A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    


Paper Title Other Keywords Page
MOPC005 Chromaticity and Impedance Effect on the Transverse Motion of Longitudinal Bunch Slices in the Tevatron simulation, synchrotron, damping, beam-losses 455
  • V.H. Ranjbar
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy.

The Transverse turn-by-turn evolution of a bunch slice are examined considering chromatic and impedence effects. A quasi-analytical approximation is developed using perturbative expansion of Hills equation with a wake field. This approximation is compared to turn-by-turn measurements taken in the Tevatron and from this linear and second order chomaticity, and Impedence are calculated as well as beam stability thresholds.

MPPE073 Effects of the Passive Harmonic Cavity on the Beam Bunch radiation, synchrotron, beam-loading, electron 3904
  • L.-H. Chang, M.-C. Lin, C. Wang, M.-S. Yeh
    NSRRC, Hsinchu
  In this paper, we present a computer tracking code, which can investigate the bunch length, energy spread and the critical current of Robinson instability under the influence of the passive harmonic cavity. The effects of the radiation damping, quantum excitation and the beam loading of the harmonic cavity are included in the computation. The calculated result shows that the beam has a constant energy spread and blows up as the beam current increases from below to over the threshold current of the Robinson instability. It also indicates that the shunt impedance of the harmonic cavity is critical for whether the harmonic cavity can reach the designed goal, a stable and lengthening beam at the design beam current.  
MPPP002 Stochastic Cooling Electrodes for a Wide Velocity Range in the CR kicker, pick-up, coupling, antiproton 799
  • F. Nolden, B.  Franzke, C. Peschke
    GSI, Darmstadt
  • M.C. Balk, R. Schuhmann, T. Weiland
    TEMF, Darmstadt
  • F. Caspers, L. Thorndahl
    CERN, Geneva
  The CR storage ring is part of the FAIR project at GSI. It serves as a first stage of stochastic cooling for secondary rare isotopes at v/c=0.83 as well as for antiprotons at v/c=0.97. To avoid the installation of dedicated structures for each kind of beam, electrodes have been developed which are usable for both beams. They are based on slotline structures mounted perpendicular to the beam. They are shorted at the ends, and their signal is extracted by two striplines on the rear side, placed a quarter wavelength away from the open ends. The width of the structures can be adjusted to the initial betatron oscillation amplitudes. Their length is 24 mm, and the signal from many of these structures mounted in a row can be combined. The signal combination can be matched to the different beam velocities. The paper shows results from field calculations, prototype tests, and estimates of the signal combination efficiency. The beam impedance of the novel structures is compared with the superelectrodes applied in the former CERN AC and with the slow-wave structures currently installed in the FNAL Debuncher.  
MPPP005 A New Kicker for the TLS Longitudinal Feedback System kicker, coupling, storage-ring, feedback 949
  • W.K. Lau, L.-H. Chang, C.W. Chen, H.Y. Chen, P.J. Chou, K.-T. Hsu, S.Y. Hsu, T.-T. Yang
    NSRRC, Hsinchu
  • M. Dehler
    PSI, Villigen
  A new longitudinal kicker that is modified from the Swiss Light Source (SLS) design to fit into the TLS storage ring. It will be served as the actuator in the longitudinal multi-bunch feedback control loop. Beam coupling impedance has been calculated by Gdfidl with a PC cluster. Previous to the installation of this new kicker, bench measurement has been performed in the laboratory to characterize this new kicker. The experimental setups for bandwidth and coaxial wire measurement of longitudinal coupling impedance and their corresponding test results will be reported. As a cross check, bead-pull measurement has also been done to verify the beam coupling measurement by coaxial wire method at the kicker center frequency. Longitudinal field profile of the accelerating mode along the beam path has also been mapped. High order cavity modes of the kicker have also been observed and their effects on the beam are evaluated.  
MPPP007 Operating Performance of the Low Group Delay Woofer Channel in PEP-II feedback, damping, collider, controls 1069
  • D. Teytelman, J.D. Fox, D. Van Winkle
    SLAC, Menlo Park, California
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.

In PEP-II collider a dedicated low group-delay processing channel has been developed in order to provide high damping rates necessary to control the fast-growing longitudinal eigenmodes driven by the fundamental impedances of the RF cavities. A description of the digital processing channel operating at 9.81 MHz and capable of supporting finite impulse response (FIR) controllers with up to 32 taps will be presented. A prototype system has been successfully commissioned in the High-Energy Ring (HER) in May 2004. Operating experiences with the prototype and the newly determined limits on achievable longitudinal damping will be discussed and illustrated with experimental data.

MPPP011 Fermilab Recycler Damper Requirements and Design kicker, betatron, damping, feedback 1239
  • J.L. Crisp, M. Hu, V. Tupikov
    Fermilab, Batavia, Illinois
  The design of transverse dampers for the Fermilab Recycler storage ring is described. An observed instability and analysis of subsequent measurements are used to identify the requirements. The digital approach being mplemented is presented.  
MPPP021 Evolution of the Machine Impedance following the ESRF Upgrade to Low-Gap NEG Coated Aluminium Chambers single-bunch, vacuum, simulation, insertion 1712
  • T.F. Günzel, L. Farvacque, T. Perron, J.-L. Revol
    ESRF, Grenoble
  The installation of 5 meter-long, 8 mm vertical aperture insertion device (ID) aluminum chambers coated in house with non evaporable getter material is progressing at a rate of one chamber per shutdown. The evolution of the impedance with associated consequences on instability thresholds, following the installation of a number of low aperture insertion device chambers will be reported. In particular the impedance measurement using the local bump method allowed the identification and the replacement of the chambers of highest impedance. Correlation with the evolution of the single bunch instability thresholds and the theoretical prediction will be discussed. It could be observed that change in vertical aperture has a sensible effect on the single bunch horizontal threshold.  
MPPP022 The Impedance of Selected Components of the Synchrotron Light Source Petra III vacuum, synchrotron, dipole, insertion 1751
  • R. Wanzenberg, K. Balewski
    DESY, Hamburg
  At DESY it is planned to convert the PETRA ring into a synchrotron radiation facility, called PETRA III, in 2007. Since the impedance of the machine determines its performance with respect to coupled and single bunch instabilities it is important to know the wakefields and higher order modes (HOMs) of the different components of the vacuum system. Numerical calculations of wakefields and HOMs are presented for several components of PETRA III, including the rf-cavities, shielded bellows and tapered vacuum chamber transitions. The impedance of these components is presented in terms of the loss and kick parameters.  
MPPP023 Numerical Calculation of Coupling Impedances for Kicker Modules coupling, kicker, simulation, extraction 1820
  • B. Doliwa, H. De Gersem, T. Weiland
    TEMF, Darmstadt
  Funding: Work supported in part by DFG under contract GraKo 410 and GSI, Darmstadt.

Maintaining the impedance budget is an important task in the planning of any new accelerator facility. While estimates from analytical computations and measurements play a central role in doing so, numerical calculations have become an important alternative today. On the basis of Finite Integration Theory, we have developed a simulation tool for the direct computation of coupling impedances in the frequency domain. After discussing the special features of our code as compared to commercial programs, we present our results for cases where coupling impedances have been obtained from another source, e.g. experiment. In particular, we consider the longitudinal and transverse impedances of the SNS extraction kicker and present investigations related to the injection/extraction system of the future heavy-ion synchrotron at GSI.

MPPP024 Recent Observations on a Horizontal Instability in the DAFNE Positron Ring feedback, electron, positron, damping 1841
  • A. Drago, M. Zobov
    INFN/LNF, Frascati (Roma)
  • D. Teytelman
    SLAC, Menlo Park, California
  A strong horizontal instability limits the maximum positron current storable in the DAFNE Phi-Factory. A powerful feedback system makes it possible to store and collide up to 1250 mA of positron current in 105 bunches. Nevertheless, a much higher current (> 2.4A) has been successfully stored in the twin electron ring. Measurements have been carried out to understand the positron current limit and to characterize the behavior of the horizontal instability at high current with different bunch patterns. Grow/damp turn-by-turn data obtained by turning off the horizontal feedback have been acquired and analyzed. Spectral analysis and grow rates of the instability are shown. In particular, the -1 mode has strong evidence and fast grow rate. Its grow rate behavior is analyzed at different beam currents and bunch patterns.  
MPPP025 The Impedance of the Ceramic Chamber in J-PARC space-charge, multipole, electron 1898
  • Y. Shobuda
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y.H. Chin, K. Ohmi, T. Toyama
    KEK, Ibaraki
  The ceramic chamber is adopted at the RCS (rapid cycling synchrotron) in J-PARC. The copper stripes are on the outer surface of the chamber in order to shield the electro-magnetic field produced by the beam. The inner surface of the chamber is coated by TiN to suppress the secondary electron emission. In this paper, we calculate the strength of electro-magnetic field produced by the beam and evaluate the impedance of this ceramic chamber.  
MPPP026 Development of Longitudinal Coupling Impedance Measurement Platform for BEPCII coupling, insertion, storage-ring, controls 1940
  • G. Huang, W.-H. Huang, S. Zheng
    Tsinghua University, Beijing
  • J.Q. Wang, D.M. Zhou
    IHEP Beijing, Beijing
  Funding: Supported by NSFC 10375035.

A coaxial line impedance measurement platform is developed for BEPCII. A pair of gradual change impedance matching section is designed and fabricated by numerical control milling machine. The special designed RF connector is applied to strengthen the inner conductor. The algorithm of TRL calibration is applied in the system to avoid the usage of a reference pipe for each device under test. The measurement is accomplished by a VNA under the control of the software written in LabView.

