A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    


Paper Title Other Keywords Page
MOPC001 Final Results from the Novel Multiturn Extraction Studies at CERN Proton Synchrotron resonance, octupole, proton, septum 117
  • M. Giovannozzi, R. Cappi, S.S. Gilardoni, M. Martini, E. Métral, R.R. Steerenberg
    CERN, Geneva
  • A.-S. Müller
    FZK, Karlsruhe
  Recently a novel approach to perform multi-turn extraction was proposed based on beam splitting in the transverse phase space by means of trapping inside stable islands. An experimental campaign was launched since the year 2002 to assess the feasibility of such an extraction scheme at the CERN Proton Synchrotron. During the year 2004 run, a high-intensity single-bunch beam was successfully split and the generated beamlets separated without any measurable losses. The latest experimental results are presented and discussed in details in this paper. These achievements represent a substantial step forward with respect to what achieved in previous years, as only a low-intensity bunch could be split without losses. Furthermore, this opens the possibility of using such a technique for routine operation with the high-intensity proton beams required for the planned CERN Neutrino to Gran Sasso Project.  
MPPE017 Longitudinal Acceptance in Linear Non-Scaling FFAGs acceleration, emittance, longitudinal-dynamics, injection 1532
  • J.S. Berg
    BNL, Upton, Long Island, New York
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-98CH10886.

Linear Non-Scaling FFAGs have, particularly for muon acceleration, a unique type of longitudinal motion. This longitudinal motion can be approximated by a parabolic dependence time-of-flight on energy. This motion can be described in dimensionless variables with two parameters. I describe the relationship between the parameters and the distortion of ellipses in longitudinal space. I discuss the relationship between the longitudinal acceptance and the time spent in the FFAG, the latter being especially relevant for decays in muon accelerators. I discuss what improvement one can expect to achieve by adding higher-harmonic RF systems to the accelerator.

MPPE043 The Status of Optics Design and Beam Dynamics Study in J-PARC RCS injection, beam-losses, simulation, space-charge 2759
  • F. Noda, N. Hayashi, H. Hotchi, J. Kishiro, P.K. Saha, Y. Shobuda, K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida, A.Y. Molodojentsev
    KEK, Ibaraki
  The 3GeV RCS at J-PARC is designed to provide proton beam of 3GeV and a goal of output beam power is 1MW. The beam commissioning starts on May 2007. At present, more qualitative studies concerning beam dynamics are in progress: core beam handlings, halo beam handlings, instabilities and so on. In this paper, the RCS optics design and the present status of beam dynamics studies are summarized.  
MPPE082 Non-Linear Beam Dynamics in High Resolution Multi-Pass Time of Flight Mass Separator ion, simulation, resonance, ion-source 4105
  • V.A. Shchepunov
    ORAU, Oak Ridge, Tennessee
  • H. Wollnik
    JIHIR, Oak Ridge, Tennessee
  Funding: This work was supported by the UNIRIB collaboration and Oak Ridge Associated Universities.

A multi-pass time-of-flight (MTOF) mass separator is under development by the UNIRIB collaboration. The MTOF consists of two coaxial electrostatic mirrors, focusing lenses and auxiliary injection, extraction and separation elements. The injected ions having almost the same energy but different masses undergo hundreds or thousands of reflections between the mirrors. In the course of this periodic motion, the ions of different masses and hence velocities are spatially separated in longitudinal direction. The periodic motion in the MTOF has been investigated with a recently developed ray tracing program utilizing the canonical integration technique. Results of the performed numerical simulations are discussed. The simulations displayed nonlinear character of the ion’s behavior both in transverse and longitudinal phase spaces. The ion’s transverse stability and longitudinal isochronicity were the matters of primary attention. It is shown in particular that at transverse tunes of around q=0.75 the system can be adjusted to be isochronous up to at least the 3rd order of the ToF optical aberrations.

MPPE083 Harmonic Decomposition of Orbit Data for Multipole Analysis coupling, multipole, dipole, sextupole 4120
  • M.-J. Yang
    Fermilab, Batavia, Illinois
  The unprecedented position resolution provided by the newly commissioned Recycer BPM system is opening up a new chapter of beam based multipole analysis at Fermilab. The closed orbit data, taken with circulating beam and averaged over many consecutive turns, has been shown to have the resolution of a few microns. The result of polynomial fit to BPM position data, as a function of dipole kick sizes, is used to separate orbit data into first, second, and third order. Combining both the in-plane and cross-plane orbit data it is possible to determine the multipole content within each half cell. This paper presents the algorithm behind the procedure, the data collected from the Fermilab Recycler Ring, and the final analysis result.  
MPPP023 Numerical Calculation of Coupling Impedances for Kicker Modules impedance, coupling, kicker, simulation 1820
  • B. Doliwa, H. De Gersem, T. Weiland
    TEMF, Darmstadt
  Funding: Work supported in part by DFG under contract GraKo 410 and GSI, Darmstadt.

Maintaining the impedance budget is an important task in the planning of any new accelerator facility. While estimates from analytical computations and measurements play a central role in doing so, numerical calculations have become an important alternative today. On the basis of Finite Integration Theory, we have developed a simulation tool for the direct computation of coupling impedances in the frequency domain. After discussing the special features of our code as compared to commercial programs, we present our results for cases where coupling impedances have been obtained from another source, e.g. experiment. In particular, we consider the longitudinal and transverse impedances of the SNS extraction kicker and present investigations related to the injection/extraction system of the future heavy-ion synchrotron at GSI.

MPPT006 The Extraction Kicker System of the RCS in J-PARC kicker, vacuum, impedance, proton 1009
  • J. Kamiya, T. Takayanagi
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • T. Kawakubo, S. Murasugi, E. Nakamura
    KEK, Ibaraki
  The kicker magnet plays a role of extracting the proton beam which is accelerated up to 3GeV by the Rapid Cycling Synchrotron in J-PARC. The kicker system is required the fast rise time of the magnetic field because the interval between the beam bunches is only 349nsec. The kicker magnet is the distributed type. The findings in our measurements revealed that the delay time in the magnet is about 180nsec. The power supply has the pulse forming network system, which consists of co-axial cables whose characteristic impedance is 10 ohm. We accomplished the current rise time of 80 nsec quickness. Therefore we had a good prospect of the fast rise time of the magnetic field. The characteristic impedance of the kicker magnet was also measured. The value was close to 10 ohm. There will be no large mismatching between the power supply and the magnet. This pulse magnet is installed in the vacuum chamber to prevent the electric discharge. Outgas from the components has the adverse effects the vacuum in the accelerator. We have reduced the outgas rate from the ferrite core and aluminum plates which construct the magnet by backing them at appropriate temperature.  
MPPT007 Design of the Pulse Bending Magnets for the Injection System of the 3-GeV RCS in J-PARC injection, power-supply, linac, beam-losses 1048
  • T. Takayanagi, Y. Irie, J. Kamiya
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • T. Kawakubo, I. Sakai
    KEK, Ibaraki
  The pulse bending magnets for the injection system of the 3-GeV RCS in J-PARC has been designed using a 3D magnetic analysis code. The injection system consists of the pulse bending magnets for the injection bump orbit, which are four horizontal bending magnets (shift bump), four horizontal painting magnets (h-paint bump), and two vertical painting magnets (v-paint bump). The injection beam energy and the extraction beam power are 400 MeV and 1 MW at 25-Hz repetition rate, respectively. The beam orbit area with a full acceptance beam of the injection beam, painting beam and the circulating beam at the shift bump points is a 400 mm width and a 250 mm height.The shift bump has accomplished 1.0% good field region at 0.22 T.  
MPPT017 Design of Switching Magnet for 20-MeV Beamlines at PEFP vacuum, proton, multipole, simulation 1575
  • H.S. Suh, H.S. Han, S.-H. Jeong, Y.G. Jung, H.-S. Kang, H.-G. Lee, K.-H. Park, C. K. Ryu
    PAL, Pohang, Kyungbuk
  Funding: Ministry of Science and Technology.

The PEFP(Proton Engineering Frontier Project) proton linac is designed to have two proton beam extraction lines at the 20-MeV and 100-MeV end. The 20-MeV extraction line is branched out into 5 beamlines by using the switching magnet. The magnet bends the proton beam by +20, +10, 0, -10, -20 degrees, respectively, and has an AC frequency of 5 Hz with a programmable ac power supply. It employs an H-shape, 0.45 T magnetic field, 0.5 m effective magnet length, 30x5 cm bore aperture. The pole shape is optimized for the field levels. Laminated steel of 0.5 mm is enough to suppress the eddy current effect in the yoke. This paper presents the magnet specification and primary design.

MPPT067 Stray Field Reduction in ALS Eddy Current Septum Magnets septum, storage-ring, injection, dipole 3718
  • D. Shuman, W. Barry, S. Prestemon, R.D. Schlueter, C. Steier, G.D. Stover
    LBNL, Berkeley, California
  Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Stray field from an eddy current septum magnet adversely affects the circulating beam and can be reduced using several techniques. The stray field time history typically has a fast rise section followed by a long exponential decay section when pulsed with a half sine drive current. Changing the drive current pulse to a full sine has the effect of both reducing peak stray field magnitude by ~3x, and producing a quick decay from this peak to a lower field level which then has a similar long decay time constant as that from the half sine only drive current pulse. A method for tuning the second half sine (reverse) drive current pulse to eliminate the long exponential decay section is given.

