A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    


Paper Title Other Keywords Page
MOPC002 Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators emittance, simulation, linac, SNS 164
  • S.M. Cousineau
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

MPPE016 Hamiltonian Analysis of Transverse Dynamics in Axisymmetric RF Photoinjector focusing, emittance, acceleration, transverse-dynamics 1476
  • C.-X. Wang
    ANL, Argonne, Illinois
  A general Hamiltonian that governs the beam dynamics in an rf photoinjector is derived from first principles. With proper choice of coordinates, the resulting Hamiltonian has a simple and familiar form, while taking into account the rapid acceleration, rf focusing, magnetic focusing, and space-charge forces. From the linear Hamiltonian, beam-envelope evolution is readily obtained, which better illuminates the theory of emittance compensation. Preliminary results on the third-order nonlinear Hamiltonian will be given as well.  
MPPE043 The Status of Optics Design and Beam Dynamics Study in J-PARC RCS injection, beam-losses, simulation, extraction 2759
  • F. Noda, N. Hayashi, H. Hotchi, J. Kishiro, P.K. Saha, Y. Shobuda, K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida, A.Y. Molodojentsev
    KEK, Ibaraki
  The 3GeV RCS at J-PARC is designed to provide proton beam of 3GeV and a goal of output beam power is 1MW. The beam commissioning starts on May 2007. At present, more qualitative studies concerning beam dynamics are in progress: core beam handlings, halo beam handlings, instabilities and so on. In this paper, the RCS optics design and the present status of beam dynamics studies are summarized.  
MPPE068 Effects on Flat-Beam Generation from Space-Charge Force and Beamline Errors quadrupole, emittance, gun, cathode 3774
  • Y.-E. S. Sun
    University of Chicago, Chicago, Illinois
  • K.-J. Kim
    ANL, Argonne, Illinois
  • P. Piot
    Fermilab, Batavia, Illinois
  The transformation of a round, angular-momentum-dominated electron beam into a flat beam using a skew-quadrupole channel has been developed theoretically in several papers and demonstrated experimentally at the Fermilab/NICADD Photoinjector Laboratory. In this paper, we address the impacts of space-charge force and beamline errors on the round-to-flat beam transformation. We discuss the physical process of angular momentum cancellation during the beam passage through the skew-quadrupole channel, present analytical and numerical studies of the linear and nonlinear space-charge forces, and evaluate the corresponding limits on the ratio of vertical-to-horizontal emittances. We also investigate the sensitivities of flat-beam emittances on several systematic factors such as errors on quadrupole strengths and alignments.  
MPPP025 The Impedance of the Ceramic Chamber in J-PARC impedance, multipole, electron 1898
  • Y. Shobuda
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y.H. Chin, K. Ohmi, T. Toyama
    KEK, Ibaraki
  The ceramic chamber is adopted at the RCS (rapid cycling synchrotron) in J-PARC. The copper stripes are on the outer surface of the chamber in order to shield the electro-magnetic field produced by the beam. The inner surface of the chamber is coated by TiN to suppress the secondary electron emission. In this paper, we calculate the strength of electro-magnetic field produced by the beam and evaluate the impedance of this ceramic chamber.  
MPPP033 Beam Transfer Functions and Beam Stabilisation in a Double RF System synchrotron, damping, injection, beam-loading 2300
  • E.N. Shaposhnikova, T. Bohl, T.P.R. Linnecar
    CERN, Geneva
  The high intensity proton beam for LHC accelerated in the CERN SPS is stabilised against coupled-bunch instabilities by a 4th harmonic RF system in bunch-shortening mode. Bunch-lengthening mode, which could also be useful to reduce peak line density and alleviate problems from e-cloud and kicker heating does not give desirable results for beam stability. In this paper an analysis of the limitations of these two different modes of operation is presented together with measurements of the Beam Transfer Function for the double RF system. As predicted by theory, for sufficiently long bunches with the same noise excitation, the measured amplitude of the beam response in bunch-lengthening mode is an order of magnitude higher than that for bunch-shortening mode or for a single RF system.  
MPPP041 Transverse Instability of a Rectangular Bunch impedance, synchrotron, emittance, damping 2657
  • V. Balbekov
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-76CH03000.

Some results of theoretical investigations of transverse dipole instability of a rectangular bunch are reported in this paper. Such a form is characteristic of the bunch in a rectangular potential wall which is created by a barrier-shaped acceleration field. Similar regime is a major one for accumulating and cooling of antiproton beams in the Fermilab Recycler Ring. In this case, the known theory of transverse instability of a bunched beam is inapplicable directly both because of "unusual" form of phase trajectories and strong dependence of synchrotron frequency on energy. A series of equations, adequately describing the instability is derived in the paper. Exact analytical solution is obtained for space charge dominated impedance, and some approximate methods are proposed for arbitrary impedance. The theory is applied to the Fermilab Recycler Ring including a numerical simulation.