MPPP029 The Code MBIM2 for the Calculation of the Arbitrary Multibunch Beams Longitudinal Coherent Oscillations Stability (in the Case of Long Bunches) synchrotron, multipole, damping, single-bunch 2110
  • N. Mityanina
    BINP SB RAS, Novosibirsk
  The presented code is an advanced version of the code MBIM1 also presented at this conference and dealing with short bunches. The code MBIM2 analyses the stability of longitudinal coherent motion for arbitrary multibunch beams in storage rings without limitations on the bunch length or RF cavities wavelength, which is especially important for higher types of multipole synchrotron oscillations. The code implies also the possibility to consider coupling between different types of multipole synchrotron oscillations and Landau damping. In considered approach, the problem reduces to the eigenvalue problem for the linear algebraic equation system. The order of this system is equal to the number of bunches times number of multipole types times approximation order wich appears to be small (a few units) in most cases.  
MPPP030 Analytic Evaluation of the Series over Azimuthal Harmonics at the Analysis of the Stability of Bunched Beams Coherent Oscillations multipole, synchrotron, coupling, RF-structure 2149
  • N. Mityanina
    BINP SB RAS, Novosibirsk
  At the analysis of the stability of coherent motion of multibunch beams including counterrotating beams) one should deal with expressions analogous to the effective impedance - the serieses over harmonics of revolution frequency of the RF structure impedance at the side frequencies to these harmonics, with certain factors depending on the harmonic number, such as the bunch line density spectrum, the phase factor and the factor describing the order of multipole synchrotron oscillations. In this paper, we present the method for analytic summation of these serieses for resonant impedance, which seems not to be made before in the common case including all mentioned factors. Comparison of obtained expressions with formulae used in previous papers shows the limits of validity of simpler approaches. The obtained expressions are used in the computer codes MBIM1 and MBIM2 presented at this conference, which calculate coherent oscillations stability for arbitrary multibunch beams.  
MPPP034 Collective Effects in the TLS Storage Ring after the Installation of Superconducting RF Cavity storage-ring, vacuum, feedback, collective-effects 2360
  • P.J. Chou, J. Chen, K.-T. Hsu, C.-C. Kuo, C. Wang, M.-H. Wang
    NSRRC, Hsinchu
  A superconducting rf cavity designed by Cornell University was installed in the storage ring at Taiwan Light Source in December of 2004. The purpose of rf system upgrade is to achieve a stored beam current of 400 mA without collective instabilities caused by high-order-modes of rf cavities. Beam measurements related to collective effects are performed. Results are compared with those measured prior to the rf system upgrade. Theoretical studies on collective effects after the rf upgrade are also presented.  
MPPP037 A Model Study of Transverse Mode Coupling Instability at NSLS-II. vacuum, resonance, undulator, damping 2500
  • A. Blednykh, J.-M. Wang
    BNL, Upton, Long Island, New York
  The vertical impedances of the preliminary designs of NSLS-II MGUs are calculated by means of GdfidL code. The TMCI thresholds corresponding to these impedances are estimated using an analytically solvable model.  
MPPP039 Impedance of Finite Length Resistor acceleration, electromagnetic-fields 2595
  • S. Krinsky, B. Podobedov
    BNL, Upton, Long Island, New York
  • R.L. Gluckstern
    University of Maryland, College Park, Maryland
  Funding: Department of Energy contract DE-AC02-98CH10886.

We determine the impedance of a cylindrical metal tube (resistor) of radius a and length g, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the behavior of the impedance at high frequency (k>>1/a). In the equilibrium regime, ka2<<g, the impedance per unit length is accurately described by the well-known result for an infinite length resistive tube. In the transient regime, ka2>>g, we derive an analytic expression for the impedance and compute the short-range wakefield.

MPPP041 Transverse Instability of a Rectangular Bunch synchrotron, space-charge, emittance, damping 2657
  • V. Balbekov
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-76CH03000.

Some results of theoretical investigations of transverse dipole instability of a rectangular bunch are reported in this paper. Such a form is characteristic of the bunch in a rectangular potential wall which is created by a barrier-shaped acceleration field. Similar regime is a major one for accumulating and cooling of antiproton beams in the Fermilab Recycler Ring. In this case, the known theory of transverse instability of a bunched beam is inapplicable directly both because of "unusual" form of phase trajectories and strong dependence of synchrotron frequency on energy. A series of equations, adequately describing the instability is derived in the paper. Exact analytical solution is obtained for space charge dominated impedance, and some approximate methods are proposed for arbitrary impedance. The theory is applied to the Fermilab Recycler Ring including a numerical simulation.

MPPP044 Impedance Calculation for Ferrite Inserts space-charge, resonance, beam-losses, vacuum 2818
  • S.-Y. Lee, S. Breitzmann
    IUCF, Bloomington, Indiana
  • K.Y. Ng
    Fermilab, Batavia, Illinois
  Funding: NSF PHY-0244793; DOE DE-FG02-92ER40747.

Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. We study the narrowband longitudinal impedance of these ferrite inserts. We find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. We also provide a receipe for truly passive space charge impedance compensation and, at the same time, avoiding the narrowband microwave instabilities.

MPPP051 Transverse Impedance of Two-Layer Tube vacuum, multipole, dipole, undulator 3138
  • M. Ivanyan, A.V. Tsakanian
    CANDLE, Yerevan
  The exact analytical expressions for the multipole longitudinaland transverse impedances of two-layer tube with finite wall thickness areobtained. The numerical examples for the impedances of the vacuum chamberwith laminated walls are given.  
MPPP052 Longitudinal Impedance Measurements of the Components for the BEPCII kicker, storage-ring, vacuum, injection 3212
  • D.M. Zhou, W. Kang, J.Q. Wang, L.J. Zhou
    IHEP Beijing, Beijing
  • G. Huang
    TUB, Beijing
  Funding: Work supported by the National Natural Science Foundation of China (NSFC) under contract No.10375076.

A longitudinal impedance measurement system was established for the BEPCII. The measurements, done in the frequency domain, are based on the coaxial wire method using HP/Agilent 8720ES network analyzer. The applications of the TRL calibration technique and absorbers were investigated to find a good approach for impedance measurements. The impedance, larger than 20 Ohm and below 6 GHz, can be measured using the TRL calibration technique in the experiment. And better measurement results were got using the reference pipes with the absorbers. So, this system satisfies the requirements of the BEPCII. This paper gives a review on this impedance measurements system for the BEPCII. The measurements results show that there are no serious impedance problems for BEPCII bellows and injection kickers, agreeing well with the numerical simulations. More improvements on this system are in progress.

MPPT005 A New Slotted-Pipe Kicker Magnet for BEPCII Storage Ring kicker, vacuum, injection, storage-ring 955
  • W. Kang, Y. Hao
    IHEP Beijing, Beijing
  The requirements of BEPCII injecting kicker magnets are so severe. In the range of ?x=±20mm, the field uniformity is required to be better than ±1% in the central plane, ±2% in the y=5mm plane and ±5% in y=10mm plane, while the effective beam impedance of each kicker magnet must be lower than 0.025O. For the large aperture of vacuum chamber and the fast risetime of kicker magnetic field, the two schemes of low impedance kicker magnets used in other accelerator labs in the world are not adaptive to the BEPCII storage ring. A new slotted-pipe kicker magnet, which uses the ceramic bars with metal coating films as the image current conducting paths, proposed in this article solves the difficult problems of BEPCII kicker magnet design. And the successful construction of a prototype has demonstrated that the new scheme of kicker magnets is viable and the structure design of the kicker magnet is reasonable.  
MPPT006 The Extraction Kicker System of the RCS in J-PARC kicker, vacuum, extraction, proton 1009
  • J. Kamiya, T. Takayanagi
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • T. Kawakubo, S. Murasugi, E. Nakamura
    KEK, Ibaraki
  The kicker magnet plays a role of extracting the proton beam which is accelerated up to 3GeV by the Rapid Cycling Synchrotron in J-PARC. The kicker system is required the fast rise time of the magnetic field because the interval between the beam bunches is only 349nsec. The kicker magnet is the distributed type. The findings in our measurements revealed that the delay time in the magnet is about 180nsec. The power supply has the pulse forming network system, which consists of co-axial cables whose characteristic impedance is 10 ohm. We accomplished the current rise time of 80 nsec quickness. Therefore we had a good prospect of the fast rise time of the magnetic field. The characteristic impedance of the kicker magnet was also measured. The value was close to 10 ohm. There will be no large mismatching between the power supply and the magnet. This pulse magnet is installed in the vacuum chamber to prevent the electric discharge. Outgas from the components has the adverse effects the vacuum in the accelerator. We have reduced the outgas rate from the ferrite core and aluminum plates which construct the magnet by backing them at appropriate temperature.  
MPPT014 Design Concept for AGS Injection Kicker Upgrade to 2 GeV kicker, proton, injection, simulation 1380
  • G.D. Wait, R.B. Armenta, M.J. Barnes, E.W. Blackmore, O. Hadary
    TRIUMF, Vancouver
  • L. Ahrens, C.J. Gardner, W. Zhang
    BNL, Upton, Long Island, New York
  Funding: Canada Foundation for Innovation, U.S. Dept of Energy.

The present AGS injection kickers at A5 location were designed for 1.5 GeV proton injection. Recent high intensity runs have pushed the transfer kinetic energy to 1.94 GeV, but with an imperfect matching in transverse phase space. Space charge forces result in both fast and slow beam size growth and beam loss as the size exceeds the AGS aperture. A proposed increase in the AGS injection energy to 2 GeV with adequate kick strength would greatly reduce the beam losses making it possible to increase the intensity from 70 TP (70 * 1012 protons/s) to 100 TP. R&D studies are being undertaken by TRIUMF, in collaboration with BNL, to design two new kicker magnets for the AGS A10 location to provide an additional kick of 1.5 mrad to 2 GeV protons. TRIUMF has proposed a design for a 12.5 W transmission line kicker magnet with rise and fall times of 100 ns, 3% to 97% and field uniformity of ±3% over 90% of the aperture, powered by matched 12.5 W pulse-forming lines. This paper describes the present status of a prototype design including the results of detailed 2D and 3D electromagnetic modeling of a transmission line kicker magnet and PSpice time domain analysis of the magnetic kick strength.