MPPT070 Construction and Power Test of the Extraction Kicker Magnet for the Spallation Neutron Source Accumulator Ring kicker, vacuum, SNS, power-supply 3831
  • C. Pai, H. Hahn, H.-C. Hseuh, Y.Y. Lee, W. Meng, J.-L. Mi, D. Raparia, J. Sandberg, R.J. Todd, N. Tsoupas, J.E. Tuozzolo, D.S. Warburton, J. Wei, D. Weiss, W. Zhang
    BNL, Upton, Long Island, New York
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

Two extraction kicker magnet assemblies that contain seven individual pulsed magnet modules each will kick the proton beam vertically out of the SNS accumulator ring into the aperture of the extraction lambertson septum magnet. The proton beam then travels to the 1.4 MW SNS target assembly. The 14 kicker magnets and major components of the kicker assembly have been fabricated in BNL. The inner surfaces of the kicker magnets were coated with TiN to reduce the secondary electron yield. All 14 PFN power supplies have been built, tested and delivered to ORNL. Before final installation, a partial assembly of the kicker system with three kicker magnets was assembled to test the functions of each critical component in the system. In this paper we report the progress of the construction of the kicker components, the TiN coating of the magnets, the installation procedure of the magnets and the full power test of the kicker with the PFN power supply.

MPPT071 The Lambertson Septum Magnet of the Spallation Neutron Source septum, vacuum, lattice, target 3847
  • J. Rank, Y.Y. Lee, W.J. McGahern, G. Miglionico, D. Raparia, N. Tsoupas, J.E. Tuozzolo, J. Wei
    BNL, Upton, Long Island, New York
  Funding: Work performed under contract for SNS, managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

In the Spallation Neutron Source, at Oak Ridge National Laboratory in Tennessee, multiple-stage injections to an accumulator ring increase intensity until a final extraction delivers the full proton beam to the target via transfer line. This extraction is achieved by a series of kicker elements and a thin septum Extraction Lambertson Septum Magnet. Here we discuss the lattice geometry, beam dynamics and optics, and the vacuum, electromagnetic and electromechanical design aspects of the SNS Extraction Lambertson Septum Magnet. Relevant datums are established. Beam optics is studied. Vector calculus is solved for pitch and roll angles. Fundamental magnet sections are depicted schematically. Coil, pole and yoke design calculations and electromagnetics optimization are presented.

TOAA007 SNS Injection and Extraction Devices injection, septum, proton, kicker 553
  • D. Raparia
    BNL, Upton, Long Island, New York
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The Spallation Neutron Source (SNS) is a second generation pulsed neutron source (1.5 MW) and is presently in the sixth year of a seven-year construction cycle at Oak Ridge National Laboratory. The operation of the facility will begin in 2006. The most stringent requirement for the SNS accelerator complex is to allow hands-on maintenance. Operational experiences show that the most losses occur in the injection and extraction. SNS accumulator ring injection and extraction has been design with grate care to reduce uncontrolled losses. Injection systems consist of fast programmable kicker magnets and DC dump magnets to paint the beam in transverse phase space. Extraction systems consist of fast kicker magnets and a Lamberton magnet to extract beam in single turn. Paper will discuss design, construction and testing of these devices.

TPAE013 Rectangular Dielectric-Lined Two-Beam Wakefield Accelerator Structure acceleration, radiation, vacuum, coupling 1333
  • C. Wang, V.P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  • J.L. Hirshfield
    Yale University, Physics Department, New Haven, CT
  • T.C. Marshall
    Columbia University, New York
  Funding: Work supported by U.S. DOE.

A novel dielectric structure is described for a two-beam wake field accelerator (WFA), which consists of three or four rectangular dielectric slabs positioned within a rectangular conducting pipe. This structure can be thought of as equivalent to two symmetric dielectric-lined three-zone rectangular waveguides, joined side-by-side. The design mode in the two-beam structure is the LSM-31 mode, a combination of two symmetric LSM-11 modes of the two three-zone waveguides. This two-channel mode can be employed to decelerate drive particles in one channel and accelerate test particles in the other. It is possible to find structure parameters that give a high ratio of acceleration gradient for the test beam, to deceleration gradient for the drive beam, of the order of 100.

TPAP010 Reliability Analysis of the LHC Beam Dumping System diagnostics, dumping, kicker, collider 1201
  • R. Filippini, E. Carlier, L. Ducimetière, B. Goddard, J.A. Uythoven
    CERN, Geneva
  The design of the LHC Beam Dumping System is aimed at ensuring a safe beam extraction and deposition under all circumstances. The system adopts redundancy and continuous surveillance for most of its parts. Extensive diagnostics after each beam dumping action will be performed to reduce the risk of a faulty operation at the subsequent dump trigger. Calculations of the system’s safety and availability are presented, considering the detailed design of the trigger generation system and the power converters of the beam dumping kickers and septa magnets.  
TPAP015 Commissioning of the LHC Beam Transfer Line TI 8 optics, instrumentation, proton, injection 1461
  • J.A. Uythoven, G. Arduini, B. Goddard, D. Jacquet, V. Kain, M. Lamont, V. Mertens, A. Spinks, J. Wenninger
    CERN, Geneva
  • Y.-C. Chao
    Jefferson Lab, Newport News, Virginia
  The first of the two LHC transfer lines was commissioned in autumn 2004. Beam reached an absorber block located some 2.5 km downstream of the SPS extraction point at the first shot, without the need of any threading. The hardware preparation and commissioning phase will be summarised, followed by a description of the beam tests and their results regarding optics and other line parameters, including the experience gained with beam instrumentation, the control system and the machine protection equipment.  
TPAP017 Beam Stability of the LHC Beam Transfer Line TI8 proton, injection, septum, alignment 1523
  • J. Wenninger, B. Goddard, V. Kain, J.A. Uythoven
    CERN, Geneva
  Injection of beam into the LHC at 450 GeV/c proceeds over two 2.7 km long transfer lines from the SPS. The small aperture of the LHC at injection imposes tight constraints on the stability of the beam transfer. The first transfer line TI8 was commissioned in the fall of 2004 with low intensity beam. Since the beam position monitor signal fluctuations were dominated by noise with low intensity beam, the beam stability could not be obtained from a simple comparison of consecutive trajectories. Instead model independent analysis (MIA) techniques as well as scraping on collimators were used to estimate the intrinsic stability of the transfer line. This paper presents the analysis methods and the resulting stability estimates.  
TPAP018 Optics Studies of the LHC Beam Transfer Line TI8 optics, quadrupole, coupling, emittance 1578
  • J. Wenninger, G. Arduini, B. Goddard, D. Jacquet, V. Kain, M. Lamont, V. Mertens, J.A. Uythoven
    CERN, Geneva
  • Y.-C. Chao
    Jefferson Lab, Newport News, Virginia
  The optics of the newly commissioned LHC beam transfer line TI 8 was studied with beam trajectories, dispersion and profile measurements. Steering magnet response measurements were used to analyze the quality of the steering magnets and of the beam position monitors. A simultaneous fit of the quadrupole strengths was used to search for setting or calibration errors. Residual coupling between the planes was evaluated using high statistics samples of trajectories. Initial conditions for the optics at the entrance of the transfer line were reconstructed from beam profile measurements with Optical Transition Radiation monitors. The paper presents the various analysis methods and their errors. The expected emittance growth arising from optical mismatch into the LHC is evaluated.  
TPAT014 A Novel Technique for Multiturn Injection in a Circular Accelerator Using Stable Islands in Transverse Phase Space injection, resonance, simulation, septum 1377
  • M. Giovannozzi, J. Morel
    CERN, Geneva
  By applying a time-reversal to the multiturn extraction recently proposed a novel approach to perform multiturn injection is proposed. It is based on the use of stable islands of the horizontal phase space generated by means of sextupoles and octupoles. A particle beam can be injected into stable islands of phase space, and then a slow tune variation allows merging the beam trapped inside the islands. The results of numerical simulations will be presented and discussed in details, showing how to use the proposed approach to generate hollow bunches.  
TPAT032 Transverse Stability Studies of the SNS Ring space-charge, SNS, impedance, injection 2254
  • J.A. Holmes, V.V. Danilov
    ORNL, Oak Ridge, Tennessee
  • L.K. Jain
    UW/Physics, Waterloo, Ontario
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

Detailed studies of the transverse stability of the SNS ring have been carried out for realistic injection scenarios. For coasting beam models and single harmonic impedances, analytic and computational results including phase slip, chromaticity, and space charge are in excellent agreement. For the dominant extraction kicker impedance and bunched beams resulting from injection, computationally determined stability thresholds are significantly higher than for coasting beams. At this time, we have no analytic model to treat the bunched beam case, but we present a formulation that provides an approach to this problem.

TPAT057 Observations of UHF Oscillations in the IPNS RCS Proton Bunch quadrupole, acceleration, synchrotron, proton 3375
  • J.C. Dooling, F.R. Brumwell, G.E. McMichael, S. Wang
    ANL, Argonne, Illinois
  Funding: This work is supported by the U.S. Department of Energy under contract no. W-31-109-ENG-38.

The Intense Pulsed Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS) accelerates 3.2x 1012 protons from 50 MeV to 450 MeV in a single bunch (h=1) at 30 Hz. The rf frequency varies from 2.21 MHz to 5.14 MHz during the 14.2 ms acceleration interval. To maintain stability of the bunch, phase modulation is introduced to the rf at approximately twice the synchrotron frequency (synchrotron tune is 0.0014). This phase modulation causes a parametric quadrupole oscillation to develop in the bunch, and as this occurs, the bunch spectrum shows a significant increase in high frequency content. Without phase modulation, the beam experiences an instability which results in the loss of a large fraction of the charge 2-4 ms prior to extraction. It is unclear if the stability imparted to the beam by phase modulation comes from the quadrupole oscillation or from the high frequency excitation. A longitudinal tracking code is presently being modified to include amplitude and phase modulation of the bunch. The numerical analysis will be used to compare growth rates with those observed in the machine. The results of this analysis will be important as we introduce second harmonic rf with a new third cavity in the RCS later in 2005.

