A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    

beam-beam-effects

Paper Title Other Keywords Page
MOAA003 PEP-II and KEKB Operational Status luminosity, injection, interaction-region, collider 276
 
  • J. Seeman
    SLAC, Menlo Park, California
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

The present two B-Factories, KEKB at Tsukuba in Japan and PEP-II at SLAC in California, operate at the Upsilon 4S and have reached parameter levels unprecedented for e+e- colliders. They have provided very large data samples for their respective particle detectors, BELLE and BaBar. Luminosities are approaching 1 x 1034/cm2/s and beyond. Beam currents have reached over 2.5 A with 1600 positron bunches spaced by 4 nsec. Continuous injection with the detectors taking data has added significantly to data collection rates. Bunch-by-bunch feedback systems damp strong longitudinal and transverse coupled bunch instabilities. The beam-beam interaction has allowed high tune shift levels even in the presence of parasitic crossing and crossing angle effects. Both B-Factory colliders have significant near term luminosity improvement programs.

 
 
MOPA006 Theory and Reality of Beam-Beam Effects at Hadron Colliders resonance, antiproton, proton, emittance 544
 
  • Y. Alexahin
    Fermilab, Batavia, Illinois
  The beam-beam phenomena in hadron colliders is just as rich as in e+e- machines: orbit and focusing perturbations, excitation of nonlinear resonances, coherent tuneshifts. Moreover, the absence of radiation damping and long duration of a store permit even high-order (and correspondingly weak) resonances to manifest themselves presenting a major challenge for both theoretical analysis and machine operation. The recent progress in understanding of and coping with the beam-beam effects at hadron colliders, primarily at the Tevatron, is discussed.  
 
MOPC008 Dynamic Beam-Beam Effects Measured at KEKB emittance, electron, positron, luminosity 606
 
  • T. Ieiri, Y. Funakoshi, T. Kawamoto, M. Masuzawa, M. Tobiyama
    KEK, Ibaraki
  Funding: This work is partially supported by Grant-in-Aid Scientific Research (16540271) from Japan Society for the Promotion of Science and Technology.

KEKB is a multi-bunch, high-current, electron/positron collider for B meson physics. The two beams collide at one interaction point (IP) with a finite horizontal crossing angle and with a bunch-space of 6 to 8 ns. The luminosity achieved at KEKB is the best in the world. The betatron tunes are set close to a half integer, to expect the dynamic beam-beam effects that change the beta function around the rings and the emittance as a function of the beam-beam parameter. In order to investigate such attractive beam-beam effects, the beam-beam kick and the beam-beam tune-shift were obtained by comparing the beam parameters between a colliding bunch and a non-colliding one. The horizontal beam size at the IP estimated from a beam-beam kick curve was slightly less than a calculated value without the dynamic effect. The horizontal emittance estimated from the beam-beam tune shift was somewhat larger than a calculated natural emittance. These experimental results reflect the dynamic beam-beam effects.

 
 
TPAP026 Improving the Tevatron Collision Helix antiproton, luminosity, emittance, proton 1931
 
  • R. Moore, Y. Alexahin, J.A. Johnstone, T. Sen
    Fermilab, Batavia, Illinois
  In the Tevatron, protons and pbars circulate in a single beam pipe, so electrostatic separators are used to create helical orbits that separate the two beams except at the two interaction points (IP). Increasing the separation outside of the IPs is desirable in order to decrease long range beam-beam effects during high energy physics (HEP) stores. We can increase separation by running the separators at higher gradients or by installing additional separators. We are pursuing both strategies in parallel. Here, we describe Tevatron operation with higher separator gradients and with new separators installed during a recent shutdown. We also describe possible future improvements.  
 
TPAP038 Characterizing Luminosity Evolution in the Tevatron luminosity, proton, emittance, antiproton 2536
 
  • E.S. McCrory, V.D. Shiltsev
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

We derive an approximate form of a luminosity evolution in a high intensity hadron collider taking into account the most important phenomena of intrabeam scattering (IBS), beam burn-up due to luminosity and beam-beam effects. It is well known that an exponential decay does not describe luminosity evolution very well unless the lifetime is allowed to vary with time. However, a "1/time" evolution, which this derivation shows is a good approximation, fits data from the Tevatron well.

