intensity to 3 mA and hence the beam power to 1.8 MW will be discussed. Smooth extrapolations of the observed machine parameters as well as recent advances in the theoretical treatment of space charge dominated beams show that this goal can be achieved with available technologies. IA new RF-cavity operated at a voltage in excess of 1 MV has been successfully tested and installed in the Ring Cyclotron. Bunchers for the low energy and the medium energy transfer lines are in the design phase. A conceptual study of new accelerating cavities to replace the obsolete flattop-cavities of the Injector Cyclotron has been performed. While the upgrade of the Ring Cyclotron with four new cavities will be completed in 2008, it is still an open question whether this accelerator will be operated in the "round beam" mode like the Injector Cyclotron or with an upgraded flattopping system.  
FPAE061 Status of the Booster Injector for the Duke FEL Storage Ring booster, vacuum, storage-ring, synchrotron 3544
  • S. Mikhailov, M.D. Busch, M. Emamian, J.F. Faircloth, S.M. Hartman, J. Li, V. Popov, G. Swift, V. Vylet, P.W. Wallace, P. Wang, Y.K. Wu
    DU/FEL, Durham, North Carolina
  • O. Anchugov, N. Gavrilov, G.Y. Kurkin, Yu. Matveev, D. Shvedov, N. Vinokurov
    BINP SB RAS, Protvino, Moscow Region
  Funding: This work is supported by U.S. DOE grant # DE-FG02-01ER41175 and by AFOSR MFEL grant # F49620-001-0370.

This paper presents the current status of the booster synchrotron for the Duke FEL storage ring. The booster will provide full energy injection into the storage ring in a wide energy range from 0.27 to 1.2 GeV. When operating the Duke FEL storage ring as the High Intensity Gamma Source (HIGS) to produce gamma photons above 20 MeV with Compton scattering, continuous electron loss occurs. The top-off mode operation of the booster injector will enable the continuous operation of the HIGS facility by replenishing the lost electrons. The design requirement for a compact booster with the single bunch extraction capability remains a challenge for the machine development. Presently, the booster project is in the installation phase. The magnetic elements, vacuum chambers, injection and extraction kickers have been fabricated in the Budker Institute of Nuclear Physics, Russia. The diagnostic and control system is being developed in the FEL lab, Duke University. The commissioning of the booster synchrotron is planned for fall 2005.

FPAE063 Enhancements of Machine Reliability and Beam Quality in SPring-8 Linac for Top-Up Injection into Two Storage Rings linac, klystron, synchrotron, feedback 3585
  • H. Hanaki, T. Asaka, H. Dewa, T. Kobayashi, A. Mizuno, S. Suzuki, T. Taniuchi, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo
  SPring-8 has started its top-up operation from May 2004 in order to feed constant photon fluxes to users. The SPring-8 linac has been improved to realize stable and uninterrupted top-up injection into the SPring-8 storage ring and the NewSUBARU storage ring. The beam energy instability of 0.01% rms had been achieved by the following stabilization: RF amplitude and phase stabilization, synchronization of beam timing and linac's 2856 MHz RF and introduction of an energy compensation system (ECS). Feedback controls of steering magnets compensate long-term variation of beam trajectories at ends of beam transport lines. The presentation will include also recent improvements.  
FPAE066 The IFUSP Microtron New Configuration microtron, booster, simulation, extraction 3703
  • M.L. Lopes, M.N. Martins, P.B. Rios, J. Takahashi
    USP/LAL, Bairro Butantan
  Funding: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq.

In this work we present a new design for the IFUSP main microtron accelerator. The new configuration improves the maximum output energy and eases the operation of the machine. The accelerator will be able to deliver 38 MeV after 43 turns. The input energy was reduced from 4.9 to 2.5 MeV, so that the first microtron stage, the booster, could be eliminated, reducing the number of synchronous stages and easing the operation. We present results for the energy, energy gain and phase slip per turn, and the beam ellipses. We also discuss the design of the insertion and extraction lines.