TPPE001 The HERA Volume H- Source electron, plasma, emittance, vacuum 788
  • J. Peters
    DESY, Hamburg
  Funding: The support of EEC (Contract HPRI-CT-2001-50021) is gratefully acknowledged.

The HERA RF-Volume Source is the only source that delivers routinely a H – current of 40 mA without Cs. It has been running for years without interruption for maintenance. The production mechanism for H – ions in this type of source is still under discussion. Laser photodetachment measurements have been done at DESY in order to measure the H – distribution in the source. The measurements were done also under extraction conditions at high voltage. The dependency of the quality of the Hminus beam on the frequency was investigated. A frequency range of 1.65 – 9 Mhz was scanned and the emittance was measured for several Hminus currents up to 40 mA. The results of our investigations make further source improvements possible. Recently currents of 60 mA were reached.

TPPE003 Analysis of Multigrid Extraction Plasma Meniscus Formation plasma, electron, ion, proton 862
  • M. Cavenago
    INFN/LNL, Legnaro, Padova
  • V. Antoni, F. Sattin
    CNR/RFX, Padova
  • A. Tanga
    MPI/IPP, Garching
  Funding: INFN-LNL, CNR-RFX.

Effects of plasma meniscus on the emittance in negative ion source proposed for spallation sources or neutral beam injectors (NBI) for tokamaks are particularly interesting to study with fluid models because: 1) at least three different charged fluid can be recognised: the thermalized and fully magnetized electrons; the slightly magnetized and roughly thermalized positive ions; the negative ions, typically formed within few cm from meniscus; 2) different implementation of the magnetic filter system need to be compared; 3) optimization of electron dump and outlet electrode strongly depends on plasma meniscus contact point. With reasonable assumption on system geometry, 2D and 3D charged fluid quation for the selfconsistent electrostatic field can be written and effect of grid aperture is investigated. Moreover, these equations are easily implemented into a multiphysics general purpose program. Preliminary results are described, and compared to existing codes.

TPPE005 50keV, 50mA Pulsed Proton Injector for PEFP proton, ion, ion-source, rfq 964
  • I.-S. Hong, Y.-S. Cho, S.-H. Han
    KAERI, Daejon
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

Duoplasmatron type ion source with 50keV proton beam has been constructed and stably operated as the injector for Proton Engineering Frontier Project(PEFP). In DC operation, the beam current of 50mA with 50kV extraction voltage is routinely obtained. However, the pulsed operation mode of the ion source also has been considered to reduce beam induced damage at the entrance of RFQ. A high voltage pulse switch is connected between accelerating electrode and ground electrode for this purpose. The detailed scheme on the focusing of the pulsed proton beam with space charge compensation is in progress. Beam profile and current in front of RFQ will be measured by DCCT and optical measuring tools.

TPPE010 A Parallel 3D Model for the Multi-Species Low Energy Beam Transport System of the RIA Prototype ECR Ion Source VENUS simulation, ion, ion-source, beam-transport 1183
  • J. Qiang, D. Leitner, D.S. Todd
    LBNL, Berkeley, California
  Funding: This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. DOE under Contract DE AC03-76SF00098.

The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and optimize the low energy beam line optics of the RIA front end, we have developed a new parallel three-dimensional model to simulate the low energy, multi-species beam transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multi-section overlapped computational domain has been used to break the original transport system into a number of independent subsystems. Within each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in the Frenet-Serret coordinates for the bending magnet region. Some test examples and initial applications will also be presented.

TPPE011 A Compact High-Brightness Heavy-Ion Injector emittance, ion, plasma, heavy-ion 1263
  • G.A. Westenskow, D.P. Grote, E. F. Halaxa
    LLNL, Livermore, California
  • F.M. Bieniosek, J.W. Kwan
    LBNL, Berkeley, California
  Funding: This work has been performed under the auspices of the U.S. DOE by UC-LBNL under contract DE-AC03-76SF00098 and by UC-LLNL under contract W-7405-ENG-48, for the Heavy Ion Fusion Virtual National Laboratory.

To provide compact high-brightness heavy-ion beams for Heavy Ion Fusion (HIF) accelerators, we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. In an 80-kV 20-microsecond experiment, the RF plasma source has produced up to 5 mA of Ar+ in a single beamlet. An extraction current density of 100 mA/cm2 was achieved, and the thermal temperature of the ions was below 1 eV. More than 90% of the ions were in the Ar+ state, and the energy spread from charge exchange was found to be small. We have tested at full voltage gradient the first 4 gaps of a 61-beamlet injector design. Einzel lens were used to focus the beamlets while reducing the beamlet to beamlet space charge interaction. We will report on a converging 119 multi-beamlet source. Although the source has the same optics as a full 1.6 MV injector system, the test will be carried out at 400 kV due to the test stand HV limit. We will measure the beam’s emittance after the beamlets are merged and have been transported through an electrostatic quadrupole. Our goal is to confirm the emittance growth and to demonstrate the technical feasibility of building a driver-scale HIF injector.

TPPE025 Separating the Penning and Analysing Fields in the ISIS H- Ion Source emittance, ion, ion-source, vacuum 1910
  • D.C. Faircloth, R. Sidlow, M. Whitehead, T.W. Wood
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  Funding: This work was supported by the European Union High Performance Negative Ion Source (HP-NIS) network, contract number HPRI-CT-2001-50021.

The development of H- ion sources with performances exceeding those achieved today is a key requirement for the next generation of high power proton accelerators. The Penning surface plasma source development program at ISIS is now well established. To allow different ion source designs to be fully tested, the ability to vary the Penning field is required. Until now the Penning field has been generated by the same magnetic circuit that creates the analyzing field, giving no practical way of altering the Penning field alone. This paper describes the infrastructure changes required to allow the Penning field to be independently varied. The effect the Penning field has on beam current, emittance and discharge stability are discussed.

TPPE029 Measurements of Ion Selective Containment on the RF Charge Breeder Device BRIC ion, electron, simulation, vacuum 2065
  • V. Variale, A. Boggia, T. Clauser, A. Rainò, V. Valentino
    INFN-Bari, Bari
  • P.A. Bak, M. A. Batazova, G.I. Kuznetsov, S. Shiyankov, B.A. Skarbo
    BINP SB RAS, Novosibirsk
  • G. Verrone
    Università e Politecnico di Bari, Bari
  Funding: Istituto Nazionale Fisica Nucleare.

The "charge state breeder" BRIC (BReeding Ion Charge) is based on an EBIS source and it is designed to accept Radioactive Ion Beam (RIB) with charge +1, in a slow injection mode, to increase their charge state up to +n. BRIC has been developed at the INFN section of Bari (Italy) during these last 3 years with very limited funds. Now, it has been assembled at the LNL (Italy) where are in progress the first tests as stand alone source. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a Radio Frequency (RF) Quadrupole aiming to filtering the unwanted elements and then making a more efficient containment of the wanted ions. In this contribution, the measurements of the selective effect on the ion charge state containement of the RF quadrupole field, applied on the ion chamber, will be reported and discussed. The ion charge state analisys of the ions trapped in BRIC seem confirm, as foreseen by simulation results carried out previously, that the selective containment can be obtained. A modification of the collector part to improve the ion extraction of BRIC will be also presented and shortly discussed.

TPPE032 Particle-in-Cell Simulations of the VENUS Ion Beam Transport System simulation, ion, ion-source, beam-transport 2236
  • D.S. Todd, D. Leitner, C.M. Lyneis, J. Qiang
    LBNL, Berkeley, California
  • D.P. Grote
    LLNL, Livermore, California
  Funding: This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. DOE under Contract DE AC03-76SF00098

The next-generation superconducting ECR ion source VENUS serves as the prototype injector ion source for the linac driver of the proposed Rare Isotope Accelerator (RIA). The high-intensity heavy ion beams required by the RIA driver linac present significant challenges for the design and simulation of an ECR extraction and low energy ion beam transport system. Extraction and beam formation take place in a strong (up to 3T) axial magnetic field, which leads to significantly different focusing properties for the different ion masses and charge states of the extracted beam. Typically, beam simulations must take into account the contributions of up to 30 different charge states and ion masses. Two three-dimensional, particle-in-cell codes developed for other purposes, IMPACT and WARP, have been adapted in order to model intense, multi-species DC beams. A discussion of the differences of these codes and the advantages of each in the simulation of the low energy beam transport system of an ECR ion source is given. Direct comparisons of results from these two codes as well as with experimental results from VENUS are presented.