MPPT026 Insertion Device Upgrade Plans at the NSLS undulator, insertion, insertion-device, vacuum 1949
  • T. Tanabe, A. Blednykh, D.A. Harder, M. Lehecka, G. Rakowsky, J. Skaritka
    BNL, Upton, Long Island, New York
  This paper describes plans to upgrade insertion devices at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, U.S.A. The aging wiggler (W80) at X25 is being replaced by a 1 m long in-vacuum mini-gap undulator (MGU-18) optimized for a dedicated macromolecular crystallography program. A new, 1/3 m long, in-vacuum undulator (MGU-13.5), will be installed between a pair of RF cavities at X9, and will serve a new beamline dedicated for small angle x-ray scattering (SAXS). Both MGU’s will have provision for cryocooling the NdFeB hybrid arrays to 150K to raise the field and K-value and to obtain better spectral coverage. Design issues of the devices and other considerations, especially magnetic measurement methods in low temperature will be discussed.  
TOAC001 Overview of Impedance and Single-Beam Instability Mechanisms coupling, synchrotron, damping, octupole 14
  • E. Métral
    CERN, Geneva
  Single-bunch and coupled-bunch instability mechanisms will be reviewed in both longitudinal and transverse planes. The resistive-wall impedance will be discussed in the particular case of the LHC collimators, which reveal a new physical regime. Stabilization by Landau damping, feedbacks, or linear coupling between the transverse planes will also be treated. Benchmarking of analytical predictions with some instability codes will be shown as well as several experimental results.  
TOAC002 Beam Loading Compensation for Super B-Factories feedback, beam-loading, synchrotron, storage-ring 154
  • D. Teytelman
    SLAC, Menlo Park, California
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.

Super B-factory designs under consideration expect to reach luminosities in the 1035 - 1036 range. The dramatic luminosity increase relative to the existing B-factories is achieved, in part, by raising the beam currents stored in the electron and positron rings. For such machines to succeed it is necessary to consider in the RF system design not only the gap voltage and beam power, but also the beam loading effects. The main effects are the synchronous phase transients due to the uneven ring filling patterns and the longitudinal coupled-bunch instabilities driven by the fundamental impedance of the RF cavities. A systematic approach to predicting such effects and for optimizing the RF system design will be presented. Existing as well as promising new techniques for reducing the effects of heavy beam loading will be described and illustrated with examples from the existing storage rings including PEP-II, KEKB, and DAFNE.

TPAE012 Rectangular Diamond-Lined Accelerator Structure acceleration, vacuum, quadrupole, linear-collider 1282
  • C. Wang, V.P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  • J.L. Hirshfield
    Yale University, Physics Department, New Haven, CT
  Funding: Work supported by U.S. DOE.

For high frequency accelerators with normal-conducting structures studied by the NLC/GLC collaboration and the CLIC group, rf breakdown is the main gradient limitation. In this paper, a Ka-band rectangular dielectric-lined structure is described as an attempt to increase accelerating gradient beyond the limits suitable for metallic structures. The structure is based on amorphous dielectrics that are known to exhibit high breakdown limits (~ GV/m). An example is artificial diamond that has already been successfully used on an industrial basis for large-diameter output windows of high power gyrotrons, and is produced industrially in increasing quantities. Artificial diamond has low loss tangent, moderate dielectric constant and high breakdown limit of ~2 GV/m. In the proposed structure diamond-slabs are employed to support high-gradient acceleration fields. Interposition of vacuum gaps between the dielectric slabs and the side walls is shown to reduce Ohmic losses substantially, leading to an increase in shunt impedance and reduced susceptibility to rf breakdown and fatigue on metal surfaces.

TPAE017 Progress on High Power Tests of Dielectric-Loaded Accelerating Structures vacuum, acceleration, simulation, plasma 1566
  • C.-J. Jing, W. Gai, R. Konecny, J.G. Power
    ANL, Argonne, Illinois
  • S.H. Gold
    NRL, Washington, DC
  • A.K. Kinkead
  Funding: This work was supported by the U.S. Dept of Energy, High Energy Physics Division and Office of Naval Research.

This paper presents a progress report on a series of high-power rf experiments that were carried out to evaluate the potential of the Dielectric-Loaded Accelerating (DLA) structure for high-gradient accelerator operation. Since the last PAC meeting in 2003, we have tested DLA structures loaded with two different ceramic materials: Alumina (Al2O3) and MCT (MgxCa1-xTiO3). The alumina-based DLA experiments have concentrated on the effects of multipactor in the structures under high-power operation, and its suppression using TiN coatings, while the MCT experiments have investigated the dielectric joint breakdown observed in the structures due to local field enhancement. In both cases, physical models have been set up, and the potential engineering solutions are being investigated.

TPAE018 34.272 GHz Multilayered Dielectric-Loaded Accelerating Structure acceleration, vacuum 1592
  • C.-J. Jing, W. Gai, W. Liu, J.G. Power
    ANL, Argonne, Illinois
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  A scheme of multilayered structure design of 34.272 GHz with alternating dielectric of 38 and 9.7 is presented. The multilayer structure employs the Bragg Fiber concepts where the dielectric layers are used to create multiple reflections in order to confine the accelerating fields, thus greatly reducing the power loss of from external metal wall. The structure will operate at TM03 mode instead of normal TM01 mode. Numerical examples for the 2- and 4-layers 34.272 GHz multilayered structures are presented with detailed analysis of TM (acceleration) modes and HEM (parasitic) modes. We found that the power attenuation of the proposed structure can be lowered from ~ 20 dB/m for a single layer structure to ~ 6 dB/m for 2 -4 layered structure in at 34.272 GHz. We will also present a coupler design for the multilayered dielectric-loaded accelerating structure, which has capability of mode selection and high efficient RF transmission.  
TPAE026 Wakefields in a Dielectric Tube with Frequency Dependent Dielectric Constant resonance, plasma, laser, damping 1916
  • R. Siemann, A. Chao
    SLAC, Menlo Park, California
  Funding: U.S. Department of Energy.

Dielectric laser driven accelerators could operate at a fundamental mode frequency where consideration must be given to the frequency dependence of the dielectric constant when calculating wakefields. Wakefields are calculated for a frequency dependence that arises from a single atomic resonance. Causality is considered, and the effect on the short range wakefield is calculated.

TPAP007 LHC Collimation: Design and Results from Prototyping and Beam Tests collimation, proton, insertion, beam-losses 1078
  • R.W. Assmann, O. Aberle, G. Arduini, A. Bertarelli, H.-H. Braun, M. Brugger, H. Burkhardt, S. Calatroni, F. Caspers, E. Chiaveri, A. Dallocchio, B. Dehning, A. Ferrari, M. Gasior, A. Grudiev, E.B. Holzer, J.-B. Jeanneret, J.M. Jimenez, Y. Kadi, R. Losito, M. Magistris, A.M. Masi, M. Mayer, E. Métral, R. Perret, C. Rathjen, S. Redaelli, G. Robert-Demolaize, S. Roesler, M. Santana-Leitner, D. Schulte, P. Sievers, E. Tsoulou, H. Vincke, V. Vlachoudis, J. Wenninger
    CERN, Geneva
  • I. Baishev, I.L. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
  • G. Spiezia
    Naples University Federico II, Science and Technology Pole, Napoli
  The problem of collimation and beam cleaning concerns one of the most challenging aspects of the LHC project. A collimation system must be designed, built, installed and commissioned with parameters that extend the present state-of-the-art by 2-3 orders of magnitude. Problems include robustness, cleaning efficiency, impedance and operational aspects. A strong design effort has been performed at CERN over the last two years. The system design has now been finalized for the two cleaning insertions. The adopted phased approach is described and the expected collimation performance is discussed. In parallel robust and precisely controllable collimators have been designed. Several LHC prototype collimators have been built and tested with the highest beam intensities that are presently available at CERN. The successful beam tests are presented, including beam-based setup procedures, a 2 MJ robustness test and measurements of the collimator-induced impedance. Finally, an outlook is presented on the challenges that are ahead in the coming years.  
TPAP008 Measurements of the LHC Collimator Impedance with Beam in the SPS betatron, pick-up, collimation, vacuum 1132
  • H. Burkhardt, G. Arduini, R.W. Assmann, F. Caspers, M. Gasior, A. Grudiev, O.R. Jones, T. Kroyer, E. Métral, S. Redaelli, G. Robert-Demolaize, F. Roncarolo, D. Schulte, R.J. Steinhagen, J. Wenninger, F. Zimmermann
    CERN, Geneva
  The transverse impedance of the LHC collimators will likely dominate the overall transverse impedance in the LHC at high energies and potentially limit the maximum intensity. A prototype collimator was recently tested in the SPS. Small, but significant tune shifts depending on the collimator position have been observed using different independent high resolution tune measurement methods. In addition trapped modes predicted from numerical simulation at the ends of the collimator jaws have been identified by bench measurement techniques as well as with the beam. We present a description of the measurements and an analysis of the results.  
TPAP020 Tests of a Roman Pot Prototype for the TOTEM Experiment insertion, coupling, vacuum, scattering 1701
  • M. Deile, E. Alagoz, G.M. Anelli, G.A. Antchev, M. Ayache, F. Caspers, E. Dimovasili, R. Dinapoli, F.D. Drouhin, K. Eggert, L. Escourrou, O. Fochler, K. Gill, R. Grabit, F. Haug, P. Jarron, J. Kaplon, T. Kroyer, T. Luntama, D. Macina, E. Mattelon, L. Mirabito, H. Niewiadomski, E.P. Noschis, M. Oriunno, A. Park, A.-L. Perrot, O. Pirotte, J.M. Quetsch, F. Regnier, G. Ruggiero, S. Saramad, P. Siegrist, W. Snoeys, T. Souissi, R. Szczygiel, J. Troska, F. Vasey, A. Verdier
    CERN, Geneva
  • V. Avati, M. Järvinen, M. Kalliokoski, J. Kalliopuska, K. Kurvinen, R. Lauhakangas, F. Oljemark, R. Orava, V. Palmieri, H. Saarikko, A. Soininen, K. Österberg
    Helsinki University, Department of Physics, University of Helsinki
  • V. Berardi, M.G. Catanesi, E. Radicioni
    INFN-Bari, Bari
  • V. Boccone, M. Bozzo, A. Buzzo, S. Cuneo, F. Ferro, M. Macri, S. Minutoli, A. Morelli, P. Musico, M. Negri, A. Santroni, G. Sette, A. Sobol
    INFN Genova, Genova
  • C. Da Vià, J. Hasi, A. Kok, S. Watts
    Brunel University, Middlesex
  • J. Kasper, V. Kundrât, M. V. Lokajicek, J. Smotlacha
    FZU, Prague
  The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC.* TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 σ + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.