 
 
TPAT072 Long-Term Simulation of Beam-Beam Effects in the Tevatron at Collision Energy simulation, lattice, coupling, antiproton 3871
 
  • A.C. Kabel, Y. Cai
    SLAC, Menlo Park, California
  • T. Sen
    Fermilab, Batavia, Illinois
  The weak-strong beam-beam effect is expected substantially to contribute to the degradation of beam lifetimes in the Tevatron at collision energy. We have expanded an existing multi-processor code (which previously was applied to the Tevatron at injection energy* to include chromatic and non-linear lattice effects as well as a fully-coupled treatment of the lattice in different approximations.** We obtain lifetime predictions by doing temporal statistics on the tracking results of a weighted macroparticle distribution and fitting it to a class of solutions for the diffusion equation. We present typical results of parameter scans.

*A. Kabel, Y. Cai, B. Erdelyi, T. Sen, M. Xiao; Proceedings of PAC03. **A. Kabel, this Conference.

 
 
TPAT079 Importance of the Linear Coupling and Multipole Compensation of Long-Range Beam-Beam Interactions In Tevatron emittance, multipole, coupling, simulation 4039
 
  • J. Shi, B. Anhalt
    KU, Lawrence, Kansas
  Funding: The US Department of Energy under Grant No. DE-FG02-04ER41288.

In Tevatron, serious long-range beam-beam effects are due to many parasitic collisions that are distributed around the ring. Because of this non-localized nature of long-range beam-beam interactions, the multipole compensation with one-turn or sectional maps aims a global compensation of long-range beam-beam interactions. Since nonlinear beam dynamics in a storage ring can usually be described by a one-turn map that contains all global information of system nonlinearities, by minimizing nonlinear terms of the maps order-by-order with a few groups of multipole correctors, one could reduce the nonlinearity globally. Since a large beam separation is typical at parasitic points, in the phase-space region that is relevant to the beam, long-range beam-beam interactions can be expanded into a Taylor series around the beam separation and be included into the one-turn map for the global compensation. To examine the effect of this multipole compensation scheme, the emittance growth of both p and pbar beam in Tevatron were studied with a beam-beam simulation. The result showed that the multipole compensation can significantly reduces the emittance growth of the pbar beam due to long-range beam-beam interactions.

 
 
TPAT085 Development of a Beam-Beam Simulation Code for e+e- Colliders simulation, luminosity, synchrotron, positron 4176
 
  • Y. Zhang
    IHEP Beijing, Beijing
  • K. Ohmi
    KEK, Ibaraki
  Funding: Chinese National Foundation of Natural Sciences, contract 10275079 JSPS Core University Program

BEPC will be upgraded into BEPCII, and the luminosity will be about 100 times higher. We developed a three dimensional strong-strong PIC code to study the beam-beam effects in BEPCII. The transportation through the arc is the same as that in Hirata's weak-strong code. The beam-beam force is computed directly by solving the Poisson equation using the FACR method, and the boundary potential is computed by circular convolution. The finite bunch length effect is included by longitudinal slices. An interpolation scheme is used to reduce the required slice number in simulations. The standard message passing interface (MPI) is used to parallelize the code. The computing time increases linearly with (n+1), where n is the slice number. The calculated luminosity of BEPCII at the design operating point is less than the design value. The best area in the tune space is near (0.505,0.57) according to the survey, where the degradation of luminosity can be improved.

 
 
TPPP006 Beam-Beam Simulation Study with Parasitic Crossing Effect at KEKB luminosity, simulation, target, damping 1033
 
  • M. Tawada, Y. Funakoshi, K. Ohmi
    KEK, Ibaraki
  KEKB is an asymmetric-energy, two-ring, electron-positron collider for B physics. Two beams collide at one interaction point with a finite crossing angle of 22 mrad. The bunch spacing has chosen to be 4 buckets (8 nsec) in most physics run of KEKB. While the shorter bunch spacing is necessary for a higher luminosity, the degradation of the specific luminosity by unknown reason is observed in 4 or 6 nsec spacing. In order to investigate whether parasitic crossing effect degrades a beam-beam performance, we have performed strong-strong beam-beam simulation with parasitic long-range beam-beam force. In this paper we present and discuss our simulation results.  
 
TPPP017 Beam-Beam Effects in the Ring-Ring Version of eRHIC resonance, emittance, luminosity, simulation 1520
 
  • J. Shi, L. Jin
    KU, Lawrence, Kansas
  • D. Wang, F. Wang
    MIT, Middleton, Massachusetts
  Funding: The U.S. Department of Energy under Grant No. DE-FG02-04ER41288.