TPPE060 Simulation Study of a Thermionic RF Gun for High Brightness and Short Pulse Beam gun, simulation, electron, cathode 3499
  • T. Tanaka, H. Hama, F. Hinode, M. Kawai
    LNS, Sendai
  • A. Miyamoto
    HSRC, Higashi-Hiroshima
  • K. Shinto
    Tohoku University, Sendai
  Characteristics of thermionic RF guns are not understood completely. In particular, measured intense beam emittances extracted from thermionic RF guns do not agree well with simulated values so far. Most of simulation codes solve the equation of electron motion in an intrinsic mode of the RF field calculated by a separated code. The way of such simulation codes is not self-consistent completely. That is probably a major reason for the discrepancy between the experiments and the simulations. One of the other way for a self-consistent simulation codes is to use an FDTD (Finite Difference Time Domain) method. Since the FDTD method can take into account the microwave propagation including the space charge effect and the beam loading self-consistently, we have developed an FDTD code as 3-D Maxwell's equation solver and applied for a study of beam dynamics in a thermionic RF gun. The main purpose of simulaiton study is to obtain overall properties of the beam dynamics at the time. The goal of this simulation study of the thermionic RF gun is to understand correct characteristics of the thermionic RF gun for producing high brightness and short pulse beam.  
WOAA004 The ILC Beam Delivery System–Conceptual Design and R&D Plans optics, diagnostics, instrumentation, photon 390
  • A. Seryi
    SLAC, Menlo Park, California
  The Beam Delivery System of the ILC has many stringent and sometimes conflicting requirements. To produce luminosity, the beams must be focused to nanometer size. To provide acceptable detector backgrounds, particles far from the beam core must be collimated. Unique beam diagnostics and instrumentation are required to monitor parameters of the colliding beams such as the energy spectrum and polarization. The detector and beamline components must be protected against errant beams. After collision, the beams must also be transported to the beam dumps safely and with acceptable losses. An international team is actively working on the design of the ILC Beam Delivery System in close collaboration. Details of the design, recent progress and remaining challenges will be summarized in this talk.  
WPAE011 Electrostatic Deflectors: New Design for High Intensity Beam Extraction septum, cathode, vacuum, cyclotron 1245
  • S. Passarello, G. Cuttone, G. Gallo, D. Garufi, A. Grmek, G. Manno, M. Re, E. ZappalÃ
    INFN/LNS, Catania
  Funding: INFN-LNS Catania

During the last years big effort was devoted to increase the electrostatic deflectors’ reliability; this provided a better comprehension of the most significant effects concerning their working conditions. Deflectors were checked during the normal operation of the K800 Superconducting Cyclotron (CS) at LNS, at the operating pressure of 1 10-6 mbar and a magnetic field of 3.5 T, the maximum cathodes voltage was –60kV (120 kV/cm). The maximum extracted beam power was, up to now, 100 W; it is foreseen to extract up to 500 W. In this contribution we present the study, the tests and the design of a new water cooled electrostatic deflector. Particular effort was applied to optimise the beam extraction efficiency, the thermal dissipation, and the mechanical stability. In particularly we implemented new insulators, new anodised aluminium cathodes, new Ta septum, new voltage and water feedthroughs and a more efficient cooling system. All these improvements were performed to increase the mean time between failure and the beam current stability.

WPAE019 How to Fill a Narrow 27 km Long Tube with a Huge Number of Accelerator Components? site, injection, laser, civil-engineering 1634
  • Y. Muttoni, J.-P. Corso, R. V. Valbuena
    CERN, Geneva
  As in large scale industrial projects, research projects, such as giant and complex particle accelerators, require intensive spatial integration studies using 3D CAD models, from the design to the installation phases. The future management of the LHC machine configuration during its operation will rely on the quality of the information, produced during these studies.This paper presents the powerful data-processing tools used in the project to ensure the spatial integration of several thousand different components in the limited space available.It describes how the documentation and information generated have been made available to a great number of users through a dedicated Web site and how installation nonconformities were handled.  
WPAE060 Programmable Power Supply for AC Switching Magnet of Proton Accelerator power-supply, proton, simulation, linac 3508
  • S.-H. Jeong, H.S. Han, Y.G. Jung, H.-S. Kang, H.-G. Lee, K.-H. Park, C. K. Ryu, H.S. Suh
    PAL, Pohang, Kyungbuk
  • H.H. Lee
    UU, Gyeongju
  Funding: Ministry of Science and Technology.

The 100-MeV PEFP proton linac has two proton beam extraction lines for user’ experiment. Each extraction line has 5 beamlines and has 5 Hz operating frequency. An AC switching magnet is used to distribute the proton beam to the 5 beamlines, An AC switching magnet is powered by PWM-controlled bipolar switching-mode converters. This converter is designed to operate at ±350A, 5 Hz programmable step output. The power supply is employed IGBT module and has controlled by a DSP (Digital Signal Process). This paper describes the design and test results of the power supply.

WPAP027 RF Electron Gun with Driven Plasma Cathode cathode, gun, plasma, electron 1991
  • I.V. Khodak, V.A. Kushnir
    NSC/KIPT, Kharkov
  It’s known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.  
WPAT028 High Power Ferrolelectric Switches at Centimeter and Millimeter Wavelengths resonance, coupling, vacuum, linear-collider 2056
  • V.P. Yakovlev, O.A. Nezhevenko
    Omega-P, Inc., New Haven, Connecticut
  • J.L. Hirshfield
    Yale University, Physics Department, New Haven, CT
  Funding: Research supported by the Department of Energy, Division of High Energy Physics.

High-power ultra-fast, electrically-controlled switches based on ferroelectric elements for accelerator applications in the centimeter and millimeter wavelength ranges are discussed. Examples of fast switches and phase shifters for pulse compression and power distribution systems at X– and Ka- band are presented. It is shown that such proposed switch designs based on modern ferroelectric materials allow the generation of pulsed power of hundreds of MW’s in both the centimeter and millimeter wave ranges.

WPAT045 A Non-Invasive Technique for Configuring Low Level RF Feedback Loops in PEP-II feedback, impedance, klystron, collider 2863
  • D. Teytelman
    SLAC, Menlo Park, California
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.

The RF system of the PEP-II collider uses two fast feedback loops around each klystron and set of cavities. These loops reduce the impedance of the fundamental mode of the accelerating cavities seen by the beam, and are necessary to reduce the growth rates of longitudinal modes within the RF system bandwidth. Operation of the accelerator at high beam currents is very sensitive to the configuration of the low-level RF feedback loops. There are 7 loop control parameters that strongly influence the stability of the feedback loops and the achieved level of longitudinal impedance reduction. Diagnostic techniques for the analysis of the RF feedback via closed-loop system transfer function measurements will be presented. The model is fit to the measured closed-loop transfer function data and the extracted parameters are then used to calculate optimal tuning and corrections to the loop control elements in the physical channel. These techniques allow fine-tuning of RF feedback with stored beam as well as diagnosis of mis-configured or malfunctioning elements of the system. Results from PEP-II operation will be presented to illustrate the techniques and their applications.

ROAC005 Present Status of J-PARC Ring RF Systems synchrotron, injection, power-supply, feedback 475
  • M. Yoshii, S. Anami, E. Ezura, K. Hara, Y. Hashimoto, C. Ohmori, A. Takagi, M. Toda
    KEK, Ibaraki
  • M. Nomura, A. Schnase, F. Tamura, M. Yamamoto
    JAERI, Ibaraki-ken
  The accelerator of the J-PARC complex consists of the 400 MeV (initially 181 MeV) linac, the rapid cycling 3 GeV Synchrotron and the 50 GeV main Synchrotron. To accelerate an ultra-high intense proton beam, the synchrotrons require a high field gradient rf system (~25kV/m). Alleviating space charge effects is a key issue for minimizing beam losses during a cycle. Longitudinal bunch manipulation is also considered as well as acceleration. Magnetic alloy loaded cavities are the most practical choice for the J-PARC. Such system provides high field gradient, and broadband behavior. It is a stable passive system without tuning control. Multi-tone signals can be fed into the same cavity for acceleration and bunch manipulation. However, the harmonics of circulating beam current within the cavity bandwidth must be taken into account. A feed-forward scheme is used for compensating the beam induced voltages. The low level rf system is fully digital to provide precise control. The specification is based on high reliability and reproductivity. The design consideration of the whole rf system will be described and the current status presented.  
ROAC010 Development of Ultra-Fast Silicon Switches for Active X-Band High Power RF Compression Systems simulation, power-supply, insertion, vacuum 701
  • J. Guo, S.G. Tantawi
    SLAC, Menlo Park, California
  Funding: DOE

In this paper, we present the recent results of our research on the high power ultra-fast silicon RF switches. This switch is composed of a group of PIN diodes on a high purity SOI (silicon on oxide) wafer. The wafer is inserted into a cylindrical waveguide under T·1001 mode, performing switching by injecting carriers into the bulk silicon. Our current design is using a CMOS compatible process and the fabrication is accomplished at SNF (Stanford Nanofabrication Facility). This design is able to achieve sub-100ns switching time, while the switching speed can be improved further with 3-D device structure and faster circuit. Power handling capacity of the switch is at the level of 10MW. The switch was designed for active X-band RF pulse compression systems - especially for NLC, but it is also possible to be modified for other applications and other frequencies such as L-band.