FPAE067 Present Design and Calculation for the Injection-Dump Line of the RCS at J-PARC beam-losses, quadrupole, emittance, linac 3739
  • P.K. Saha, N. Hayashi, H. Hotchi, Y. Irie, F. Noda, T. Takayanagi
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida, I. Sakai
    KEK, Ibaraki
  The RCS(rapid cycling synchrotron) of J-PARC(Japan proton accelerator research complex) acts as an injector to the main ring as well as a high-power beam for the spallation neutron source at a repetition rate of 25 Hz, where at present the injection and the extraction beam energy are chosen to be 0.181 GeV and 3.0 GeV, respectively. The present work concerns on the present design and calculations for the injection-dump line of the RCS, which includes, 1) an accurate aperture list of all elements taking into account a wide range of the betatron tune, effect of changing injection modes, multiple trajectories of different particles after the charge-exchange foil( like H0 from the H- and H- beam itself)and 2) an accurate estimation of the uncontrolled beam losses especially from the H0-excited states, multiple coulomb scattering at the charge-exchange foil and also the lorentz stripping loss at the septum magnets so as to optimize them concerning mainly the radiation issues as well as for the hands-on maintenance.  
FPAE068 Charge Strippers in the RIKEN RI-Beam Factory ion, cyclotron, heavy-ion, factory 3751
  • H. Ryuto, N. Fukunishi, A. Goto, H. Hasebe, N. Inabe, O. Kamigaito, M. Kase, Y. Yano, S. Yokouchi
    RIKEN/RARF/CC, Saitama
  In the RIKEN RI-Beam Factory, ions from hydrogen to uranium are planned to be accelerated by four cyclotrons and linacs using four stripper sections. The charge stripping schemes for typical ions and the selection of the charge strippers are described. The results of the measurements on charge state fractions are presented.  
FPAP022 Long Time Simulation of LHC Beam Propagation in Electron Clouds space-charge, simulation, electron, emittance 1769
  • B. Feng, A.F. Ghalam, T.C. Katsouleas
    USC, Los Angeles, California
  • E. Benedetto, F. Zimmermann
    CERN, Geneva
  • V.K. Decyk, W.B. Mori
    UCLA, Los Angeles, California
  In this report we show the simulation results of single-bunch instabilities caused by interaction of a proton beam with an electron cloud for the Large Hadron Collider (LHC) using the code QuickPIC [1]. We describe three new results: 1) We test the effect of the space charge of the beam on itself; 2) we add the effect of dispersion in the equation of motion in the x direction, and 3) we extend previous modeling by an order of magnitude (from 50ms to 500ms) of beam circulation time. The effect of including space charge is to change the emittance growth by less than a few percent. Including dispersion changes the plane of instability but keeps the total emittance approximately the same. The longer runs indicate that the long term growth of electron cloud instability of the LHC beam cannot be obtained by extrapolating the results of short runs.  
FPAP024 Electron Cloud in the Collimator- and Injection- Region of the Spallation Neutron Source's Accumulator Ring electron, beam-losses, SNS, simulation 1865
  • L. Wang, H.-C. Hseuh, Y.Y. Lee, D. Raparia, J. Wei
    BNL, Upton, Long Island, New York
  • S.M. Cousineau, S. Henderson
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The beam loss along the Spallation Neutron Source’s (SNS’s) accumulator ring is mainly located at the collimator region. From the ORBIT simulation, the peak power deposition at the three collimators is about 500, 350 and 240 W/m, respectively. Therefore, a sizeable number of electrons may be accumulated at this region due to the great beam loss. This paper simulated the electron cloud at the collimator region and the possible remedy.

FPAT012 Tevatron Beam Lifetimes at Injection Using the Shot Data Analysis System proton, antiproton, beam-beam-effects, scattering 1279
  • A. Xiao, T.B. Bolshakov, P. Lebrun, E.S. McCrory, V. Papadimitriou, A.J. Slaughter
    Fermilab, Batavia, Illinois
  The purpose of the Shot Data Acquisition and Analysis (SDA) system is to provide summary data on the Fermilab RunII accelerator complex and provide related software for detailed analyses. In this paper, we discuss such a specific analysis on Tevatron beam lifetimes at injection. These results are based on SDA data, tools and methodology. Beam lifetime is one of our most important diagnostics. An analysis of it can give information on intra beam scattering, aperture limitations, instabilities and most importantly beam-beam effects. Such an analysis gives us a better understanding of our machine, and will lead to an improved performance in the future.  
FPAT037 Electromagnetic Simulations of Helical-Based Ion Acceleration Structures ion, simulation, coupling, pulsed-power 2485
  • S.D. Nelson, G.J. Caporaso, A. Friedman, B.R. Poole
    LLNL, Livermore, California
  • R.J. Briggs
    SAIC, Alamo, California
  • W. Waldron
    LBNL, Berkeley, California
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Helix structures have been proposed* for accelerating low energy ion beams using MV/m fields in order to increase the coupling effeciency of the pulsed power system and to tailor the electromagnetic wave propagation speed with the particle beam speed as the beam gains energy. Calculations presented here show the electromagnetic field as it propagates along the helix structure, field stresses around the helix structure (for voltage breakdown determination), optimizations to the helix and driving pulsed power waveform, and simulations showing test particles interacting with the simulated time varying fields.