MPPP044 Impedance Calculation for Ferrite Inserts impedance, resonance, beam-losses, vacuum 2818
  • S.-Y. Lee, S. Breitzmann
    IUCF, Bloomington, Indiana
  • K.Y. Ng
    Fermilab, Batavia, Illinois
  Funding: NSF PHY-0244793; DOE DE-FG02-92ER40747.

Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. We study the narrowband longitudinal impedance of these ferrite inserts. We find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. We also provide a receipe for truly passive space charge impedance compensation and, at the same time, avoiding the narrowband microwave instabilities.

MOPB010 Simulations and Experiments of Electron Beams Pre-Modulated at the Photocathode electron, simulation, laser, radiation 704
  • J.G. Neumann, R.B. Fiorito, P.G. O'Shea
    IREAP, College Park, Maryland
  • G.L. Carr, T.V. Shaftan, B. Sheehy, Y. Shen, Z. Wu
    BNL, Upton, Long Island, New York
  • W. Graves
    MIT, Middleton, Massachusetts
  • H. Loos
    SLAC, Menlo Park, California
  Funding: Work is supported by the Office of Naval Research, the Joint Technology Office, and the Department of Energy.

The University of Maryland and the Source Development Laboratory at Brookhaven National Laboratory have been collaborating on a project that explores the use of electron beam pre-modulation at the cathode to control the longitudinal structure of the electron beam. This technique could be applied to creating deliberate modulations which can lead to the generation of terahertz radiation, or creating a smooth profile in order to supress radiation. This paper focuses on simulations that explore some of the pre-modulated cases achieved experimentally.

TPAE005 Generation of Small Energy Spread Electron Beam from Self-Modulated Laser Wakefield Accelerator electron, plasma, laser, ion 976
  • C. Kim, I.S. Ko
    POSTECH, Pohang, Kyungbuk
  • N. Hafz, G.-H. Kim, H. Suk
    KERI, Changwon
  Funding: The authors are grateful for financial support from the Korean Ministry of Science and Technology through the Creative ResearchInitiatives Program.

Laser and plasma based accelerators have been studied for a next generation particle accelerator. Still, there are some problems to solve for real applications. For example, it has been observed that the accelerated electron beam from laser and plasma based accelerators has a 100% energy spread. Thus, the generation of small energy spread beam is an important issue in the laser and plasma based accelerator study. In this work, we introduce a method to control the energy spread. From a basic theory and simulation, it is found that the transverse electron distribution is changed from the Gaussian to a Maxwell-Boltzmann distribution and low energy electrons spread out more rapidly than high energy electrons as they propagate in vacuum. Thus, a small size collimator is installed to remove the small energy electrons and it is conformed that the small energy spread can be obtained from an experiment.

TPAE028 Beam Dynamics Studies for a Laser Acceleration Experiment linac, gun, laser, emittance 2024
  • J.E. Spencer, E.R. Colby, R.J. Noble, D.T. Palmer, R. Siemann
    SLAC, Menlo Park, California
  Funding: Support of this work was under U.S. Dept. of Energy contract DE-AC02-76SF00515.

The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextupoles for a large, 6D phase space volume and range of input conditions. Tolerances and tuning sensitivities (knobs) for certain parts of the system are discussed.

TPAE048 The UCLA/FNPL Time Resolved Underdense Plasma Lens Experiment plasma, electron, focusing, quadrupole 3013
  • M.C. Thompson, H. Badakov, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • H. Edwards, R.P. Fliller, G.M. Kazakevich, P. Piot, J.K. Santucci
    Fermilab, Batavia, Illinois
  • J.L. Li, R. Tikhoplav
    Rochester University, Rochester, New York
  Funding: Work Supported by U.S. Dept. of Energy grant DE-FG03-92ER40693.

An underdense plasma lens experiment is planned as a collaboration between UCLA and the Fermilab NICADD Photoinjector Laboratory (FNPL). The experiment will focus on measuring the variation of the plasma focusing along the longitudinal beam axis and comparing these results with theory and simulation. The experiment will utilize a thin gaussian underdense plasma lens with peak density 6 x 1012 cm-3 and a FWHM length of 1.6 cm. This plasma lens will have a focusing strength equivalent to a quadrupole magnet with a 180 T/m field gradient. A 15 MeV, 8nC electron beam with nominal dimensions sr = 400 μm and sz = 2.1 mm will be focused by this plasma lens onto an OTR screen approximately 2 cm downstream of the lens. The light from the OTR screen will be imaged into a streak camera in order to directly measure the correlation between z and sr within the beam. Status and progress on the experiment are reported.