The eRHIC is a proposed electron ring at the RHIC that will provide collisions between a polarized 5-10 GeV electron beam and an ion beam from one of the RHIC rings. In order to achieve proposed high luminosity, large bunch current and small beta-functions at the IP has to be employed. Such measures result in large beam-beam parameters, 0.029 and 0.08 for the electron beam and 0.0065 and 0.0033 for the proton beam in the horizontal and vertical plane, respectively, in the current ZDR design. The beam-beam effect especially the coherent beam-beam effect is therefore one of important issues to the eRHIC. Moreover, the proposed configuration of unequal circumferences of the electron and proton rings could further enhance the coherent beam-beam effect. The beam-beam effect of eRHIC has therefore been studied with a self-consistent beam-beam simulation by using the particle-in-cell method. Beam-beam limits of the electron and proton beam were examined as thresholds of the onset of coherent beam-beam instability. For the proposed luminosity, the electron and proton bunch currents optimized with the consideration of the beam-beam effect will be discussed.

 
 
TPPP035 Performance of the PEP-II B-Factory Collider at SLAC luminosity, injection, electron, positron 2369
 
  • J. Seeman, J. Browne, Y. Cai, S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, N. Li, A. Novokhatski, M.C. Ross, P. Schuh, T.J. Smith, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • C. Steier, A. Wolski
    LBNL, Berkeley, California
  • G. Wormser
    IPN, Orsay
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has reached 9.2 x 1033/cm2/s. PEP-II has delivered an integrated luminosity of 710/pb in one day. It operates in continuous injection mode for both beams boosting the integrated luminosity. The peak positron current has reached 2.55 A in 1588 bunches. The total integrated luminosity since turn on in 1999 has reached 256/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.

 
 
RPAT051 Measurement of Dynamic Beam-Beam Effects on Horizontal Beam Size at KEKB Using SR Interferometer Equipped with Retrofocus Optics optics, emittance, simulation, positron 3150
 
  • J.W. Flanagan, H. Fukuma, S. Hiramatsu, T. Mitsuhashi
    KEK, Ibaraki
  Transverse beam-size enlargement due to dynamic beta and beam-beam effects has been observed in the KEKB Low Energy Ring (LER) and High Energy Ring (HER). In order to observe these effects, a retrofocus optics system has been developed and installed in the horizontal SR interferometers at the HER and LER. This system allows us to vary the apparent beam size to match the dynamic range of the interferometer. We report on the retrofocus optics system and measurement results, and compare the measured effects with those expected from dynamic beta simulations.  
 
RPAT052 Vertical Beam Size Measurement by Streak Camera under Colliding and Single Beam Conditions in KEKB luminosity, electron, positron, feedback 3194
 
  • H. Ikeda, J.W. Flanagan, H. Fukuma, Y. Funakoshi, S. Hiramatsu, T. Mitsuhashi, K. Ohmi, S. Uehara
    KEK, Ibaraki
  Beam behavior of KEKB was studied by measurement of the beam size using a streak camera. Effect of the electron-cloud and the parasitic collision on the vertical beam size was examined in beam collision. We intentionally injected a test bunch of positrons after 2 rf buckets of a bunch to enhance the electron cloud effect and changed electron beam conditions to see the beam-beam effect. The beam size was also measured with a single positron beam and compared with that during collision. The result of the measurement is reported in this paper.  
 
FPAT012 Tevatron Beam Lifetimes at Injection Using the Shot Data Analysis System proton, antiproton, injection, scattering 1279
 
  • A. Xiao, T.B. Bolshakov, P. Lebrun, E.S. McCrory, V. Papadimitriou, A.J. Slaughter
    Fermilab, Batavia, Illinois
  The purpose of the Shot Data Acquisition and Analysis (SDA) system is to provide summary data on the Fermilab RunII accelerator complex and provide related software for detailed analyses. In this paper, we discuss such a specific analysis on Tevatron beam lifetimes at injection. These results are based on SDA data, tools and methodology. Beam lifetime is one of our most important diagnostics. An analysis of it can give information on intra beam scattering, aperture limitations, instabilities and most importantly beam-beam effects. Such an analysis gives us a better understanding of our machine, and will lead to an improved performance in the future.