*"Helical Pulseline Structures for Ion Acceleration," Briggs, Reginato, Waldron, this conference.

FPAT043 Application of Selected Momentum Correction Method Using Induction Voltage Modulator induction, storage-ring, ion, emittance 2762
  • T. Kikuchi, S. Kawata
    Utsunomiya University, Utsunomiya
  • K. Horioka
    TIT, Yokohama
  • T. Katayama
    CNS, Saitama
  A method for momentum correction of a selected beam particle using a controllable induction voltage modulator is proposed for a low flux ion beam. The corrected ion beam has a small momentum error restricted by a detection error at a kinetic energy analyzer and a voltage fluctuation at the induction voltage modulator. The application of this selected momentum correction scheme is discussed by using numerical simulations.  
FPAT051 A New Timing System for the Duke Booster and Storage Ring booster, linac, storage-ring, electron 3159
  • G.Y. Kurkin
    BINP SB RAS, Novosibirsk
  • S.M. Hartman, S. Mikhailov, Y.K. Wu
    DU/FEL, Durham, North Carolina
  • I.P. Pinayev
    BNL, Upton, Long Island, New York
  Funding: AFOSR MFEL grant number is F49620-001-0370, HIGS Upgrade DOE grant number is DE-FG02-01ER41175.

A dedicated booster synchrotron is being constructed at the Duke FEL Laboratory to provide full energy injection into the main electron storage ring. A new timing system has been developed to coordinate the injection of electron bunches from the linac to the booster, the ramping of energy in the booster, and extraction of bunches into the main ring. The timing system will allow the extraction of any bunch in the booster into any selected bucket in the main ring to provide top-off injection for any of the various operational bunch patterns of the main ring. A new master oscillator has also been developed for the RF system of the booster. The oscillator may be tuned independently or phase-locked to the master oscillator of the main ring. The issues of the soft phase locking process of the new master oscillator are discussed. The timing system and new oscillator have been fabricated and tested and are ready for operation.

FPAT055 The Radiation Safety Interlock System for Top-Up Mode Operation at NSRRC radiation, synchrotron, booster, storage-ring 3328
  • C.R. Chen, F.D. Chang, S.-P. Kao, Joseph. Liu, R.J. Sheu, J.P. Wang
    NSRRC, Hsinchu
  The radiation safety interlock systems of NSRRC have been operated for more than a decade. Some modification actions have been implemented in the past to perfect the safe operation. The machine and its interlock system were originally designed to operate at the decay mode. Recently some improvement programs to make the machine injection from original decay mode to top-up mode at NSRRC has initiated. For users at experimental area the radiation dose resulted from top-up re-fill injections where safety shutters of beam-lines are opened will dominate. In addition to radiation safety action plans such as upgrading the shielding, enlarging the exclusion zones and improving the injection efficiency, the interlock system for top-up operation is the most important to make sure that injection efficiency is acceptable. To ensure the personnel radiation safety during the top-up mode, the safety interlock upgrade and action plans will be implemented. This paper will summarize the original design logic of the safety interlock system. Historical modification actions for this system will be mentioned. New design logic to ensure radiation safety for top-up mode operation will be discussed.  
FPAT069 A Control System for the Duke Booster Synchrotron booster, storage-ring, extraction, power-supply 3792
  • S.M. Hartman, S. Mikhailov, Y.K. Wu
    DU/FEL, Durham, North Carolina
  Funding: This work is supported by U.S. Department of Energy grant DE-FG02-01ER41175 and by U.S. AFOSR MFEL grant F49620-001-0370.