TPAE058 Plasma Dark Current in Self-ionized Plasma Wake Field Accelerators (PWFA) plasma, electron, radiation, diagnostics 3444
  • E. Oz, S. Deng, T.C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  • C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  Particle trapping is investigated with experiment, theory and simulations for conditions relevant to beam driven Plasma Wake Field Accelerators. Such trapping produces plasma dark current when the wakefield aplitude is above a threshold values and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam as well as in gradual density gradients. In the E164X conducted at the Stanford Linear Accelerator Center by a collaboration of USC, UCLA and SLAC, evidence of trapping has been observed. Here we present experimental results and a simplified analytical model of the particle trapping threshold which is compared to simulations done with an object oriented fully parallel 3-D PIC code OSIRIS.  
TPAE067 Femtosecond Electron Diffraction and its Application for Beam Characterization at the PAL electron, laser, gun, emittance 3721
  • D. Xiang
    TUB, Beijing
  • H. Ihee
    KAIST, Daejeon
  • I.S. Ko, S.J. Park
    PAL, Pohang, Kyungbuk
  • X.J. Wang
    BNL, Upton, Long Island, New York
  Electron diffraction is widely used in electron microscopy to obtain ultrahigh magnification factor, or crystallography to determine the internal structure of the molecule. High energy electron (MeV) has been used to probe the solid state thick sample, now being explored for femto-second electron diffraction (FED) to determine the transient structure of the molecule. We are proposing to perform FED using a photocathode RF gun at the Pohang Accelerator Laboratory (PAL), and develop an advanced electron beam diagnostic tool based on the electron diffraction. In this paper we will study how the diffraction pattern can be used to extract the information on the beam’s divergence. With a well-known sample, such as aluminum foil, whose internal structure is predetermined, the diffraction pattern for both single electron and the electron beam with a given divergence distribution can be calculated. Our proposed technique shows great potential of electron diffraction in beam divergence characterization. An experiment to verify the practicality of this method is under preparation and will be carried out at the proposed high brightness R&D facility at the PAL) in the near future.  
TPAT002 Three-Dimensional Simulation of Large-Aspect-Ratio Ellipse-Shaped Charged-Particle Beam Propagation simulation, focusing, vacuum, permanent-magnet 823
  • R. Bhatt, C. Chen, J.Z. Zhou
    MIT/PSFC, Cambridge, Massachusetts
  Funding: U.S. Department of Energy: Grant No. DE-FG02-95ER40919, Grant No. DE-FG02-01ER54662, Air Force Office of Scientific Research: Grant No. F49620-03-1-0230, and the MIT Deshpande Center for Technological Innovation.

The three-dimensional trajectory code, OMNITRAK, is used to simulate a space-charge-dominated beam of large-aspect-ratio elliptic cross-section propagating in a non-axisymmetric periodic permanent magnet focusing field. The simulation results confirm theoretical predictions in the paraxial limit. A realistic magnetic field profile is applied, and the beam sensitivity to magnet nonlinearities and misalignments is studied. The image-charge effect of conductor walls is examined for a variety of beam tunnel sizes and geometries.

TPAT006 Impact of Optics on CSR-Related Emittance Growth in Bunch Compressor Chicanes emittance, optics, shielding, synchrotron 1015
  • T. Limberg, M. Dohlus
    DESY, Hamburg
  The dependence of emittance growth due to Coherent Synchrotron Radiation (CSR) in bunch compressor chicanes on optics has been noticed and empirically studied in the past. We revisit the subject, suggesting a model to explain slice emittance growth dependence on chicane optics. A simplified model to calculate projected emittance growth when it is mainly caused by transverse slice centroid offsets is presented. It is then used to find optimal compensation of centroid kicks in the single chicanes of a two-stage compression system by adjusting the phase advance of the transport in between and the ration of the compression factors.  
TPAT007 RF Defocusing in Super-Conducting Structure with Constant Geometry focusing, quadrupole 1042
  • Y. Senichev, R. Maier, N.E. Vasyukhin
    FZJ, Jülich
  Due to higher accelerating gradient in the super-conducting linac the RF defocusing factor plays significant role in the beam dynamics. Together with the space charge it is a main reason for the stability loss. Usually it is estimated in frame of the travelling wave formalism with synchronous motion. However, the super-conducting cavity is desirable to have the constant geometry, when synchronous motion is absent. In this case the quasi-synchronous phase velocity is adjusted by RF phasing. In this paper we investigate RF defocusing factor in absent of synchronism between the beam and the accelerating structure.  
TPAT015 Simulations of Error-Induced Beam Degradation in Fermilab's Booster Synchrotron booster, emittance, synchrotron, simulation 1458
  • P.S. Yoon
    Rochester University, Rochester, New York
  • C.L. Bohn
    Northern Illinois University, DeKalb, Illinois
  • W. Chou
    Fermilab, Batavia, Illinois
  Funding: Work supported by the University Research Association, Inc. under U.S. Department of Energy (DOE) contract No. DE-AC02-76-CH03000, and by DOE grant No. DE-FG02-04ER41323 to NIU, and by DOE grant No. DE-FG02-91ER40685 to University of Rochester.