RPAE049 Revision of Booster to Storage Ring Transport Line Design and Injection Scheme for Top-Up Operation at NSRRC kicker, injection, booster, quadrupole 3085
  • M.-H. Wang, H.-P. Chang, J. Chen, J.-R. Chen, K.-T. Hsu, C.-C. Kuo, G.-H. Luo
    NSRRC, Hsinchu
  In order to help the operation of constant current, the optics of booster to storage ring transport line (BTS) design is reinvestigated. The initial twiss parameters are derived by measurement. The optics of the transport line is readjusted according to the measured initial beam parameters. The design of pulse width of the injection kicker is also changed from 1.2μsecond to 2.0μsecond. The injection scheme is reviewed and the effects of the kicker error on both injected beam and stored beam are investigated and shown in this report.  
RPAP008 The CBS–The Most Cost Effective and High Performance Carbon Beam Source Dedicated for a New Generation Cancer Therapy ion, electron, synchrotron, injection 1108
  • M. Kumada
    NIRS, Chiba-shi
  • B.I. Grishanov, E.B. Leivichev, V.V. Parkhomchuk, F.V. Podgorny, S. Rastigeev, V.B. Reva, A.N. Skrinsky, V.A. Vostrikov
    BINP SB RAS, Novosibirsk
  A Carbon ion beam is a superior tool to x-rays or a proton beam in both physical and biological doses in treating a cancer. A Carbon beam has an advantage in treating radiation resistant and deep-seated tumors. Its radiological effect is of a mitotic independent nature. These features improve hypofractionation, typically reducing the number of irradiations per patient from 35 to a few. It has been shown that a superior QOL(Quality Of Life) therapy is possible by a carbon beam.The only drawback is its high cost. Nevertheless, tens of Prefectures and organizations are eagerly considering the possibility of having a carbon ion therapy facility in Japan. Germany, Austria, Italy, China, Taiwan and Korea also desire to have one.A carbon beam accelerator of moderate cost is about 100 Million USD. With the "CBS" design philosophy, which will be described in this paper, the cost could be factor of 2 or 3 less, while improving its performance more than standard designs. Novel extraction techniques, a new approach to a high intensity beam, a new scanning method of a superμbeam and an extremely light weight carbon rotating gantry will be presented.This new CBS will have an impact on the medical accelerator community.  
RPAP017 Industrial Electron Accelerators Type ILU electron, vacuum, cathode, shielding 1572
  • V. Auslender, A.A. Bryazgin, V.G. Cheskidov, B.L. Faktorovich, V. Gorbunov, I.V. Gornakov, V.E. Nekhaev, A.D. Panfilov, A.V. Sidorov, V.O. Tkachenko, A.F.A. Tuvik, L.A. Voronin
    BINP SB RAS, Novosibirsk
  The report describes the electron accelerators of ILU series covering the energy range from 0.5 to 5 MeV with beam power up to 50 kW. The pulse linear accelerators type ILU are developed since 1970 in Budker institute of Nuclear Physics and are supplied to the industry. The ILU machines are purposed for wide application in various technological processes and designed for long continuous and round-the-clock work in industrial conditions. A principle of acceleration of electrons in the gap of HF resonator is used in the ILU machines. The HF resonator has toroidal form. The electron gun is placed in one of the protruding electrodes forming the accelerating gap of the resonator. The resonator is fed from HF autogenerator realized on the industrial triode, the feedback signal is given from the resonator. The absence of outer beam injection and usage of self-excited HF generator simplify the design of accelerator and ensure its reliable operation.  
RPAP023 RF-Based Accelerators for HEDP Research ion, linac, focusing, target 1829
  • J.W.  Staples, R. Keller, A. Sessler
    LBNL, Berkeley, California
  • W. Chou
    Fermilab, Batavia, Illinois
  • P.N. Ostroumov
    ANL, Argonne, Illinois
  Funding: This work sponsored by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

RPAP040 Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor ion, ion-source, diagnostics, plasma 2630
  • K. Shinto, S. Kitajima, M. Sasao, H. Sugawara, Takenaga, M. Takenaga, S. Takeuchi
    Graduate School of Engineering, Tohoku University, Sendai
  • O. Kaneko, M. Nishiura
    NIFS, Gifu
  • S. Kiyama
    AIST, Tsukuba
  • M. Wada
    Doshisha University, Graduate School of Engineering, Kyoto
  For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+ source, alkali metal gas cell for double charge exchange, a stigmatic 90 degree bending magnet as an ion separator, an accelerating tube and a free-flight tube to produce fast neutral He beam by autodetachment. The beam parameters of the He- beam are planed to be 150 keV of the beam energy and 10 uA of the beam current. A He+ beam of about 10 mA is extracted from the ion source and accelerated up to 15~25 keV for the effective charge exchange. Details of the design of the test stand and the brief result of the beam optics will be presented.

*M. Sasao et al., Proc. of PAC99, pp. 1306-1308. **M. Sasao et al., Rev. Sci. Instr. Vol.69, pp.1063-1065 (1998).

ROAB002 Advances of Transmission Line Kicker Magnets kicker, injection, impedance, coupling 235
  • L. Ducimetière
    CERN, Geneva
  Fast pulsed magnets or kickers are widely used in circular accelerators for injection, fast extraction and beam excitation. As from the early 60’s transmission line type kicker magnets have been employed to produce rectangular field pulses with good rise time. Over some 40 years this technology has evolved with the rising requirements. Whilst the necessary kick strength has increased with the particle beam energies the strive for efficiency has pushed developments towards lower impedance systems and/or short circuited magnets. The flat top ripple is constrained by the maximally tolerable beam oscillation. The beam intensity can impose a screening of the magnet yoke. The most advanced features implemented in recent transmission line kicker magnets are reviewed and illustrated with examples from different laboratories. Ongoing and potential future developments are briefly discussed.  
ROAB007 Pulsed Power Applications in High Intensity Proton Rings kicker, pulsed-power, impedance, proton 568
  • W. Zhang, J. Sandberg
    BNL, Upton, Long Island, New York
  • R.I. Cutler
    ORNL, Oak Ridge, Tennessee
  • L. Ducimetière, T. Fowler, V. Mertens
    CERN, Geneva
  • T. Kawakubo, Y. Shirakabe
    KEK, Ibaraki
  Funding: Work performed under the auspices of the U.S. Department of Energy.

The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

ROAB009 NuMI Proton Kicker Extraction System kicker, coupling, injection, magnet-design 692
  • C.C. Jensen, G. E. Krafczyk
    Fermilab, Batavia, Illinois
  Funding: Fermilab is operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy.

This system extracts up to 9.6 us of 120 GeV beam every 1.87 seconds for the NuMI beamline neutrino experiments. A pulse forming network consisting of two continuous wound coils and 68 capacitors was designed and built to drive three kicker magnets. The field stability requirement is better than ± 1% with a field rise time of 1.6 us. New kicker magnets were built based on the successful traveling wave magnets built for the Main Injector. Two of these magnets, which have a propagation time of 550 ns, are in series making the risetime of the pulser a serious constraint. A forced cooling system using Fluorinert® was designed for the magnet termination resistors to maintain the field flatness and amplitude stability. The system has been commissioned and early results will be presented.

RPPE002 Installation and Radiation Maintenance Scenario for J-PARC 50 GeV Synchrotron radiation, beam-losses, vacuum, shielding 835
  • M. Yoshioka, H. Kobayashi, T. Oogoe, Y. Takeuchi, Y. Watanabe
    KEK, Ibaraki
  • Y. Kuniyasu
    MELCO SC, Tsukuba
  • H. Oki, Y. Takiyama
  Funding: Ministry of Education, Culture, Science and Technology, Japan

J-PARC comprises a 400 MeV linac (181 MeV at the first stage), a 3 GeV rapid-cycling synchrotron and a 50 GeV synchrotron (Main Ring), which will provide high power proton beam to the material and life science facility, the neutrino facility and the nuclear and particle physics experimental hall. The installation of the accelerator components for the Main Ring will be started on mid. 2005 and the beam commissioning is scheduled in end of 2007. This paper describes the installation scenario of the accelerator components into the main ring tunnel and the development of radiation maintenance scenario for the beam injection and ejection systems.

RPPE016 Protection Level During Extraction, Transfer and Injection into the LHC injection, septum, simulation, kicker 1505
  • V. Kain, B. Goddard, R. Schmidt, J. Wenninger
    CERN, Geneva
  Failures during the LHC transfer and injection process cannot be excluded and beam loss with the foreseen intensities and energies, which are an order of magnitude above the damage limit, could cause serious equipment damage. Consequences of equipment failures such as kicker erratics, power converter faults, etc. are investigated by means of a Monte Carlo based on MAD-X tracking with a full aperture model of the transfer line and the injection region. Geometrical and optical mismatch, orbit tolerances, mechanical tolerances for settings of protection elements, power converter ripples, misalignment of elements, etc. are all taken into account. The required performance of the protection system is discussed. The overall protection level for the LHC and the transfer lines during injection is presented.  
RPPE048 Physical and Electromagnetic Properties of Customized Coatings for SNS Injection Ceramic Chambers and Extraction Ferrite Kickers kicker, SNS, cathode, vacuum 3028
  • H.-C. Hseuh, M. Blaskiewicz, P. He, Y.Y. Lee, C. Pai, D. Raparia, R.J. Todd, L. Wang, J. Wei, D. Weiss
    BNL, Upton, Long Island, New York
  • S. Henderson
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The inner surfaces of the 248 m SNS accumulator ring vacuum chambers are coated with ~100 nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. All the ring inner surfaces are made of stainless or inconel, except those of the injection and extraction kickers. Ceramic vacuum chambers are used for the 8 injection kickers to avoid shielding of a fast-changing kicker field and to reduce eddy current heating. The internal diameter was coated with Cu to reduce the beam coupling impedance and provide passage for beam image current, and a TiN overlayer to reduce SEY. The ferrite surfaces of the 14 extraction kicker modules were coated with TiN to reduce SEY. Customized masks were used to produce coating strips of 1 cm x 5 cm with 1 to 1.5 mm separation among the strips. The masks maximized the coated area to more than 80%, while minimizing the eddy current effect to the kicker rise time. The coating method, as well as the physical and electromagnetic properties of the coatings for both types of kickers will be summarized, with emphasis on the effect to the beam and the electron cloud buildup.

†Corresponding author email: hseuh@bnl.gov.

RPPE049 Summary on Titanium Nitride Coating of SNS Ring Vacuum Chambers cathode, kicker, injection, SNS 3088
  • R.J. Todd, P. He, H.-C. Hseuh, D. Weiss
    BNL, Upton, Long Island, New York
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The inner surfaces of the 248 m Spallation Neutron Source (SNS) accumulator ring vacuum chambers are coated with ~100 nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. There are approximately 100 chambers and kicker modules, some up to 5 m in length and 36 cm in diameter, coated with TiN. The coating is deposited by means of reactive DC magnetron sputtering using a cylindrical magnetron with internal permanent magnets. This cathode configuration generates a deposition rate sufficient to meet the required production schedule and produces stoichiometric films with good adhesion, low SEY and acceptable outgassing. Moreover, the cathode magnet configuration allows for simple changes in length and has been adapted to coat the wide variety of chambers and components contained within the arc, injection, extraction, collimation and RF regions. Chamber types, quantities and the cathode configurations used to coat them are presented herein. A brief summary of the salient coating properties is given including the interdependence of SEY as a function of surface roughness and its effect on outgassing. Limitations of this coating method are also discussed.