The Duke FEL is developing a booster synchrotron to provide full energy injection into the Duke electron storage ring. In this paper, we describe the development of the control system for the booster. Requirements include the competing needs of simple and reliable turn-key operation for the machine as a booster; and the sophistication and flexibility of operation of the machine as a storage ring for commissioning, machine studies and as a light source. To simplify operations and machine studies, the high level controls will present the system in terms of the physics quantities of the accelerator, allowing a tight integration between the physics model and the low level hardware control, as we have previously implemented for Duke storage ring.

FPAT080 Simulations of Beam Injection and Extraction into Ion Sources ion, plasma, simulation, background 4069
  • M. Cavenago
    INFN/LNL, Legnaro, Padova
  Funding: INFN-LNL

Charge breeding, consistiting of injecting singly charged ion into ECRIS(Electron Cyclotron Resonance Ion Sources) to extract an highly charged ion beam, is a promising technique for rare or radioactive ion beam. Efficiency and extracted beam temperature are dominated by the strong collisional diffusion of charged ion inside source. A computer code, named BEAM2ECR, written to simulate details of the injection, ionization, collision and extraction processes is described.* A model of injection plasma sheath and of source fringe field were recently added. Neutral injection is also supported, for comparison with other techniques, like gas feeding or metal vapor injection. Results, clearly favouring near axis injection for most cases are described. Code is written in C-language and possibility of concurrent execution over a Linux cluster was recently added.

*M. Cavenago, O. Kester, T. Lamy and P. Sortais, Rev. Sci. Instrum. 73, 537 (2002).

FOAB010 Present Status of Photo-Cathode RF Gun System and Its Applications laser, electron, gun, emittance 710
  • R. Kuroda, Y. Hama, K. Hidume, M. Kawaguchi, R. Moriyama, T. Saito, K. Sakaue, M. Washio
    RISE, Tokyo
  • H. Hayano, J.U. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
  High quality electron beam generation using photo-cathode rf gun system and its applications have been developed at Waseda University. This system can generate up to 4.6 MeV low emittance electron beam. It is applied for soft X-ray generation using laser Compton scattering and pulse radiolysis experiments based on the pump-probe technique. In the former, Compton scattering experiments between about 4.6 MeV electron beam and 1047 nm laser beam is performed at 20 degrees interaction angle, so that about 370 eV soft X-ray is generated. In the latter, the electron beam is used for the pump beam and the probe beam is generated as white light by concentrating laser beam on the water cell, so that the measurement with about 30 ps (FWHM) time resolution of the pulse radiolysis system is demonstrated for the absorption of hydrated electrons. In this conference, we will present the experimental results, status of this system and future applications.  
FOAD005 Commissioning of the University of Maryland Electron Ring (UMER) space-charge, quadrupole, dipole, emittance 469
  • S. Bernal, G. Bai, D.W. Feldman, R. Feldman, T.F. Godlove, I. Haber, J.R. Harris, M. Holloway, R.A. Kishek, J.G. Neumann, P.G. O'Shea, C. Papadopoulos, B. Quinn, D. Stratakis, K. Tian, J.C. Tobin Thangaraj, M. Walter, M. Wilson
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
  Funding: This work is funded by the U.S. Department of Energy under grants DE-FG02-94ER40855 and DE-FG02-92ER54178, and the office of Naval Research under grant N00014-02-1-0914.

The University of Maryland electron ring (UMER) is a low-energy, high current recirculator for beam physics research. The ring is completed for multi-turn operation of beams over a broad range of intensities and initial conditions. UMER is addressing issues in beam physics with relevance to many applications that rely on intense beams of high quality. Examples are advanced accelerators, FEL’s, spallation neutron sources and future heavy-ion drivers for inertial fusion. We review the motivation, ring layout and operating conditions of UMER. Further, we present a summary of beam physics areas that UMER is currently investigating and others that are part of the commissioning plan: from transverse beam dynamics (matching, halo formation, strongly asymmetric beams, space-charge waves, etc), longitudinal dynamics (bunch capture/shaping, evolution of energy spread, longitudinal space-charge waves, etc.) to future upgrades and planned research (acceleration and resonance traversal, modeling of galactic dynamics, etc.) We also emphasize the computer simulation work that is an integral part of the UMER project.