Individual particle orbits in a beam will respond to both external focusing and accelerating forces as well as internal space-charge forces. The external forces will reflect unavoidable systematic and random machine errors, or imperfections, such as jitter in magnet and radio-frequency power supplies, as well as magnet translation and rotation alignment errors. The beam responds in a self-consistent fashion to these errors; they continually do work on the beam and thereby act as a constant source of energy input. Consequently, halo formation and emittnace growth can be induced, resulting in beam degradation and loss. We have upgraded the ORBIT-FNAL package and used it to compute effects of machine errors on emittance dilution and halo formation in the existing FNAL-Booster synchrotron. This package can be applied to study other synchrotrons and storage rings, as well.

TPAT019 Discussions on the Cancellation Effect on a Curved Orbit transverse-dynamics, emittance, simulation, storage-ring 1631
  • R. Li, Y.S. Derbenev
    Jefferson Lab, Newport News, Virginia
  Funding: Work supported by DOE Contract DE-AC05-84ER40150.

The canonical formulation and the cancellation effect for bunch dynamics under collective interaction on a curved orbit were presented in Ref. [*]. Some possible controversial representations of the cancellation effect were later addressed by Geloni et al.** In this study, we discuss all the points raised in Ref. [**] based on our canonical treatment, and show how these points can be perceived from the view point of the cancellation picture.

*R. Li and Ya. S. Derbenev, Jefferson Laboratory Report No. LJAB-TN-02-054, 2003. **G. Geloni et al., DESY Report No. DESY 03-165, 2003.

TPAT022 Future Plans for the Small Isochronous Ring quadrupole, focusing, betatron, dipole 1778
  • E.P. Pozdeyev
    Jefferson Lab, Newport News, Virginia
  • F. Marti, R.C. York
    NSCL, East Lansing, Michigan
  • J.A. Rodriguez
    CERN, Geneva
  Funding: Work supported by NSF Grant #PHY-0110253 and DOE Contract DE-AC05-84ER40150.

The Small Isochronous Ring has been operational at Michigan State University since December 2003. It is used for experimental studies of the beam dynamics in high-intensity isochronous cyclotrons and synchrotrons at the transition energy. The operational experience with SIR has proven that the ring can be successfully used to study space charge effects in accelerators. The low velocity of beam particles in the ring allowed us to achieve a high accuracy of longitudinal profile measurements that is difficult to achieve in full-size accelerators. The experimental data obtained in the ring was used for validation of multi-particle, space-charge codes CYCO and WARP3D. Inspired by the solid performance of SIR in the isochronous regime, we consider options for expanding the scope of the beam physics studied in the ring. In this paper, we outline possible future experiments and discuss required modifications of the ring optics and hardware.

TPAT028 TRACK: The New Beam Dynamics Code linac, simulation, ion, multipole 2053
  • B. Mustapha, V.N. Aseev, E.S. Lessner, P.N. Ostroumov
    ANL, Argonne, Illinois
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. W-31-109-ENG-38.

The new ray-tracing code TRACK was developed* to fulfill the special requirements of the RIA accelerator systems. The RIA lattice includes an ECR ion source, a LEBT containing a MHB and a RFQ followed by three SC linac sections separated by two stripping stations with appropriate magnetic transport systems. No available beam dynamics code meet all the necessary requirements for an end-to-end simulation of the RIA driver linac. The latest version of TRACK was used for end-to-end simulations of the RIA driver including errors and beam loss analysis.** In addition to the standard capabilities, the code includes the following new features: i) multiple charge states ii) realistic stripper model; ii) static and dynamic errors iii) automatic steering to correct for misalignments iv) detailed beam-loss analysis; v) parallel computing to perform large scale simulations. Although primarily developed for simulations of the RIA machine, TRACK is a general beam dynamics code. Currently it is being used for the design and simulation of future proton and heavy-ion linacs at TRIUMF, Fermilab, JLAB and LBL.

*P.N. Ostroumov and K.W. Shepard. Phys. Rev. ST. Accel. Beams 11, 030101 (2001). **P.N. Ostroumov, V. N. Aseev, B. Mustapha. Phys. Rev. ST. Accel. Beams, Volume 7, 090101 (2004).