RPPP003 Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider optics, damping, linear-collider, collider 874
  • H. Hayano, S. Araki, H. Hayano, Y. Higashi, Y. Honda, K.-I. Kanazawa, K. Kubo, T. Kume, M. Kuriki, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, N. Toge, J.U. Urakawa, V.V. Vogel, H. Yamaoka, K. Yokoya
    KEK, Ibaraki
  • I.V. Agapov, G.A. Blair, G.E. Boorman, J. Carter, C.D. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • D.A.-K. Angal-Kalinin, R. Appleby, J.K. Jones, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade
    LAL, Orsay
  • K.L.F. Bane, A. Brachmann, T.M. Himel, T.W. Markiewicz, J. Nelson, N. Phinney, M.T.F. Pivi, T.O. Raubenheimer, M.C. Ross, R.E. Ruland, A. Seryi, C.M. Spencer, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • S.T. Boogert, A. Liapine, S. Malton
    UCL, London
  • H.-H. Braun, D. Schulte, F. Zimmermann
    CERN, Geneva
  • P. Burrows, G.B. Christian, S. Molloy, G.R. White
    Queen Mary University of London, London
  • J.Y. Choi, J.Y. Huang, H.-S. Kang, E.-S. Kim, S.H. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
  • S. Danagoulian
    North Carolina A&T State University, Greensboro, North Carolina
  • N. Delerue, D.F. Howell, A. Reichold, D. Urner
    OXFORDphysics, Oxford, Oxon
  • J. Gao, W. Liu, G. Pei, J.Q. Wang
    IHEP Beijing, Beijing
  • B.I. Grishanov, P.L. Logachev, F.V. Podgorny, V.I. Telnov
    BINP SB RAS, Novosibirsk
  • J.G. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita, T. Mihara
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • S. Mtingwa
    North Carolina University, Chapel Hill, North Carolina
  • O. Napoly, J. Payet
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • T.S. Sanuki, T.S. Suehara
    University of Tokyo, Tokyo
  • T. Takahashi
    Hiroshima University, Higashi-Hiroshima
  • E.T. Torrence
    University of Oregon, Eugene, Oregon
  • N.J. Walker
    DESY, Hamburg
  The realization of the International Linear Collider (ILC) will require the ability to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittancies are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 35nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.  
RPPP017 Compact Superconducting Final Focus Magnet Options for the ILC quadrupole, superconducting-magnet, septum, feedback 1569
  • B. Parker, M. Anerella, J. Escallier, M. Harrison, P. He, A.K. Jain, A. Marone, K.-C. Wu
    BNL, Upton, Long Island, New York
  • T.W. Markiewicz, T.V.M. Maruyama, Y. Nosochkov, A. Seryi
    SLAC, Menlo Park, California
  Funding: Work supported by the U.S. Department of Energy under contracts DE-AC-02-98-CH10886 and DE-AC02-76SF00515.

We present a compact superconducting final focus (FF) magnet system for the ILC based on recent BNL direct wind technology developments. Direct wind gives an integrated coil prestress solution for small transverse size coils. With beam crossing angles more than 15 mr, disrupted beam from the IP passes outside the coil while incoming beam is strongly focused. A superconducting FF magnet is adjustable to accommodate collision energy changes, i.e. energy scans and low energy calibration runs. A separate extraction line permits optimization of post IP beam diagnostics. Direct wind construction allows adding separate coils of arbitrary multipolarity (such as sextupole coils for local chromaticity correction). In our simplest coil geometry extracted beam sees significant fringe field. Since the fringe field affects the extracted beam, we also study advanced configurations that give either dramatic fringe field reduction (especially critical for gamma-gamma colliders) or useful quadrupole focusing on the outgoing beam channel. We present prototype coil winding test results and discuss our progress toward an integrated FF solution that addresses important machine detector interface issues.

RPPP023 A Compact Damping Ring Using RF Deflectors for the International Linear Collider damping, kicker, dynamic-aperture, quadrupole 1811
  • R.W. Helms, D. L. Rubin
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  Funding: NSF

Current specifications for the International Linear Collider call for bunch trains hundreds of kilometers in length. We describe a scheme for manipulating a compressed bunch train in the damping ring using RF deflectors and multiple transfer lines. The concept is demonstrated in the design of a 4 km damping ring that circulates 2800 bunches spaced 4 ns apart, and we show that injection and extraction of individual bunches is possible with conventional kickers requiring rise/fall times of only 16 ns. The performance and stability of the 4 km damping ring is evaluated and compared with existing machines.

RPPP030 Design of ILC Extraction Line for 20 mrad Crossing Angle luminosity, diagnostics, optics, beam-losses 2134
  • Y. Nosochkov, K. C. Moffeit, A. Seryi, M. Woods
    SLAC, Menlo Park, California
  • R. Arnold
    University of Massachusetts, Amherst
  • W.P. Oliver
    Tufts University, Medford, Massachusetts
  • B. Parker
    BNL, Upton, Long Island, New York
  • E.T. Torrence
    University of Oregon, Eugene, Oregon
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515.

One of the two ILC Interaction Regions will have a large horizontal crossing angle which would allow to extract the spent beams in a separate beam line. In this paper, the extraction line design for 20 mrad crossing angle is presented. This beam line transports the primary e+/e- and beamstrahlung photon beams from the IP to a common dump, and includes diagnostic section for energy and polarization measurements. The optics is designed for a large energy acceptance to minimize losses in the low energy tail of the disrupted beam. The extraction optics, diagnostic instrumentation and particle tracking simulations are described.

RPPP034 Multi-Stage Bunch Compressors for the International Linear Collider emittance, damping, linac, injection 2357
  • P. Tenenbaum, T.O. Raubenheimer
    SLAC, Menlo Park, California
  • A. Wolski
    LBNL, Berkeley, California
  We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed.  
RPPP049 Bunching for Shorter Damping Rings for the ILC damping, kicker, linac, positron 3052
  • D.V. Neuffer
    Fermilab, Batavia, Illinois
  A variant rearrangement of the bunch trains for the ILC that enables much shorter damping rings is presented. In a particular example the ~2280 bunches are regrouped into ~450 subtrains of five adjacent bunches. These subtrains are extracted from the damping rings at ~2.2 ms intervals, obtaining the 1ms macrobunch length of the baseline TESLA collider scenario. If the baseline damping rf frequency is 325 MHz and the kicker rise and fall times are ~20 ns, a ring circumference of ~4.5km is required. Variations of the scheme could easily reduce the circumference to ~3km, and faster kickers could reduce it even further.  
RPPT050 The Measurement of Tune and Phase Space at HLS lattice, betatron, storage-ring, pick-up 3114
  • Y.L. Yang, J.H. Liu, L. Liu, B. Sun, J.H. Wang, K. Zheng
    USTC/NSRL, Hefei, Anhui
  Tune and phase space online monitor at the electronic storage ring of Hefei Light Source (HLS) have been realized by using of turn-by-turn beam position data. In this paper, we have compared many methods to compute tune and discussed how to choose the best fitting method for our online tune computing. We can compute and display tune online, at the same time, beam tracks were obtained on the transverse phase space by using turn-by-turn beam position data at two differently-located beam-position-monitor electrodes. With these instruments we can precise and attractive study machine instabilities  
RPPT051 Electron Model of Linear-Field FFAG acceleration, resonance, electron, quadrupole 3173
  • S.R. Koscielniak
    TRIUMF, Vancouver
  • C. Johnstone
    Fermilab, Batavia, Illinois
  Funding: TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada.

A fixed-field alternating-gradient accelerator (FFAG) that employs only linear-field elements ushers in a new regime in accelerator design and dynamics. The linear-field machine has the ability to compact an unprecedented range in momenta within a small component aperture. With a tune variation which results from the natural chromaticity, the beam crosses many strong, uncorrec-table, betatron resonances during acceleration. Further, relativistic particles in this machine exhibit a quasi-parabolic time-of-flight that cannot be addressed with a fixed-frequency rf system. This leads to a new concept of bucketless acceleration within a rotation manifold. With a large energy jump per cell, there is possibly strong synchro-betatron coupling. A few-MeV electron model has been proposed to demonstrate the feasibility of these untested acceleration features and to investigate them at length under a wide range of operating conditions. This paper presents a lattice optimized for a 1.3 GHz rf, initial technology choices for the machine, and describes the range of experiments needed to characterize beam dynamics along with proposed instrumentation.

RPPT064 Holifield Radioactive Ion Beam Facility Development and Status target, ion, ion-source, light-ion 3641
  • A. Tatum, J.R. Beene
    ORNL, Oak Ridge, Tennessee
  Funding: Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility dedicated to nuclear structure, reactions, and nuclear astrophysics research with radioactive ion beams (RIBs) using the isotope separator on-line (ISOL) technique. An integrated strategic plan for physics, experimental systems, and RIB production facilities have been developed and implementation of the plan is under way. Specific research objectives are defined for studying the nature of nucleonic matter, the origin of elements, solar physics, and synthesis of heavy elements. Experimental systems upgrade plans include new detector arrays and beam lines, and expansion and upgrade of existing devices. A multifaceted facility expansion plan includes a $4.75M High Power Target Laboratory (HPTL), presently under construction, to provide a facility for testing new target materials, target geometries, ion sources, and beam preparation techniques. Additional planned upgrades include a second RIB production system (IRIS2), an external axial injection system for the present driver cyclotron, ORIC, and an additional driver accelerator for producing high-intensity neutron-rich beams.