TOTEM, Technical Design Report, CERN-LHCC-2004-002.

TPAT011 Impedance Analysis of Longitudinal Bunch Shape Measurements at PLS undulator, damping, single-bunch, insertion
  • I. Hwang, M. Yoon
    POSTECH, Pohang, Kyungbuk
  • Y.J. Han, E.-S. Kim
    PAL, Pohang, Kyungbuk
  We measured the longitudinal bunch shape by streak camera at 2.5 GeV Pohang Light Source. The impedances estimated by a series R+L model indicate a resistance R= 960 ohm, an inductance L= 80 nH and a longitudinal impedance Z/n= 0.53 ohm. The scaling law for the bunch lengthenig is expressed as I0.22. The effects of insertion device in the ring on the ring impedance, particularly the vertical height of in-vacuum undulator are also presented.  
TPAT017 Transverse Impedance of Elliptical Tapers vacuum, synchrotron, resonance, undulator 1535
  • B. Podobedov, S. Krinsky
    BNL, Upton, Long Island, New York
  Funding: Work supported by the U.S. DOE.

The geometric impedance of small-gap undulator chambers is of paramount importance for modern light sources because it may drive transverse single bunch instabilities. Analytical expressions are derived for the transverse impedance assuming a slowly tapered vacuum chamber with a confocal elliptical cross-section. The analytical results are confirmed by numerical simulations with the GdfidL Electromagnetic Field simulator and they yield the correct asymptotic limits for both round and flat chambers.

TPAT026 Synergia: An Advanced Object-Oriented Framework for Beam Dynamics Simultation simulation, background, collective-effects, hadron 1925
  • D.R. Dechow, P. Stoltz
    Tech-X, Boulder, Colorado
  • J.F. Amundson, P. Spentzouris
    Fermilab, Batavia, Illinois
  Synergia is a 3-D, parallel, particle-in-cell beam dynamics simulation toolkit. At heart of the software development effort is the integration of two extant object-oriented accelerator modeling frameworks–Impact written in Fortran 90 and mxyptlk written in C++–so that they may be steered by a third, a more flexible human interface framework, written in Python. Recent efforts are focused on the refactoring of the Impact-Fortran 90 codes in order to expose more loosely-coupled interfaces to the Python interface framework.  
TPAT032 Transverse Stability Studies of the SNS Ring space-charge, SNS, extraction, injection 2254
  • J.A. Holmes, V.V. Danilov
    ORNL, Oak Ridge, Tennessee
  • L.K. Jain
    UW/Physics, Waterloo, Ontario
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

Detailed studies of the transverse stability of the SNS ring have been carried out for realistic injection scenarios. For coasting beam models and single harmonic impedances, analytic and computational results including phase slip, chromaticity, and space charge are in excellent agreement. For the dominant extraction kicker impedance and bunched beams resulting from injection, computationally determined stability thresholds are significantly higher than for coasting beams. At this time, we have no analytic model to treat the bunched beam case, but we present a formulation that provides an approach to this problem.

TPPP019 Collective Effects in Lepton Ring of eRHIC electron, lepton, ion, positron 1628
  • D. Wang, M. Farkhondeh, C. Tschalaer, F. Wang, A. Zolfaghari, T. Zwart, J. van der Laan
    MIT, Middleton, Massachusetts
  • M. Blaskiewicz, Y. Luo, L. Wang
    BNL, Upton, Long Island, New York
  Funding: Department of Energy.

The eRHIC is a new generation lepton-hadron collider undergoing design studies by a collaboration of BNL, MIT, DESY and BINP. The collider complex will consist of a hadron machine that is mainly the existing RHIC with necessary upgrades, and a new lepton machine that can provide intense, highly polarized electron and positron beams at energy of 5-10 GeV. The ring-ring option of eRHIC is to build a 5-10 GeV electron ring with a injector chain. In this paper the beam lifetime of lepton beams is calculated.

TPPP030 Damping Higher Order Modes in the PEP-II B-Factory Vertex Bellows damping, positron, vacuum, higher-order-mode 2131
  • S.P. Weathersby, J. Langton, A. Novokhatski, J. Seeman
    SLAC, Menlo Park, California
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC03-76SF00515.

Higher stored currents and shorter bunch lengths are requirements for increasing luminosity in colliding storage rings. As a result, more HOM power is generated in the IP region. This HOM power propagates to sensitive components causing undesirable heating, thus becoming a limiting issue for the PEP-II B-factory. HOM field penetration through RF shielding fingers has been shown to cause heating in bellows structures. To overcome these limitations, a proposal to incorporate ceramic absorbers within the bellows cavity to damp these modes is presented. Results show that the majority of modes of interest are damped, the effectiveness depending on geometrical considerations. An optimal configuration is presented for the PEP-II B-factory IR bellows component utilizing commercial grade ceramics with consideration for heat transfer requirements.

TPPP031 A Proposal for a New HOM Absorber in a Straight Section of the PEP-II Low Energy Ring quadrupole, dipole, damping, scattering 2173
  • S.P. Weathersby, M. Kosovsky, N. Kurita, A. Novokhatski, J. Seeman
    SLAC, Menlo Park, California
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC03-76SF00515.

Attainment of high luminosity in storage ring colliders necessitates increasing stored currents and reducing bunch lengths. Consequently, intense beam fields will scatter more power into higher order modes from beam line sources such as collimators, masks and tapers. This power penetrates into sensitive components such as a bellows, causing undesirable heating and limits machine performance. To overcome this limitation we propose incorporating ceramic absorbers in the vicinity of the bellows to damp beam induced modes while preserving a matched impedance to the beam. This is accomplished with an absorber configuration which damps TE dipole and quadrupole traveling waves while preserving TM monopole propagation. A scattering parameter analysis is presented utilizing properties of commercial grade ceramics and indicates a feasible solution.

TPPT003 Development of a Normal Conducting CH-DTL linac, proton, diagnostics, injection 883
  • G. Clemente, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt-am-Main
  • L. Groening
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
  Funding: GSI, EU (CARE, contract number RII3-CT-2003-506395).

The normal conducting "Crossbar H-Type" (CH) accelerating structure is a good candidate for pulsed, high intensity linac application, covering the energy range from 3 to 100 MeV. H Mode cavities are outstanding in the low-beta range with respect to shunt impedance, high acceleration fields, and compact design, That's why we propose to base the 70 ma, 70 MeV, 352 MHz proton linan for GSI FAIR project on that structure. The actual design consists of 11 CH-DTL's for a total length of around 25 m. Latest results from beam dynamics optimisation will be discussed. Moreover, this paper describes the CH-DTL cavity design with enphasis on the optimisation with MacroWave Studio (single cell cross section, as well as multi cell cavity simulation), and on the achieved progress in the development of mechanical design concepts. A stainless steel multicell model cavity is presently fabricated by our institute in collaboration with GSI, in order to investigate manufacturing and assembly details. Based on this experience, the design of a CH prototipe power cavity will be optimised.

TPPT005 Dual Harmonic Operation with Broadband MA Cavities in J-PARC RCS acceleration, linac, vacuum, injection 931
  • M. Yamamoto, M. Nomura, A. Schnase, F. Tamura
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Anami, E. Ezura, K. Hara, Y. Hashimoto, C. Ohmori, A. Takagi, M. Yoshii
    KEK, Ibaraki
  In the J-PARC RCS RF system, the fundamental rf acceleration voltage and the 2nd higher harmonic one are applied to each cavity. This is possible, because the magnetic alloy loaded cavities have a broadband characteristic and require no resonant frequency tuning. The tube amplifier provides both rf components. We calculate the operation of the tube under the condition of the dual harmonic, the non-pure resistive load and the class AB push-pull mode.  
TPPT008 New Design of Crab Cavity for SuperKEKB coupling, damping, polarization, feedback 1129
  • K. Akai, Y. Morita
    KEK, Ibaraki
  Crab-crossing scheme has been adopted as a baseline design for SuperKEKB, which is planned as an upgrade of KEKB. For the design of crab cavities for SuperKEKB, a very high beam current of 10A with a short bunch length of 3mm must be taken into account. Much heavier damping of any parasitic mode as well as smaller loss factor are required, compared with those of KEKB crab cavities. We propose new design of crab cavities for SuperKEKB. It has a high kick voltage, sufficiently low coupling impedance to any parasitic modes including the fundamental mode, and a considerably low loss factor. The new crab cavity meets the requirements for SuperKEKB.  
TPPT016 Development of Co-Based Amorphous Core for Untuned Broadband RF Cavity acceleration, radiation, medical-accelerators 1511
  • T. Misu, M. Kanazawa, A. Sugiura, S. Yamada
    NIRS, Chiba-shi
  • K. Katsuki, K. S. Sato
    Toshiba, Yokohama
  We have developed a co-based amorphous core as a new magnetic-alloy (MA) core for the loaded RF cavity. Because of its permeability found to be approximately twice as high as that of FINEMET, this MA core is an excellent candidate for constructing a compact broadband RF cavity with less power consumption. In this report, we present our recent studies of the co-based amorphous core’s physical properties, performance, and development.  
TPPT028 Design of a New Main Injector Cavity for the Fermilab Proton Driver Era proton, simulation, coupling, acceleration 2015
  • V. Wu, A.Z. Chen, Z. Qian, D. Wildman
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U.S. Department of Energy under contract DE-AC02-76CH03000.

In the design report of the Fermilab Proton Driver [1],* the Main Injector (MI) needs to be upgraded to a 2 MW machine. For the Main Injector radiofrequency (rf) upgrade, R&D efforts are launched to design and build a new rf system. This paper presents the new cavity design study for the rf system. The cavity is simulated with the design code Mafia [2].**

**Proton Driver Study II, FERMILAB-TM-2169, May 2002, edited by G.W. Foster, W. Chou and E. Malamud. **Computer Simulation Technology, MAFIA 4, December 1996.

TPPT030 RF, Thermal and Structural Analysis of the 201.25 MHz Muon Ionization Cooling Cavity vacuum, factory, collider 2119
  • S.P. Virostek, D. Li
    LBNL, Berkeley, California
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC03-76SF00098.