TPAT031 Painting Self-Consistent Beam Distributions in Rings SNS, quadrupole, injection, lattice 2194
  • J.A. Holmes, S.M. Cousineau, V.V. Danilov
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

We define self-consistent beam distributions to have the following properties: 1) time-independence or periodicity, 2) linear space charge forces, and 3) maintainance of their defining shape and density under all linear transformations. The periodic condition guarantees zero space-charge-induced halo growth and beam loss during injection. Some self-consistent distributions can be manipulated into flat, or even point-like, beams, which makes them interesting to colliders and to heavy-ion fusion. This paper presents methods for painting 2D and 3D self-consistent distributions and for their manipulation to produce flat and point-like beams.

TPAT032 Transverse Stability Studies of the SNS Ring SNS, impedance, extraction, injection 2254
  • J.A. Holmes, V.V. Danilov
    ORNL, Oak Ridge, Tennessee
  • L.K. Jain
    UW/Physics, Waterloo, Ontario
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

Detailed studies of the transverse stability of the SNS ring have been carried out for realistic injection scenarios. For coasting beam models and single harmonic impedances, analytic and computational results including phase slip, chromaticity, and space charge are in excellent agreement. For the dominant extraction kicker impedance and bunched beams resulting from injection, computationally determined stability thresholds are significantly higher than for coasting beams. At this time, we have no analytic model to treat the bunched beam case, but we present a formulation that provides an approach to this problem.

TPAT033 Experimental Characterizations of 4-D Transverse Phase-Space of a Compressed Beam emittance, linac, electron, focusing 2263
  • F. Zhou, R.B. Agustsson, G. Andonian, D. Cline, A.Y. Murokh, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • I. Ben-Zvi, V. Yakimenko
    BNL, Upton, Long Island, New York
  Funding: Work supported by U.S. DOE.

Coherent synchrotron radiation can significantly distort beam phase spaces in longitudinal direction and bending plane through a bunch compressor. A tomography technique is used to reconstruct transverse phase space of electron beam. Transverse 4-D phase spaces are systematically measured at UCLA/ATF compressor and their characteristics with different bunch compression conditions are analyzed.

TPAT038 Chaos in Time-Dependent Space-Charge Potentials emittance, linac, proton 2515
  • G.T. Betzel, C.L. Bohn, I.V. Sideris
    Northern Illinois University, DeKalb, Illinois
  We consider a spherically symmetric, homologously breathing, space-charge-dominated beam bunch in the spirit of the particle-core model. The question we ask is: How does the time dependence influence the population of chaotic orbits? The static beam has zero chaotic orbits; the equation of particle motion is integrable up to quadrature. This is generally not true once the bunch is set into oscillation. We quantify the population of chaotic orbits as a function of space charge and oscillation amplitude (mismatch). We also apply a newly developed measure of chaos, one that distinguishes between regular, sticky, and wildly chaotic orbits, to characterize the phase space in detail. We then introduce colored noise into the system and show how its presence modifies the dynamics. One finding is that, despite the presence of a sizeable population of chaotic orbits, halo formation in the homologously breathing beam is much less prevalent than in an envelope-matched counterpart wherein an internal collective mode is excited.  
TPAT046 Nonlinear Stability of Intense Mismatched Beams in a Uniform Focusing Field focusing, coupling, emittance, beam-losses 2941
  • R. Pakter, F.B. Rizzato, W. Simeoni
    IF-UFRGS, Porto Alegre
  Funding: Work supported by Brazilian agencies CNPq, CAPES, and FAPERGS.

We investigate the nonlinear coupling between axisymmetric and elliptic oscillations in the dynamics of intense beams propagating in a uniform magnetic focusing field. It is shown that finite amplitude mismatched oscillations of an initially round beam may destabilize elliptic oscillations, heavily affecting stability and the shape of the beam. This is a potential mechanics for beam particle loss in such systems. Self consistent simulations are performed to verify the findings.

TPAT047 A Space Charge Compensation Study of Low Energy Hydrogen Ion Beams ion, simulation, electron, emittance 2947
  • A. BenIsmail, R. Duperrier, D. Uriot
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • N. Pichoff
    CEA/DAM, Bruyères-le-Châtel
  Funding: Work supported by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

High-power accelerators are being studied for several projects including accelerator driven neutron or neutrino sources. The low energy part of these facilities has to be carefully optimized to match the beam requirements of the higher energy parts. The complexity of high intensity beam dynamics in the low energy line is essentially due to the non-linear space charge effects. The PIC code CARTAGO* has been developed in order to simulate the beam transport at low energy including the temporal evolution effects of the space charge compensation. This paper relates the structure and the numerical methods of a 2D (r,z) new version of the code. The effects of the longitudinal space charge, the image charge and external 2D (r,z) magnetic field were included. The results of H+ and H- beam transports using solenoid lenses are discussed. Space charge compensation degrees are given for each studied cases.