ROPC003 RIKEN RI Beam Factory Project ion, cyclotron, heavy-ion, acceleration 320
  • Y. Yano
    RIKEN/RARF/CC, Saitama
  The world-top-class radioactive-isotope-beam (RIB) facility, which is called ?RI beam factory (RIBF)?, is under construction at RIKEN. This facility is based on the so-called ?in-flight RI beam separation? scheme. Late in 2006, a new high-power heavy-ion accelerator system consisting of a cascade of three ring cyclotrons with K=570 MeV (fixed frequency, fRC), 980 MeV (Intermediate stage, IRC) and 2500 MeV (superconducting, SRC), respectively, will be commissioned. This new accelerator system will boost energies of the output beams from the existing K540-MeV ring cyclotron up to 440 MeV/nucleon for light ions and 350 MeV/nucleon for very heavy ions. These energetic heavy-ion beams are converted into intense RI beams via the projectile fragmentation or in-flight fission of uranium ions by the superconducting isotope separator, BigRIPS, under construction. The combination of the SRC and BigRIPS will expand our nuclear world into presently unreachable region. Major experimental installations are under priority discussion as the second phase program. Construction of the second phase is expected to start in 2006.  
ROPC004 Recent Intensity Increase in the CERN Accelerator Chain beam-losses, acceleration, injection, booster 413
  • E.N. Shaposhnikova, G. Arduini, T. Bohl, M. Chanel, R. Garoby, S. Hancock, K. Hanke, T.P.R. Linnecar, E. Métral, R.R. Steerenberg, B. Vandorpe
    CERN, Geneva
  Future requests for protons from the physics community at CERN, especially after the start-up of the CNGS experiments in 2006, can only be satisfied by a substantial increase in the SPS beam intensity per pulse. In September 2004 a three weeks beam run was dedicated to high intensity; all accelerators in the chain were pushed to their limits to study intensity restrictions and find possible solutions. New record intensities were obtained in the accelerators of the PS & SPS Complex with this fixed-target type beam which is different from the nominal LHC beam. The challenges in producing this high-intensity beam are described together with the measures needed to make it fully operational.  
FPAE004 Optical Matching of Slowly Extracted Beam with Transport System at HIMAC simulation, emittance, optics, heavy-ion 910
  • T. Furukawa, K. Noda, E. Takada, M. Torikoshi, T.H. Uesugi, S. Yamada
    NIRS, Chiba-shi
  • T. Fujimoto, M. Katsumata, S. Shibuya, T. Shiraishi
    AEC, Chiba
  The optical matching between the ring and the transport line plays important role in order to control the beam size and profile after the transport. At HIMAC, thus, we have studied the optical matching of the slowly extracted beam. As a result, it was verified that the beam size of the slowly extracted beam were controlled owing to the optical matching. It was also found that small deviation of quadrupole strength in the ring brings orbit distortion at the transport system.  
FPAE006 Optimization of AGS Polarized Proton Operation with the Warm Helical Snake proton, resonance, dipole, simulation 1003
  • J. Takano, M. Okamura
    RIKEN, Saitama
  • L. Ahrens, M. Bai, K.A. Brown, C.J. Gardner, J. Glenn, H. Huang, A.U. Luccio, W.W. MacKay, T. Roser, S. Tepikian, N. Tsoupas
    BNL, Upton, Long Island, New York
  • T. Hattori
    RLNR, Tokyo
  Funding: US DOE and RIKEN Japan.

A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.

FPAE007 A Project of the 2.5 GeV Booster-Synchrotron in BINP booster, injection, synchrotron, quadrupole 1039
  • V.A. Kvardakov, V. Barbashin, V. Kiselev, E.V. Kremyanskaya, E. Levichev, S.I. Mishnev, V. Petrov, A.N. Skrinsky, V.V. Smaluk, I. Zemlyansky
    BINP SB RAS, Novosibirsk
  A project of the 2.5 GeV booster synchrotron to provide effective injection of electron and positron beams into VEPP-2000 and VEPP-4M storage rings, and for future facilities, is developing in BINP. The beams are injected to synchrotron at 510 MeV energy from a damping ring, which is the part of the new injection facility. In this report, the synchrotron parameters are presented, the basic systems are briefly described.  
FPAE014 Acceleration of Polarized Protons in the AGS with Two Helical Partial Snakes resonance, polarization, injection, dipole 1404
  • H. Huang, L. Ahrens, M. Bai, A. Bravar, K.A. Brown, G. Bunce, E.D. Courant, C.J. Gardner, J. Glenn, R.C. Gupta, A.U. Luccio, W.W. MacKay, V. Ptitsyn, T. Roser, S. Tepikian, N. Tsoupas, E. Willen, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York
  • F. Lin
    IUCF, Bloomington, Indiana
  • M. Okamura
    RIKEN/RARF/CC, Saitama
  • J. Takano
    RIKEN, Saitama
  • D.G. Underwood
    ANL, Argonne, Illinois
  • J. Wood
    UCLA, Los Angeles, California
  Funding: Work supported by U.S. DOE and RIKEN of Japan.

The RHIC spin program requires 2*1011 proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is not enough space in the ring to install a full snake to overcome the numerous depolarizing resonances. An ac dipole and a partial Siberian snake have been used to preserve beam polarization in the past. The correction with this scheme is not 100% since not all depolarizing resonances can be overcome. Recently, two helical snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

FPAE016 Spallation Neutron Source Ring - Design and Construction Summary collimation, injection, SNS, power-supply 1499
  • J. Wei
    BNL, Upton, Long Island, New York
  Funding: * SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

(J. Wei for the Spallation Neutron Source Collaboration) After six years, the construction of the Spallation Neutron Source (SNS) accumulator ring [1] and the transport lines is completed in March 2005. Designed to deliver 1.5 MW beam power (1.5 x 1014 protons of 1 GeV kinetic energy at a repetition rate of 60 Hz), stringent measures have been implemented in the fabrication, test, and assembly to ensure the quality of the accelerator systems. This paper summarizes the construction of the ring and transport systems with emphasis on the challenging technical issues and their solutions [2].

[1] J. Wei, et al, Phys. Rev. ST-AB, Vol. 3, 080101 (2000). [2] J. Wei, "Synchrotrons and Accumulators for High-Intensity Proton Beams", Rev. Mod. Phys., Vol. 75, 1383 – 1432 (2003).

FPAE022 Cycle-to-Cycle Extraction Synchronization of the Fermilab Booster for Multiple Batch Injection to the Main Injector booster, feedback, injection, acceleration 1802
  • R.M. Zwaska, S.E. Kopp
    The University of Texas at Austin, Austin, Texas
  • W. Pellico
    Fermilab, Batavia, Illinois
  We report on a system to ensure cycle-to-cycle synchronization of beam extraction from the Fermilab Booster accelerator to the Main Injector. Such synchronization is necessary for multiple batch operation of the Main Injector for the Run II upgrade of anti-proton production using slip-stacking in the Main Injector, and for the NuMI (Neutrinos at the Main Injector) neutrino beam. To perform this task, a system of fast measurement and feedback is used to control the longitudinal progress of the Booster beam throughout its acceleration period by manipulation of the transverse position maintained by the low-level radio frequency system.  
FPAE025 Study of Slow Beam Extraction Through the Third Order Resonance with Transverse Phase Space Manipulation by a Mono-Frequency RFKO betatron, emittance, electron, sextupole 1892
  • A. Miyamoto, H. Hama, F. Hinode, M. Kawai, K. Shinto, T. Tanaka
    LNS, Sendai
  An electron pulse-stretcher ring (STB ring) has a function which converts a pulse beam generated by RF linac into a quasi-continuous beam. Circulating beam in the ring is extracted by the third order resonance. Since there is no accelerating field in the ring, the beam approaches a transverse resonance condition due to synchrotron radiation loss with finite chromaticity. The extracted beam from the ring has some spread in time and space corresponding to injected beam from linac even if the injected beam is perfectly matched to the ring optics. However, the extracted beam emittance can be reduced by applying a phase space manipulation using an RF shaker. Under the influence of perturbation using an RF shaker driven by a mono-frequency, the betatron amplitude of circulating beam can be controlled in order to reduce the extracted beam emittance. The experimental results will be reported in this conference.  
FPAE026 Development of FFAG Accelerator at KEK acceleration, injection, septum, synchrotron 1943
  • Y. Yonemura, N. Ikeda, M. Matoba
    Kyushu University, Fukuoka
  • M. Aiba, S. Machida, Y. Mori, A. Muto, J. Nakano, C. Ohmori, K.O. Okabe, I. Sakai, Y. Sato, A. Takagi, T. Yokoi, M. Yoshii, Y. Yuasa
    KEK, Ibaraki
  • R. Taki
    GUAS/AS, Ibaraki
  • T. Uesugi
    NIRS, Chiba-shi
  • A. Yamazaki
    LNS, Sendai
  • M. Yoshimoto
    JAERI, Ibaraki-ken
  The 150MeV proton FFAG accelerator is constructed and a beam is extracted at the final energy. This is the prototype FFAG for various applications such as proton beam therapy. We are now in preparation for using an extracted beam in the practical applications.  
FPAE029 Setup and Performance of the RHIC Injector Accelerators for the 2005 Run with Copper Ions booster, injection, ion, emittance 2068
  • C.J. Gardner, L. Ahrens, J.G. Alessi, J. Benjamin, M. Blaskiewicz, J.M. Brennan, K.A. Brown, C. Carlson, J. DeLong, J. Glenn, T. Hayes, W.W. MacKay, G.J. Marr, J. Morris, T. Roser, F. Severino, K. Smith, D. Steski, N. Tsoupas, A. Zaltsman, K. Zeno
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U.S. Department of Energy.