A finite element analysis has been carried out to characterize the RF, thermal and structural behavior of the prototype 201.25 MHz cavity for a muon ionization cooling channel. A single ANSYS model has been developed to perform all of the calculations in a multi-step process. The high-gradient closed-cell cavity is being designed and fabricated for the MUCOOL and MICE (international Muon Ionization Cooling Experiment) experiments. The 1200 mm diameter cavity is constructed of 6 mm thick copper sheet and incorporates a rounded pillbox-like profile with an open beam iris terminated by 420 mm diameter, 0.38 mm thick curved beryllium foils. Tuning is accomplished through elastic deformation of the cavity, and cooling is provided by external water passages. Details of the analysis methodology will be presented including a description of the ANSYS macro that computes the heat loads from the RF solution and applies them directly to the thermal model. The process and results of a calculation to determine the resulting frequency shift due to thermal and structural distortion of the cavity will be presented as well.

TPPT043 The Studies of Hybrid Dielectric-Iris-Loaded Accelerating Structure acceleration, synchrotron, synchrotron-radiation, simulation 2747
  • C.-F. Wu, S. Dong, H. Lin
    USTC/NSRL, Hefei, Anhui
  Funding: This work is supported by the National Natural Science Foundation of China(No.10375060,10205014) and the Project of Knowledge Innovation Program of the Chinese Academy of Sciences.

The dispersion property and the propagation characteristics of the accelerating mode (TM01 mode) and higher-order-modes about a new hybrid dielectric-iris-loaded accelerating structure have been analysed and discussed by the field matching method. Mafia code has been used to calculate the RF properties versus the geometric parameters and dielectric permittivity for the X-band (f=9.37GHz) hybrid dielectric-iris-loaded traveling accelerating structure. Some model cavities have been developed, and experimental investigations have been carried on. The above results will provided some beneficial datum for the design and manufacture of X-band hybrid dielectric-iris-loaded traveling-wave accelerating structure.

TPPT049 Design and Cold Model Test of 500MHz Damped Cavity for ASP Storage Ring RF System damping, coupling, synchrotron, storage-ring 3076
  • J. Watanabe, K. Nakayama, K. S. Sato, H. Suzuki
    Toshiba, Yokohama
  • M. Izawa
    KEK, Ibaraki
  • A. Jackson, G. LeBlanc, K. Zingre
    ASP, Clayton, Victoria
  • T. Koseki
    RIKEN/RARF/CC, Saitama
  • N. Nakamura, H. Sakai, H. Takaki
    ISSP/SRL, Chiba
  TOSHIBA is constructing the storage ring RF system for the Australian Synchrotron Project(ASP). Two pairs of the 500MHz Higher Order Mode(HOM) damped cavities will be applied for this system. The cavities are modified KEK-PF type with silicon-carbide(SiC) microwave absorber and added three HOM anttenas for damping the longitudinal HOM impedance less than 20kOhm/GHz to meet requirement of ASP specification. The shunt impedance has been improved more than 5% in comparison with the original design by reducing the beam bore diameter without degrading HOM damping capability. The design of the cavity and the test results of an Al cold model are described.  
TPPT081 Fabrication and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade Prototype Cryomodule Renascence damping, coupling, dipole, simulation 4081
  • C.E. Reece, E. Daly, S. Manning, R. Manus, S. Morgan, J.P. Ozelis, L. Turlington
    Jefferson Lab, Newport News, Virginia
  Funding: This manuscript has been authorized by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

Twelve seven-cell niobium cavities for the CEBAF 12 GeV upgrade prototype cryomodule Renascence have been fabricated at JLab and tested individually. This set includes four of the "Low Loss" (LL) design and eight of the "High Gradient" (HG) design. The fabrication strategy was an efficient mix of batch job-shop component machining and in-house EBW, chemistry, and final-step machining to meet mechanical tolerances. Process highlights will be presented. The cavities have been tested at 2.07 K, the intended CEBAF operating temperature. Performance exceeded the tentative design requirement of 19.2 MV/m cw with less than 31 W dynamic heat dissipation. These results, as well as the HOM damping performance will be presented.

TPPT086 Elliptical Cavity Shape Optimization for Acceleration and HOM Damping laser, damping, resonance, single-bunch 4191
  • H. Wang, R.A. Rimmer, G. Wu
    Jefferson Lab, Newport News, Virginia
  Funding: Supported by the Office of Naval Research, the Joint Technology Office, the Commonwealth of Virginia, the Air Force Research Laboratory, and by DOE Contract DE-AC05-84ER40150.

A normal design process for a superconducting cavity shape is to maximize the R/Q (shunt impedance/intrinsic quality factor) and geometry factor G for a given RF field limit of Bpeak/Eacc or Epeak/Eacc. For the application of an Ampere-class, high current energy recovery linac or storage ring, heavy HOM damping is required. This paper reports on a survey of single cell shapes developed for multi-cell cavities for different projects. Using a set of normalized parameters, we compare the designs for different frequencies and ß structures for the fundamental mode. Using dispersion curve (frequency verse phase advance) calculated by MAFIA for a single cell, we explore further how to optimize the cavity shape to avoid a light cone line crossing at the dangerous resonance frequencies determined by the beam bunch structure or the dangerous (trapped or high R/Q) modes with a low group velocity. We expect such a formulation to inform our development of a 5-cell, optimized cavity shape, with good real estate accelerating gradient and strong HOM damping waveguide structure for the JLab 1MW ERL-FEL project.

WPAE064 "Fast-Slow" Beam Chopping for Next Generation High Power Proton Drivers proton, linac, Spallation-Neutron-Source, beam-losses 3635
  • M.A. Clarke-Gayther
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  Funding: Work supported by CCLRC/RAL/ASTeC and by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

A description is given of two "state of the art" high voltage pulse generator systems, designed to address the requirements of a fast beam chopping scheme for next generation high power proton drivers.[1] Measurements of output waveform and timing stability, for fast transition short duration, and slower transition long duration pulse generators, are presented.

[1]M. A. Clarke-Gayther, "A Fast Beam Chopper for Next Generation High Power Proton Drivers," Proc. of the ninth European Particle Accelerator Conference (EPAC), Lucerne, Switzerland, 5-9 July, 2004, p. 1449-145.

WPAE065 Jefferson Lab's Trim Card II power-supply, diagnostics, feedback, controls 3670
  • T.L. Allison, H. Higgins, E. Martin, W. Merz, S. Philip
    Jefferson Lab, Newport News, Virginia
  Funding: This work was supported by DOE contract DE-AC05-84ER40150 Modification No. M175, under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility.

Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) uses Trim Card I power supplies to drive approximately 1900 correction magnets. These trim cards have had a long and illustrious service record. However, some of the employed technology is now obsolete, making it difficult to maintain the system and retain adequate spares. The Trim Card II is being developed to act as a transparent replacement for its aging predecessor. A modular approach has been taken in its development to facilitate the substitution of sections for future improvements and maintenance. The resulting design has been divided into a motherboard and 7 daughter cards which has also allowed for parallel development. The Trim Card II utilizes modern technologies such as a Field Programmable Gate Array (FPGA) and a microprocessor to embed trim card controls and diagnostics. These reprogrammable devices also provide the versatility to incorporate future requirements.

WPAE075 Compact Digital High Voltage Charger feedback, power-supply, controls, synchrotron 3964
  • G. Li, Y.G. Zhou
    USTC/NSRL, Hefei, Anhui
  The operation of classical resonant circuit developed for the pulse energizing is investigated. The HV pulse or generator is very compact by a soft switching circuit made up of IGBT working at over 30 kHZ. The frequencies of macro pulses andμpulses can be arbitrarily tuned below resonant frequency to digitalize the HV pulse power. Theμpulses can also be connected by filter circuit to get the HVDC power. The circuit topology is given and its novel control logic is analyzed by flowchart. The circuit is part of a system consisting of a AC or DC LV power supply, a pulse transformer, the pulse generator implemented by LV capacitor and leakage inductance of the transformer, a HV DC or pulse power supply and the charged HV capacitor of the modulators.  
WPAT003 Glycol-Substitute for High Power RF Water Loads resonance, klystron 841
  • M. Ebert, F.-R. Ullrich
    DESY, Hamburg
  In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant features of this substitute were investigated and tested. The glycol coolant of all rf systems at DESY was substituted. The results of the investigations and tests are presented.  
WPAT010 RF Dielectric Properties of SiC Ceramics and their Application to Design of HOM Absorbers 1195
  • Y. Takeuchi, T. Abe, T. Kageyama, H. Sakai
    KEK, Ibaraki
  The KEKB ARES cavity is equipped with two types of HOM absorbers, which are made of different commercial products of the alpha-type SiC ceramics. Their dielectric responses to the RF frequency show the dielectric relaxation properties. Those properties can be clearly explained by the polycrystal structure model with electrically conductive grains and non-conductive grain boundaries. In this article, the RF dielectric properties of the SiC ceramics are discussed together with the application to HOM absorbers.  
WPAT011 Application of TRL Calibration in Longitudinal Coupling Impedance Measurement Platform for BEPCII coupling, vacuum, insertion, feedback 1225
  • G. Huang, W.-H. Huang, S. Zheng
    Tsinghua University, Beijing
  • D.M. Zhou
    IHEP Beijing, Beijing
  Funding: Supported by NSFC 10375035.

TRL calibration is one of the standard calibration methods for RF measurement. Applying the TRL calibration method into the longitudinal coupling impedance platform makes it possible to eliminate the error matrix of the matching section and the RF connector. By using TRL calibration in the platform, the reference pipe of each device under test no longer required. The formula of the calibration is discussed in this paper and the software based on it is introduced.