*A. Ben Ismail et al., in Space Charge Compensation in Low Energy Proton Beams, proceeding of the International Linear Accelerator Conference, Lübeck, 2004.

TPAT048 The Transverse Nonlinear Tune Shift as Stabilising Factor in Halo Creation in Space Charge Dominated Beam resonance, focusing, linac, quadrupole 3004
  • N.E. Vasyukhin, Y. Senichev, R. Tölle
    FZJ, Jülich
  Funding: We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (CARE, contract number RII3-CT-2003-506395).

One of the most important problems for space charge dominated beam in the low energy part of superconducting linac is halo creation. Many authors show one of the key effects in halo creatiation is parametric resonance due to the mismatched beta-function oscillation (between core and particle). To estimate parametric resonance conditions the nonlinear tune shift for binomial distributed beam is described theoretically in this article. Simultaneously the beam dynamics simulation 3D PIC code was developed. The transverse oscillation frequencies compared with parametric resonance criteria. As a result the recommendation for space charge shift is concluded to minimize halo creation.

TPAT049 Comparison of Beam Dynamic in Different Superconducting Options of Low Energy High Intense Linac focusing, quadrupole, linac, simulation 3058
  • N.E. Vasyukhin, Y. Senichev, R. Tölle
    FZJ, Jülich
  Funding: We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (CARE, contract number RII3-CT-2003-506395).

At present the superconducting proton linacs have obvious applications in energy range ~100-1000 MeV. For the lower energy the comprehensive investigations are required. In this article the various variants of superconducting options from 3MeV up to 100MeV are discussed. The considered variants include both the conventional combination of half-wave and spoke cavity with quadrupoles and new schemes. In conclusion the table of major parameters for different structures is given.

TPAT050 Beam Dynamics Design of the L3BT for J-PARC injection, linac, simulation, emittance 3091
  • T. Ohkawa
    JAERI, Ibaraki-ken
  • M. Ikegami
    KEK, Ibaraki
  L3BT is beam transportation line from the linac to the 3-GeV RCS which is the part of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC.In this paper, especially results of the beam simulation of the injection section of the L3BT are presented. And the matching of rms envelopes and dispersion function for space charge dominated beams are also discussed.  
TPAT054 Dispersion Matching of a Space Charge Dominated Beam at Injection into the CERN PS Booster optics, injection, simulation, booster 3283
  • K. Hanke, J. Sanchez-Conejo, R. Scrivens
    CERN, Geneva
  In order to match the dispersion at injection into the CERN PS Booster, the optics of the injection line was simulated using two different codes (MAD and TRACE). The simulations were benchmarked versus experimental results. The model of the line was then used to re-match the dispersion. Experimental results are presented for different optics of the line. Measurements with varying beam current show the independence of the measured quantity of space-charge effects.  
TPAT055 On Start to End Simulation and Modeling Issues of the Megawatt Proton Beam Facility at PSI simulation, cyclotron, injection, proton 3319
  • A. Adelmann, S.R.A. Adam, H. Fitze, R. Geus, M. Humbel, L. Stingelin
    PSI, Villigen
  At the Paul Scherrer Institut (PSI) we routinely extract a one megawatt (CW) proton beam out of our 590 MeV Ring Cyclotron. In the frame of the ongoing upgrade program, large scale simulations have been undertaken in order to provide a sound basis to assess the behaviour of very intense beams in cyclotrons. The challenges and attempts towards massive parallel three dimensional start-to- end simulations will be discussed. The used state of the art numerical tools (mapping techniques, time integration, parallel FFT and finite element based multigrid Poisson solver) and their parallel implementation will be discussed. Results will be presented in the area of: space charge dominated beam transport including neighbouring turns, eigenmode analysis to obtain accurate electromagnetic fields in large the rf cavities and higher order mode interaction between the electromagnetic fields and the particle beam. For the problems investigated so far a good agreement between theory i.e. calculations and measurements is obtained.  
TPAT058 Calculation of Electron Beam Potential Energy from RF Photocathode Gun simulation, gun, electron, acceleration 3441
  • W. Liu
    Illinois Institute of Technology, Chicago, Illinois
  • W. Gai, J.G. Power, H. Wang
    ANL, Argonne, Illinois
  Funding: U.S. Department of Energy.

In this paper, we consider the contribution of potential energy to beam dynamics as simulated by PARMELA at low energies (10 - 30MeV). We have developed a routine to calculate the potential energy of the relativistic electron beam using the static coulomb potential in the rest frame (first order approximation as in PARMELA). We found that the potential energy contribution to the beam dynamics could be very significant, particularly with high charge beams generated by an RF photocathode gun. Our results show that when the potential energy is counted correctly and added to the kinetic energy from PARMELA, the total energy is conserved. Simulation results of potential and kinetic energies for short beams (~1 mm) at various charges (1 - 100 nC) generated by a high current RF photocathode gun are presented.