Copper ions for the 2005 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators will be reviewed.

FPAE032 ORIC Beam Energy Increase cyclotron, septum, proton, ion 2257
  • M.L. Mallory, J.B. Ball, D. Dowling, E. D. H. Hudson, R. S. L. Lord, A. Tatum
    ORNL, Oak Ridge, Tennessee
  Funding: Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05=00OR 22725.

The detection of and solution to a beam interference problem in the Oak Ridge Isochronous Cyclotron (ORIC) extraction system has yielded a 20% increase in the proton beam energy. The beam from ORIC was designed to be extracted before the nu r equal one resonance. Most cyclotrons extract after the nu r equal one resonance, thus getting more usage of the magnetic field for energy acceleration. We have now determined that the electrostatic deflector septum interferes with the last accelerated orbit in ORIC, with the highest extraction efficiency obtained near the maximum nu r value. This nu r provides a rotation in the betatron oscillation amplitude that is about the same length as the electrostatic septum thus allowing the beam to jump over the interference problem with the septum. With a thinned septum we were able to tune the beam through the nu r equal one resonance and achieve a 20% increase in beam energy. This nu r greater than one extraction method may be desirable for very high field cyclotrons since it provides ten times the clearance at extraction compared to dee voltage gain, thus allowing the possibility of utilizing a magnetic extractor.

FPAE045 Design of the PEFP MEBT proton, quadrupole, rfq, linac 2881
  • J.-H. Jang, Y.-S. Cho, Y.-H. Kim, H.-J. Kwon
    KAERI, Daejon
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

A MEBT system of the PEFP(Proton Engineering Frontier Project) has to be installed after the 20MeV DTL where the beam will be supplied to the user group through a beam extraction system. Until now we don't have a plan to put in some matching devices between the RFQ and 20MeV DTL except using the four quadrupole magnets in the first DTL tank as transverse matching tools. The MEBT plays the key role to match the 20MeV output beam into the next accelerator in the longitudinal direction as well as transverse one. This report shows the basic concept and the design status of the system.

FPAE066 The IFUSP Microtron New Configuration microtron, booster, simulation, injection 3703
  • M.L. Lopes, M.N. Martins, P.B. Rios, J. Takahashi
    USP/LAL, Bairro Butantan
  Funding: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq.

In this work we present a new design for the IFUSP main microtron accelerator. The new configuration improves the maximum output energy and eases the operation of the machine. The accelerator will be able to deliver 38 MeV after 43 turns. The input energy was reduced from 4.9 to 2.5 MeV, so that the first microtron stage, the booster, could be eliminated, reducing the number of synchronous stages and easing the operation. We present results for the energy, energy gain and phase slip per turn, and the beam ellipses. We also discuss the design of the insertion and extraction lines.

FPAE075 Radiation Damage to the Elements of the SIS300 Dipoles ion, dipole, radiation, simulation 3943
  • E. Mustafin, J. Kaugerts, G. Moritz, G. Walter
    GSI, Darmstadt
  • L.N. Latysheva, N. Sobolevskiy
    RAS/INR, Moscow
  Funding: Supported by the grant of the GSI-INTAS Project #03-54-3588.

Radiation damage to various elements of the cosine-theta type dipoles of the SIS300 synchrotron of the FAIR Project was calculated. Among the elements under consideration were the superconducting cable, insulating materials, and high-current by-pass protection diodes. The Monte-Carlo particle transport codes MARS and SHIELD were used to simulate propagation of the lost ions and protons, together with the products of nuclear interactions in the material of the elements. It was found that the lifetime of the protection diodes under irradiation is a more restrictive limit for the tolerable level of beam losses than the occurrence of magnet quenches.

FPAT021 Experience with Kicker Beam Coupling Reduction Techniques kicker, impedance, simulation, vacuum 1742
  • E.H.R. Gaxiola, J. Bertin, F. Caspers, L. Ducimetière, T. Kroyer
    CERN, Geneva
  SPS beam impedance is still one of the worries for operation with nominal LHC beam over longer periods once the final configuration will be installed in 2006. Several CERN SPS kickers suffer from significant beam induced ferrite heating. In specific cases, for instance beam scrubbing, the temperature of certain ferrite yokes went beyond the Curie point. Several retrofit impedance reduction techniques have been investigated theoretically and with practical tests. We report on experience gained during the 2004 SPS operation with restively coated ceramic inserts in terms of kicker heating, pulse rise time, operating voltage, and vacuum behavior. For another technique using interleaved metallic strips we observed significant improvements in bench measurements. Advantages and drawbacks of both methods and potential combinations of them are discussed and simulation as well as measured data are shown. Prospects for further improvements beyond 2006 are briefly outlined.  
FPAT022 Performance of the CERN SPS Fast Extraction for the CNGS Facility kicker, damping, feedback, betatron 1757
  • E.H.R. Gaxiola, G. Arduini, W. Höfle, F. Roncarolo, E. Vogel, E. Vossenberg
    CERN, Geneva
  The SPS LSS4 fast extraction system will serve both the anti-clockwise ring of the LHC and the long baseline neutrino (CNGS) facility. For the latter two extractions spaced by 50 ms, each affecting half of the ring, are foreseen. During the shutdown 2003-2004 the performance of the fast extraction kickers was improved in order to match more closely the specifications for the kicker pulse shape required for the CNGS and LHC extractions. The rise and fall times were significantly reduced, as well as the post-pulse kick ripple. However, the latter remains outside specifications and oscillations are induced in the leading bunches of the batch remaining in the machine at the moment of the first extraction. While further improving the characteristics of the kicker pulse shape, the possibility of damping the beam oscillations using the transverse feedback system has been explored. We report on the recent pulse form improvements and results of beam tests.  
FPAT032 NuMI Proton Kicker Extraction Magnet Termination Resistor System kicker, impedance, radiation, proton 2224
  • S.R. Reeves, C.C. Jensen
    Fermilab, Batavia, Illinois
  Funding: Fermilab is operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy.

The temperature stability of the kicker magnet termination resistor assembly directly affects the field flatness and amplitude stability of the kick. Comprehensive thermal enhancements were made to the existing Main Injector resistor assembly design to satisfy NuMI performance specifications. Additionally, a fluid-processing system utilizing Fluorinert® FC-77 high-voltage dielectric was built to precisely control the setpoint temperature of the resistor assembly from 70 to 120F, required to maintain constant resistance during changing operational modes. The Fluorinert® must be continually processed to remove hazardous breakdown products caused by radiation exposure to prevent chemical attack of system components. Design details of the termination resistor assembly and Fluorinert® processing system are described. Early performance results will be presented.

FPAT059 Event Driven Automatic State Modification of BNL's Booster for NASA Space Radiation Laboratory Solor Particle Simulator booster, optics, ion, radiation 3447
  • K.A. Brown, S. Binello, M. Harvey, J. Morris, A. Rusek, N. Tsoupas
    BNL, Upton, Long Island, New York
  Funding: Work performed under Contract #DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy.

The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will desribe the system and present results of beam tests.

FPAT060 An FPGA-Based Quench Detection and Protection System for Superconducting Accelerator Magnets superconducting-magnet, power-supply, quadrupole, interaction-region 3502
  • R. H. Carcagno, SF. Feher, M.J. Lamm, A. Makulski, R. Nehring, D.F. Orris, Y.M.P. Pischalnikov, M. Tartaglia
    Fermilab, Batavia, Illinois
  A new quench detection and protection system for superconducting accelerator magnets was developed at the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commerically available, integrated hardware and software components. It provides most of the functionality of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and has a more powerful user interface and analysis tools. First applications of the new system will be for testing corrector coil packages. In this paper we describe the new system and present results of testing LHC Interaction Region Quadrupole (IRQ) correctors.  
FPAT066 The SNS Ring LLRF Control System SNS, feedback, proton, accumulation 3697
  • S. Peng
    ORNL, Oak Ridge, Tennessee
  • L.T. Hoff, K. Smith
    BNL, Upton, Long Island, New York
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a collaboration of six U.S. National Laboratories: ANL, BNL, JLab, LANL, LBNL, and ORNL.

The low-level RF control system for the SNS Ring differs considerably from that for the Linac. To accommodate requirements for higher data throughput and improved performance the system is based on a PCI Digital Signal Processor (DSP). In accordance with SNS standards, a VME-based PowerPC© is used, but advantage is taken of the on-board PMC slot which houses a Bittware© Hammerhead© PMC card with four AD-21162 DSPs.The EPICS system handles system configuration and data traffic while the DSP performs the low-level RF controls. Protocol and software to support both the PowerPC and the DSP have been developed. This paper presents the system design and initial testing experience.

FPAT069 A Control System for the Duke Booster Synchrotron booster, storage-ring, power-supply, injection 3792
  • S.M. Hartman, S. Mikhailov, Y.K. Wu
    DU/FEL, Durham, North Carolina
  Funding: This work is supported by U.S. Department of Energy grant DE-FG02-01ER41175 and by U.S. AFOSR MFEL grant F49620-001-0370.

The Duke FEL is developing a booster synchrotron to provide full energy injection into the Duke electron storage ring. In this paper, we describe the development of the control system for the booster. Requirements include the competing needs of simple and reliable turn-key operation for the machine as a booster; and the sophistication and flexibility of operation of the machine as a storage ring for commissioning, machine studies and as a light source. To simplify operations and machine studies, the high level controls will present the system in terms of the physics quantities of the accelerator, allowing a tight integration between the physics model and the low level hardware control, as we have previously implemented for Duke storage ring.