WPAT017 Commissioning of the New RF System with the HOM Damped RF Cavity storage-ring, vacuum, damping, higher-order-mode 1555
  • G.Y. Kurkin, V.S. Arbuzov, A. Bushuev, N. Gavrilov, E.I. Gorniker, E. Kenjebulatov, M.A. Kholopov, A.A. Kondakov, Ya.G. Kruchkov, S.A. Krutikhin, I.V. Kuptsov, L.A. Mironenko, N. Mityanina, S.V. Motygin, V.N. Osipov, V. Petrov, A.M. Pilan, A.M. Popov, E. Rotov, I. Sedlyarov, A.G. Tribendis, V. Volkov
    BINP SB RAS, Novosibirsk
  • S. Mikhailov, P.W. Wallace, P. Wang
    DU/FEL, Durham, North Carolina
  A new 178 MHz RF system has been commissioned at Duke Storage Ring. It consists of a 140 kW tetrode transmitter, a high order modes (HOM) damped RF cavity and the necessary frequency and voltage control electronics. The cavity walls are made of copper-on-stainless steel bimetal (8 mm Cu, 7 mm SS). The cavity has a larger beam pipe opening (700 mm in diameter) in the down-stream side, which allows the HOM propagating out of the cavity and being absorbed by the ceramic loads. The design details and the commissioning results are presented in this paper.  
WPAT018 The LEIR RF System ion, resonance, coupling, acceleration 1619
  • M.M. Paoluzzi, R. Garoby, M. Haase, P. Maesen, C. Rossi
    CERN, Geneva
  • C. Ohmori
    KEK, Ibaraki
  The lead-lead physics program of LHC relies on major changes of the CERN ion injector chain. In this framework, the conversion of LEAR (low energy antiproton ring) into the Low Energy Ion Ring (LEIR) is central and implies a new accelerating system covering a wide frequency range (0.35 - 5 MHz,) with a moderate voltage (4 kV). For this purpose two new wide-bandwidth cavities, loaded with FinemetŪ magnetic alloy cores, have been built in collaboration with KEK. Two 60 kW RF power amplifiers have also been built and the RF systems are now installed in the LEIR ring. They individually cover the whole frequency range without tuning and allow multi-harmonic operation. The design has been guided by need of safety margins, reliability and ease of maintenance. Some design aspects are presented as well as the performance achieved.  
WPAT041 Klystron Linearizer for Use with 1.2 MW 476 MHz Klystrons in PEP-II RF Systems klystron, feedback, monitoring, radio-frequency 2660
  • J.D. Fox, T. Mastorides, D. Teytelman, D. Van Winkle, Y.-B. Zhou
    SLAC, Menlo Park, California
  • A. Gallo
    INFN/LNF, Frascati (Roma)
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.

The direct and comb loop feedback around the RF cavities in PEP-II is critical in reducing longitudinal instabilities driven by the cavity impedance, and the non-linear 1 MW klystron is in the signal path for these feedback loops. As a result, the effective small-signal gain of the klystron at 85% saturation reduces the impedance control by factors of 5 to 20 as compared to a linear power amplifier. A klystron linearizer circuit has been developed which operates in series with the power amplifier and acts to equalize the small and large signal gains through the combination. The technique must implement a 1 MHz linear control bandwidth over roughly 15 dB of RF signal level variation. The dynamics of this system is operating point dependent, and the channel must have dynamic gain compensation to keep the linearity compensation loop stable over changes in operating point. The design of this non-linear signal processing channel (incorporating RF and DSP techniques) and measured results from full-power klystron testing are presented.

WPAT045 A Non-Invasive Technique for Configuring Low Level RF Feedback Loops in PEP-II feedback, klystron, extraction, collider 2863
  • D. Teytelman
    SLAC, Menlo Park, California
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.

The RF system of the PEP-II collider uses two fast feedback loops around each klystron and set of cavities. These loops reduce the impedance of the fundamental mode of the accelerating cavities seen by the beam, and are necessary to reduce the growth rates of longitudinal modes within the RF system bandwidth. Operation of the accelerator at high beam currents is very sensitive to the configuration of the low-level RF feedback loops. There are 7 loop control parameters that strongly influence the stability of the feedback loops and the achieved level of longitudinal impedance reduction. Diagnostic techniques for the analysis of the RF feedback via closed-loop system transfer function measurements will be presented. The model is fit to the measured closed-loop transfer function data and the extracted parameters are then used to calculate optimal tuning and corrections to the loop control elements in the physical channel. These techniques allow fine-tuning of RF feedback with stored beam as well as diagnosis of mis-configured or malfunctioning elements of the system. Results from PEP-II operation will be presented to illustrate the techniques and their applications.

WPAT049 The Penetrability of a Thin Metallic Film Inside the RF Field cathode, electron, pick-up, laser 3073
  • Y. Zhao, I. Ben-Zvi, R.H. Beuttenmuller, X.Y. Chang, C. Chen, R. Di Nardo, T. Rao
    BNL, Upton, Long Island, New York
  Funding: Under contract with the U.S. Department of Energy, Contract Number DE-AC02-98CH10886.

Thin metallic film was widely applied in varies area. Especially, recently we are planning to apply it in a "Secondary emission enhanced photo-injector," of which a diamond cathode is coated with a golden film or so on its back to serve as a current path. The thickness of the film is originally considered to be in the order of 10 nm, which is much less than the skin depth, say 1/200. Since it is so thin, that intuitively the RF filed is penetrable. However, we found it is not true. The film will block most of the field. This paper addresses theoretic analysis as well as the experimental results. All demonstrated that the penetrability of a thin film is very poor. Consequently, most of the RF current will flow on the thin film causing a serous heating problem.

WPAT052 Present Status of RF System for Medical Proton Synchrotron synchrotron, proton, acceleration, feedback 3185
  • Z. Fang, K. Egawa, K. Endo, S. Yamanaka
    KEK, Ibaraki
  • Y. Cho, T. Fusato, T. Hirashima
    DKK, Kanagawa
  The 200MeV proton synchrotron of circumference of 9.54m is being developed for medical radiotherapy. The rf system has been carried out with a wide bandwidth of frequency sweeping from 2.0MHz to 17.8MHz. The rf cavity is designed of a compact dimension and a high acceleration gradient. The high power test of the rf system has been successfully performed and maximal acceleration gradient of 60kV/m has been achieved. The experiments with feedback control system are being studied by using a dummy beam signal. In this paper, the recent progress of the rf system and test results will be presented in detail.  
WPAT067 High Power Disk Loaded Guide Load scattering 3715
  • Z.D. Farkas
    SLAC, Menlo Park, California
  Funding: Department of Energy, contract DE-AC03-76SF00515.

A method to design a matching section from a smooth guide to a disk loaded guide, using a variation of broadband matching* is described. Using this method, we show how to design high power loads, filters and attenuators. The load consists of a disk loaded coaxial guide, operating in the T·1001 mode. This mode has no electric field terminating on a conductor, has no axial currents. Therefore, it is expected that it will carry the 600 MW peak output power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

*S. B. Cohn, Optimum Design of Stepped Transmission Line Transformers. IRE Trans., Vol. MTT-3 pp16-21, April, 1995.

WPAT076 Resonant High Power Combiners insertion, resonance, radio-frequency, synchrotron 3970
  • M.L. Langlois, J.P. Buge, G. Peillex-Delphe
    TED, Vélizy Cedex
  Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.  
WPAT093 A Three-Cell Superconducting Deflecting Cavity Design for the ALS at LBNL simulation, damping, dipole, coupling 4287
  • J. Shi, H. Chen, S. Zheng
    TUB, Beijing
  • J.M. Byrd, D. Li
    LBNL, Berkeley, California
  Deflecting RF cavities can be used to generate sub-pico-second x-rays by creating correlations between longitudinal and transverse phase space of electron bunches in radiation devices. Up to 2-MV defecting voltage at 1.5-GHz is required for 1.9-GeV electron beam at the Advanced Light Source (ALS) at LBNL. We present a conceptual design for a 1.5-GHz three-cell superconducting RF cavity and its coupler. The cavity geometry and deflecting shunt impedance are optimized using MAFIA code. The cavity impedance from lower and higher order modes (LOM and HOM) are computed. Possible schemes for damping most harmful LOM and HOM modes are discussed and simulated.  
WOAB008 CANDLE Project Overview brightness, storage-ring, ion, photon 629
  • V.M. Tsakanov
    CANDLE, Yerevan
  CANDLE is a 3 GeV energy synchrotron light facility project in the Republic of Armenia. The main design features of the new facility are given. The results of the beam physics study in the future facility are overviewed including the machine impedance, ion trapping, single and multi-bunch instabilities, beam lifetime etc. The main requirements to the magnetic, RF and vacuum systems are discussed. The report includes the status of the project and the nearest R&D plans.  
RPAT040 Matching BPM Stripline Electrodes to Cables and Electronics SNS, dipole, simulation, linac 2607
  • C. Deibele
    ORNL, Oak Ridge, Tennessee
  • S.S. Kurennoy
    LANL, Los Alamos, New Mexico
  Funding: This work was supported by SNS through UT-Batelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE. The SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built at Oak Ridge National Laboratory. The 805-MHz coupled-cavity linac (CCL) accelerates an H- beam from 86 to 186 MeV, while the 805 MHz superconducting-cavity linac (SCL) accelerates the beam to its final energy of 1 GeV. The SNS beam position monitors (BPMs) which are used to measure both position and phase of the beam relative to the master oscillator, have the dual-planed design with four one-end-shorted stripline electrodes. We argue that the BPMs are optimally broadband matched to the cabling and electronics when the geometrical mean of the sum-mode and quadrupole-mode impedances is equal to the external-line impedance, 50 Ohms. The analytical results, MAFIA and HFSS simulations, wire measurements, and beam measurements that support this statement are presented.

RPAT065 A Wire Scanner Design for Electron Beam Profile Measurement in the Linac Coherent Light Source Undulator electron, undulator, vacuum, linac 3667
  • J.L. Bailey, T.W. Buffington, B.X. Yang
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

The Linac Coherent Light Source (LCLS), currently under design, requires beam diagnostic instruments between the magnets in the beam undulator section. Ten wire scanners are planned as one of the primary instruments to characterize electron beam properties. The development of these wire scanners presents several design challenges due to the need for high accuracy and resolution of the wire motion (3 microns tolerance, typical) and the high intensity of the beam (3400 A over an area of 30 micron rms radius). In this paper, we present the technical specification and design criteria for the scanners. We will also present the mechanical design of the UHV-compatible drive and its engineering analysis. Lastly, we present the wire card design and discuss associated thermal and mechanical issues originating from the highly intense x-ray and electron beams.