TPAT059 Space Charge Experiments and Simulation in the Fermilab Booster booster, simulation, injection, resonance 3453
  • J.F. Amundson, P. Spentzouris
    Fermilab, Batavia, Illinois
  Funding: Scientific Discovery through Advanced Computing project, "Advanced Computing for 21st Century Accelerator Science and Technology," U.S. DOE/SC Office of High Energy Physics and the Office of Advanced Scientific Computing Research.

We have studied space charge effects in the Fermilab Booster. Our studies include investigation of coherent and incoherent tune shifts and halo formation. We compare experimental results with simulations using the 3-D space charge package Synergia.

TPAT060 Overview of the Synergia 3-D Multi-Particle Dynamics Modeling Framework simulation, booster, emittance, injection 3490
  • P. Spentzouris, J.F. Amundson
    Fermilab, Batavia, Illinois
  • D.R. Dechow
    Tech-X, Boulder, Colorado
  Funding: Scientific Discovery through Advanced Computing project, "Advanced Computing for 21st Century Accelerator Science and Technology," U.S. DOE/SC Office of High Energy Physics and the Office of Advanced Scientific Computing Research.

High precision modeling of space-charge effects is essential for designing future accelerators as well as optimizing the performance of existing machines. Synergia is a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher-order optics implementation. We describe the Synergia framework and model benchmarks we obtained by comparing to semi-analytic results and other codes. We also present Synergia simulations of the Fermilab Booster accelerator and comparisons with experiment.

TPAT062 Uncorrelated Energy Spread and Longitudinal Emittance for a Photoinjector Beam gun, emittance, electron, simulation 3570
  • Z. Huang, D. Dowell, P. Emma, C. Limborg-Deprey, G.V. Stupakov, J. Wu
    SLAC, Menlo Park, California
  Longitudinal phase space properties of a photoinjector beam are important in many areas of high-brightness beam applications such as bunch compression, transverse-to-longitudinal emittance exchange, and high-gain free-electron lasers. In this paper, we discuss both the rf and the space charge contributions to the uncorrelated energy spread of the beam generated from a laser-driven rf gun. We compare analytical expressions for the uncorrelated energy spread and the longitudinal emittance with numerical simulations and recent experimental results.  
TPAT066 Significance of Space Charge and the Earth Magnetic Field on the Dispersive Characteristics of a Low Energy Electron Beam emittance, simulation, lattice, electron 3691
  • R.A. Kishek, G. Bai, S. Bernal, T.F. Godlove, I. Haber, P.G. O'Shea, B. Quinn, C. Tobin, M. Walter
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
  Funding: This work is funded by U.S. Dept. of Energy grant numbers DE-FG02-94ER40855 and DE-FG02-92ER54178.

The combination of energy spread and space charge provides a rich domain for interesting beam dynamics that are currently not well understood. The University of Maryland Electron Ring (UMER) [1] is a small scaled ring designed to probe the little-known regions of higher beam intensities using low-energy electrons. As such, design, commissioning and operation of UMER present many challenges, some quite novel. For example the UMER beam energy of 10 keV makes the beam very sensitive to the Earth magnetic field, which we can fortunately use to assist in bending the beam. This paper presents a systematic simulation study of the interaction of space charge and energy spread, with and without the earth magnetic field.

*"Commissioning of the University of Maryland Electron Ring (UMER)," S. Bernal, et al., this conference.

TPAT067 Study of Longitudinal Space-Charge Wave Dynamics in Space-Charge Dominated Beams simulation, gun, electron, ion 3712
  • K. Tian, Y. Cui, I. Haber, Y. Huo, R.A. Kishek, P.G. O'Shea, Y. Zou
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
  Funding: Work supported by the U.S. Department of Energy, Office of Science.

Understanding the dynamics of longitudinal space- charge waves is very important for advanced accelerator research. Although analytical solutions of space-charge wave equations based on the cold fluid model exist in one dimension, there are few results for two-dimensional wave evolution. One-dimensional theory predicts two eigen solutions, given an initial perturbation. One is called the fast wave, which moves toward the beam head in the beam frame and the other is termed the slow wave, which moves backward in the beam frame. In this paper, we report experimental results of space charge wave studies conducted on a 2.3 meter long straight beam line at the University of Maryland. An energy analyzer is used to directly measure the energy of space-charge waves at the end of the transport line, which demonstrates the decomposition of an initial current perturbation into a slow wave and a fast wave. A PIC code, WARP [1], is used to simulate this experiment and the behavior of longitudinal waves in space-charge dominated beams in an R-Z geometry. Simulations shown here also demonstrate if the initial current and velocity perturbation strengths are chosen properly, only fast or slow waves could be selectively generated.