RPAT096 High-Precision Resonant Cavity Beam Position, Emittance and Third-Moment Monitors quadrupole, dipole, coupling, sextupole 4311
  • N. Barov, J.S. Kim, A.W. Weidemann
    Far-Tech, Inc., San Diego, California
  • R.H. Miller, C.D. Nantista
    SLAC, Menlo Park, California
  Funding: Work supported by the U.S. Dept. of Energy.

Linear colliders and FEL facilities need fast, nondestructive beam position and profile monitors to facilitate machine tune-up, and for use with feedback control. FAR-TECH, Inc. is developing a resonant cavity diagnostic to simultaneously measure the dipole, quadrupole and sextupole moments of the beam distribution. Measurements of dipole and quadrupole moments at multiple locations yield information about beam orbit and emittance. The sextupole moment can reveal information about beam asymmetry which is useful in diagnosing beam tail deflections caused by short range dipole wakefields. In addition to the resonance enhancement of a single-cell cavity, use of a multi-cell standign-wave structure further enhances signal strength and improves the resolution of the device. An estimated rms beam size resolution is sub micro-meters and beam position is sub nano-meter.

ROAB002 Advances of Transmission Line Kicker Magnets kicker, injection, coupling, extraction 235
  • L. Ducimetière
    CERN, Geneva
  Fast pulsed magnets or kickers are widely used in circular accelerators for injection, fast extraction and beam excitation. As from the early 60’s transmission line type kicker magnets have been employed to produce rectangular field pulses with good rise time. Over some 40 years this technology has evolved with the rising requirements. Whilst the necessary kick strength has increased with the particle beam energies the strive for efficiency has pushed developments towards lower impedance systems and/or short circuited magnets. The flat top ripple is constrained by the maximally tolerable beam oscillation. The beam intensity can impose a screening of the magnet yoke. The most advanced features implemented in recent transmission line kicker magnets are reviewed and illustrated with examples from different laboratories. Ongoing and potential future developments are briefly discussed.  
ROAB006 Pulsed Power Drivers and Diodes for X-Ray Radiography pulsed-power, electron, vacuum, plasma 510
  • K.J. Thomas
    AWE, Reading
  Flash radiography has been used as a diagnostic for explosively driven hydrodynamics experiments for several decades following the pioneering work of J C Martin and his group at AWE. Relatively simple pulsed power drivers operating between 1 and 10 MV coupled to experimentally optimised electron beam diodes have achieved great success in a number of different classes of these experiments. The next generation of radiographic facilities will aim to improve even further the radiographic performance achievable by developing both the electron beam diodes used and the accelerators that drive them. The application of the rod-pinch diode to an Inductive Voltage Adder at 2 MV in the US has already advanced the quality of radiography available for relatively thin objects. For the thickest objects accelerators operating at up to 15 MV and diodes capable of focusing electron beams to intensities of ~ 1 MA/cm2 for tens of nanoseconds will be required in the future. Since the various candidate diode configurations operate in both high and low impedance regimes there is a further challenge to design and engineer an accelerator capable of driving whichever one, or more, are eventually used.  
ROAB007 Pulsed Power Applications in High Intensity Proton Rings kicker, pulsed-power, extraction, proton 568
  • W. Zhang, J. Sandberg
    BNL, Upton, Long Island, New York
  • R.I. Cutler
    ORNL, Oak Ridge, Tennessee
  • L. Ducimetière, T. Fowler, V. Mertens
    CERN, Geneva
  • T. Kawakubo, Y. Shirakabe
    KEK, Ibaraki
  Funding: Work performed under the auspices of the U.S. Department of Energy.

The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

ROAB008 Solid-State Modulators for RF and Fast Kickers kicker, induction, power-supply, vacuum 637
  • E.G. Cook, G.L. Akana, E. J. Gower, S.A. Hawkins, B. C. Hickman
    LLNL, Livermore, California
  • C. A. Brooksby
    Bechtel Nevada, Los Alamos, New Mexico
  • R. Cassel, J. E. De Lamare, M.N. Nguyen, G.C. Pappas
    SLAC, Menlo Park, California
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

RPPE012 Grounding of SNS Accelerator Structure klystron, SNS, linac, instrumentation 1278
  • P.S. Holik
    ORNL, Oak Ridge, Tennessee
  Funding: UT-Battelle, SNS Collaboration.

Description of site general grounding network. RF grounding network enhancement underneath the klystron gallery building. Grounding network of the Ring Systems with ground breaks in the Ring Tunnel. Grounding and Bonding of R&D accelerator equipment. SNS Building lightning protection.


RPPE039 Alumina Ceramics Vacuum Duct for the 3GeV-RCS of the J-PARC vacuum, dipole, electron, quadrupole 2604
  • M. Kinsho
    Japan Atomic Energy Institute, Linac Laboratory, Tokai-Mura
  • Z. Kabeya
    MHI, Nagoya
  • N. Ogiwara
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y. Saito
    KEK, Ibaraki
  It was success to develop alumina ceramics vacuum ducts for the 3GeV-RCS of J-PARC at JAERI. There are two types of alumina ceramics vacuum ducts needed, one being 1.5m-long duct with a circular cross section for use in the quadrupole magnet, the other being 3.5m-long and bending 15 degrees, with a race-track cross section for use in the dipole magnet. These ducts could be manufactured by joining several duct segments of 0.5-0.8 m in length by brazing. The alumina ceramics ducts have copper stripes on the outside surface of the ducts to reduce the duct impedance. One of the ends of each stripe is connected to a titanium flange by way of a capacitor so to interrupt an eddy current circuit. The copper stripes are produced by an electroforming method in which a stripe pattern formed by Mo-Mn metallization is first sintered on the exterior surface and then overlaid by PR-electroformed copper (Periodic current Reversal electroforming method). In order to reduce emission of secondary electrons when protons or electrons strike the surface, TiN film is coated on the inside surface of the ducts.  
RPPE040 Development of Copper Coated Chamber for Third Generation Light Sources vacuum, insertion, insertion-device, feedback 2633
  • H. Sakai, I. Ito, H. Kudo, N. Nakamura, S. Shibuya, K. Shinoe, H. Takaki
    ISSP/SRL, Chiba
  • K. Kobayashi
    KEK, Ibaraki
  For the 3rd generation light sources, it is essential to reduce the beam instability in order to produce the highly bright synchrotron light much stably. Especially, to avoid the coupled bunch instability, the resistive wall impedance must be reduced. The copper-coating inner surface of the chamber(especially in insertion device section)is much effective method for the reduction of the resistive wall impedance, whose method was already proposed by our group (N.Nakamura et.al., EPAC 1998 p984). We have already produced the copper coated chamber. In this paper, we describe the measurement of the outgassing from the copper coated chamber to evaluate if this chamber is valid on the ultra-low high vacuum condition.  
RPPE052 Application of Comb-Type RF-Shield to Bellows Chambers and Gate Valves vacuum, positron, injection, electron 3203
  • Y. Suetsugu, K.-I. Kanazawa, N. Ohuchi, K. Shibata, M. Shirai
    KEK, Ibaraki
  A comb-type RF-shield, which was recently proposed for high current accelerators, was experimentally applied to bellows chambers and gate valves. The comb-type RF-shield has a structure of nested comb teeth, and has higher thermal strength and lower impedance than usual finger-type RF shields. The shield is suitable for future high intensity accelerators, such as particle factories aiming a luminosity of 1·1035 - 36 /cm2 /s. Seven bellows chambers with a circular or a racetrack cross section had been installed in the KEKB (KEK B-factory) positron ring since 2003 in series. Some bellows chambers are forced to bend up to 20 mrad during the beam operation. No significant problem had been found with a stored beam current up to 1.6 A (1.25 mA/bunch). On the other hand, a circular-type gate valve with the comb-type RF shield will be installed in the ring in January, 2005. Structures, properties and results of the beam test of the bellows chamber and the gate valve are discussed.  
RPPE053 R&D Status of Vacuum Components for the Upgrade of KEKB electron, vacuum, positron, photon 3256
  • Y. Suetsugu, H. Hisamatsu, K.-I. Kanazawa, N. Ohuchi, K. Shibata, M. Shirai
    KEK, Ibaraki
  An upgrade plan of the KEK B-factory (KEKB), Super KEKB, aiming a luminosity over 1·1035 /cm2 /s has been discussed in KEK. To achieve the high luminosity, the stored beam currents are 4.2 - 9.4 A and the bunch length is 3 mm. In designing the vacuum system of the Super KEKB, therefore, the main issues are how to manage the resultant highly intense synchrotron radiation (SR) power, and how to reduce the beam impedance. The R&Ds for basic vacuum components, such as a beam duct, a bellows chamber, a connection flange, a collimator, a high-capacity pump and so on, are now undergoing to deal with the problems. For examples, a copper beam duct with an antechamber was manufactured to reduce the power density of SR, and to suppress the electrons around the beam for the positron ring. The test chamber was installed in the positron ring of KEKB and tested with a beam. Bellows chambers with a newly developed RF-shield were also installed in the ring and the property was investigated. A special connection flange with little step or gap inside was developed and examined in a test bench. The designs of these components and the results of tests are presented and discussed.  
RPPE057 Resistive Wall Wakefield in the LCLS Undulator undulator, electron, resonance, simulation 3390
  • K.L.F. Bane, G.V. Stupakov
    SLAC, Menlo Park, California
  Funding: Work supported by the U.S. Department of Energy, contract DE-AC03-76SF00515.

In the Linac Coherent Light Source (LCLS), a short, intense bunch (rms length 20 microns, bunch charge 1 nC) will pass through a small, long undulator beam pipe (radius 2.5 mm, length 130 m). The wakefields in the undulator, particularly the resistive wall wake of the beam pipe, will induce an energy variation along the bunch, a variation that needs to be kept to within a few times the Pierce parameter for all beam particles to continue to lase. Earlier calculations included the short-range resistive wall wake, but did not include the frequency dependence of conductivity (ac conductivity) of the beam pipe walls. We show that for copper and for the LCLS bunch structure, including the ac conductivity results in a very large effect. We show that the effect can be ameliorated by choosing aluminum and also by taking a flat, rather than round, beam pipe chamber (if the vertical aperture is fixed). The effect of the (high frequency) anomalous skin effect is also considered.

RPPP044 Studies of Room Temperature Accelerator Structures for the ILC Positron Source positron, acceleration, coupling, linear-collider 2827
  • J.W. Wang, C. Adolphsen, V. Bharadwaj, G.B. Bowden, V.A. Dolgashev, R.M. Jones, E.N. Jongewaard, J.R. Lewandowski, Z. Li, R.H. Miller
    SLAC, Menlo Park, California
  Funding: Work supported by U.S. Department of Energy, contract DE-AC02-76F00515.

There are many challenges in the design of the normal-conducting portion of ILC positron injector system such as achieving adequate cooling with the high rf and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. The proposed design for the positron injector contains both standing-wave and traveling-wave L-band accelerator structures for high RF efficiency, low cost and ease of fabrication. This paper presents results from studies of particle energy deposition for both undulator based and conventional positron sources, cooling system design, accelerator structure optimization, RF pulse heating, cavity frequency stabilization, and RF feed system design.

RPPT016 Effects of Wakefields on the Microbunching Instabilities at PAL-XFEL linac, space-charge, synchrotron, synchrotron-radiation 1473
  • E.-S. Kim
    PAL, Pohang, Kyungbuk
  We present effects of the wakefields in accelerating structures of the S-band linac on the microbunching instabilties at the PAL-XFELs. Analytical calculations are performed to investigate the gains of the instabilities in the accelerator system for the PAL-XFELs.  
RPPT045 A Method to Calibrate Beam Position Monitor at HLS 200 MeV LINAC linac, pick-up, simulation, injection 2896
  • J.-H. Li, Y. Cao, H. He, K. Jin, P. Lu, B. Sun, J. P. Wang, Y. Wang, P. Zheng
    USTC/NSRL, Hefei, Anhui
  In order to improve injection efficiency of HLS 200Mev LINAC, we redesign a new strip line beam position monitor system, which is consisted of a strip line structure and a signal processing system. We decide on an online calibration method based on beam to find out the geometry centre displacement and relative gain offset. Before the BPM testing bench has been prepared, we make a simulation based on the model accounted for all factors influencing signal amplitudes and get the calibrating results. At last, we analyze the nonlinearity effect on the calibration results.  
FPAT020 A Fast Chopper for Intensity Adjustment of Heavy-Ion Beams linac, ion, heavy-ion, vacuum 1692
  • A.V. Novikov-Borodin, V.A. Kutuzov
    RAS/INR, Moscow
  • P.N. Ostroumov
    ANL, Argonne, Illinois
  Funding: CRDF Grant.

There are several heavy-ion linac projects being developed worldwide. For example, the Rare Isotope Accelerator Facility [J.A. Nolen, Nucl. Phys. A. 734 (2004) 661] currently being designed in the U.S. will use both heavy-ion and light ion beams to produce radionuclides via the fragmentation and spallation reactions, respectively. With simultaneous beam delivery to more than one target independent adjustment of relative beam intensities is essential. A fast traveling wave chopper can be used to modulate cw beam intensity at low energy ~200 keV/u. Such a device should have high frequency characteristics at high power level. By increasing the wave impedance of the traveling wave structure up to 200 Ohm one can reduce power requirements to the fast voltage pulser. Several design options of the high-impedance structure are discussed.

FPAT021 Experience with Kicker Beam Coupling Reduction Techniques kicker, extraction, simulation, vacuum 1742
  • E.H.R. Gaxiola, J. Bertin, F. Caspers, L. Ducimetière, T. Kroyer
    CERN, Geneva
  SPS beam impedance is still one of the worries for operation with nominal LHC beam over longer periods once the final configuration will be installed in 2006. Several CERN SPS kickers suffer from significant beam induced ferrite heating. In specific cases, for instance beam scrubbing, the temperature of certain ferrite yokes went beyond the Curie point. Several retrofit impedance reduction techniques have been investigated theoretically and with practical tests. We report on experience gained during the 2004 SPS operation with restively coated ceramic inserts in terms of kicker heating, pulse rise time, operating voltage, and vacuum behavior. For another technique using interleaved metallic strips we observed significant improvements in bench measurements. Advantages and drawbacks of both methods and potential combinations of them are discussed and simulation as well as measured data are shown. Prospects for further improvements beyond 2006 are briefly outlined.  
FPAT029 High Voltage Operation of Helical Pulseline Structures for Ion Acceleration ion, coupling, acceleration, vacuum 2092
  • W. Waldron, L. R. Reginato
    LBNL, Berkeley, California
  • R.J. Briggs
    SAIC, Alamo, California
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory, Contract # DE-AC03-76SF00098.

The basic concept for the acceleration of heavy ions using a helical pulseline requires the launching of a high voltage traveling wave with a waveform determined by the beam transport physics in order to maintain stability and acceleration.* This waveform is applied to the front of the helix, creating over the region of the ion bunch a constant axial acceleration electric field that travels down the line in synchronism with the ions. Several methods of driving the helix have been considered. Presently, the best method of generating the waveform and also maintaining the high voltage integrity appears to be a transformer primary loosely coupled to the front of the helix, generating the desired waveform and achieving a voltage step-up from primary to secondary (the helix). This can reduce the drive voltage that must be brought into the helix enclosure through the feedthroughs by factors of 5 or more. The accelerating gradient is limited by the voltage holding of the vacuum insulator, and the material and helix geometry must be chosen appropriately. The helix must also be terminated into its characteristic impedance, and designs of terminations incorporated into the helix internal enclosure are presented in the paper.

*Briggs, et al, "Helical Pulseline Structures for Ion Acceleration," this conference.

FPAT032 NuMI Proton Kicker Extraction Magnet Termination Resistor System kicker, radiation, extraction, proton 2224
  • S.R. Reeves, C.C. Jensen
    Fermilab, Batavia, Illinois
  Funding: Fermilab is operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy.

The temperature stability of the kicker magnet termination resistor assembly directly affects the field flatness and amplitude stability of the kick. Comprehensive thermal enhancements were made to the existing Main Injector resistor assembly design to satisfy NuMI performance specifications. Additionally, a fluid-processing system utilizing FluorinertŪ FC-77 high-voltage dielectric was built to precisely control the setpoint temperature of the resistor assembly from 70 to 120F, required to maintain constant resistance during changing operational modes. The FluorinertŪ must be continually processed to remove hazardous breakdown products caused by radiation exposure to prevent chemical attack of system components. Design details of the termination resistor assembly and FluorinertŪ processing system are described. Early performance results will be presented.

FPAT034 Dispersion Analysis of the Pulseline Accelerator ion, beam-loading, acceleration, vacuum 2330
  • G.J. Caporaso, S.D. Nelson, B.R. Poole
    LLNL, Livermore, California
  • R.J. Briggs
    SAIC, Alamo, California
  Funding: This work was perfomed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

We analyze the sheath helix model of the pulseline accelerator.* We find the dispersion relation for a shielded helix with a dielectric material between the shield and the helix and compare it against the results from 3-D electromagnetic simulations. Expressions for the fields near the beam axis are obtained. A scheme to taper the properties of the helix to maintain synchronism with the accelerated ions is described. An approximate circuit model of the system that includes beam loading is derived.

*"Helical Pulseline Structures for Ion Acceleration," Briggs, Reginato, Waldron, this conference.

FPAT035 Transverse Beam Instability in a Compact Dielectric Wall Induction Accelerator induction, resonance, acceleration, simulation 2378
  • Y.-J. Chen, J.F. McCarrick, S.D. Nelson
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Using the dielectric wall accelerator technology, we are developing of a compact induction accelerator system primarily intended for pulsed radiography. Unlike the typical induction accelerator cell that is long comparing with its accelerating gap width, the proposed dielectric wall induction accelerator cell is short and its accelerating gap width is comparable with the cell length. In this geometry, the rf modes may be coupled from one cell to the next. We will present recent results of rf modeling of the cells and prediction of transverse beam instability on a 2-kA, 8-MeV beam.

FPAT038 Electromagnetic Simulations of Dielectric Wall Accelerator Structures for Electron Beam Acceleration simulation, acceleration, coupling, monitoring 2550
  • S.D. Nelson, B.R. Poole
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Dielectric Wall Accelerator (DWA) technology incorporates the energy storage mechanism, the switching mechanism, and the acceleration mechanism for electron beams. Electromagnetic simulations of DWA structures includes these effects and also details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam. DWA structures include both bi-linear and bi-spiral configurations with field gradients on the order of 20MV/m and the simulations include the effects of the beampipe, the beampipe walls, the DWA High Gradient Insulator (HGI) insulating stack, wakefield impedance calculations, and test particle trajectories with low emittance gain. Design trade-offs include the transmission line impedance (typically a few ohms), equilibration ring optimization, driving switch inductances, and a layer-to-layer coupling analysis and its affect on the pulse rise time.

FPAT056 RF Control System Upgrade at CAMD diagnostics, klystron, resonance, monitoring 3339
  • V.P. Suller
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • M.G. Fedurin, P. Jines, D.J. Launey
    LSU/CAMD, Baton Rouge, Louisiana
  A description is given of the new control system for the RF system of the CAMD light source. The new design being implemented brings all RF signals into the data acquisition system via a modular, custom made, RF detector and renders the amplitude and tune control loops in the VME computer. On line calculations ensure monitoring of proper operation and display the information to the user in an efficient way. In addition, an advanced load impedance monitoring diagnostic has been implemented, being displayed as a Smith Chart, which is based on the system used at the SRS in Daresbury, England.  
FPAT070 Performance of COTS I/O Modules in an Accelerator Control System power-supply, monitoring, wiggler, storage-ring 3822
  • S.M. Hartman
    DU/FEL, Durham, North Carolina
  Funding: This work is supported by U.S. AFOSR MFEL grant F49620-001-0370 and by U.S. Department of Energy grant DE-FG02-01ER41175.

We analyze some recent experiences with commercial off the shelf (COTS) I/O hardware modules, comparing manufacturer specifications with our in-house measurements. Discrepancies between quoted specifications and measured performance under accelerator laboratory conditions have been observed. In some cases, design or manufacturing faults have been found which could have impact on the overall performance of the accelerator.