TPAT070 Intensity and Bunch-Shape Dependent Beam Loss Simulation for the SIS100 beam-losses, resonance, ion, lattice 3807
  • G. Franchetti, I. Hofmann, A. Orzhekovskaya, P.J. Spiller
    GSI, Darmstadt
  We have studied the combined influence of magnet nonlinearities, space charge and bunch shapes consistent with different RF scenarios on the long-term loss in the planned SIS100 synchrotron of the FAIR project. The simulation is a 3D tracking with "frozen-in" space charge calculation employing the MICROMAP code. Comparing a one-harmonic RF scenario with an alternative double-harmonic scenario we find that for the same absolute beam loss roughly twice the number of particles can be stored in the double-RF system. Moreover, a barrier bucket RF scenario is found to be loss free. This is due to the fact that loss is caused here by space-charge induced periodic resonance crossing, which is absent for the strictly flat bunch profile of the barrier case.  
TPAT092 Numerical Studies of the Friction Force for the RHIC Electron Cooler electron, ion, simulation, plasma 4278
  • A.V. Fedotov, I. Ben-Zvi, V. Litvinenko
    BNL, Upton, Long Island, New York
  • D.T. Abell, D.L. Bruhwiler, R. Busby, P. Schoessow
    Tech-X, Boulder, Colorado
  Funding: Work performed under the auspices of the U.S. Department of Energy.

Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require ~55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. Available formulas for magnetized dynamical friction are derived in the logarithmic approximation, which is questionable in this regime. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code.* VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles.** Various aspects of the friction force, such as dependence on magnetic field, scaling with ion charge number and others, are addressed for the problem of high-energy electron cooling in the RHIC regime.

*C. Nieter & J.R. Cary, J. Comp. Phys. 196 (2004), p. 448. **D.L. Bruhwiler et al., Proc. 33rd ICFA Advanced Beam Dynamics Workshop (2004).

TOPB003 Progress in Large-Scale Femtosecond Timing Distribution and RF-Synchronization laser, polarization, electron, feedback 284
  • F.X. Kaertner, H. Byun, J. Chen, F J. Grawert, F.O. Ilday, J. Kim, A. Winter
    MIT, Cambridge, Massachusetts
  For future advances in accelerator physics in general and seeding of free electron lasers (FELs) in particular, precise synchronization between low-level RF-system, photo-injector laser, seed radiation as well as potential probe lasers at the FEL output is required. We propose a modular system based on optical pulse trains from mode-locked lasers for timing distribution and timing information transfer in the optical domain to avoid detrimental effects due to amplitude to phase conversion in photo detectors. Synchronization of various RF- and optical sub-systems with femtosecond precision over distances of several hundred meters can be achieved. First experimental results and limitations of the proposed scheme for timing distribution are discussed.  
TPPE007 Energy Correction for High Power Proton/H Minus Linac Injectors linac, SNS, injection, feedback 1075
  • D. Raparia, Y.Y. Lee, J. Wei
    BNL, Upton, Long Island, New York
  High-energy proton/H minus (> GeV) linear accelerators suffer from energy jitter due to RF amplitude and phase stability. For high-power operations, such energy jitter often results in beam losses at more than 1 W/m level required for hands-on maintenance. Depending upon the requirements for next accelerator in the chain, this energy jitter may or may not require correction. This paper discusses the sources of energy jitter and correction feasibility with specific examples of the Spallation Neutron Source linac and a higher-energy H minus linac.  
TPPE013 Simulations of Solenoid and Electrostatic Quadrupole Focusing of High Intensity Beams from ECR Ion Source at NSCL focusing, quadrupole, emittance, simulation 1336
  • Q. Zhao, A.I. Balabin, M. Doleans, F. Marti, J.W. Stetson, X. Wu
    NSCL, East Lansing, Michigan
  Solenoidal focusing has been widely used to focus beams at various injectors for its axisymmetric focusing with reasonable effectiveness. Experiments and simulations have shown that space charge effects can significantly deteriorate the beam quality when solenoidal focusing is used in a multi-component beam. This is due to the magnetic focusing strength dependence on the beam charge-to-mass ratio. Electrostatic quadrupole focusing has been explored as an alternate option at NSCL for the injection line of the superconducting cyclotron. We present in this paper the results of simulations for both systems. The electrostatic quadrupoles have been optimized to reduce the radial dependent aberrations and to increase the transmission efficiency.  
TPPE042 Study of Secondary Emission Enhanced Photoinjector electron, cathode, gun, scattering 2711
  • X.Y. Chang, I. Ben-Zvi, A. Burrill, P.D.J. Johnson, J. Kewisch, T. Rao, Z. Segalov, Y. Zhao
    BNL, Upton, Long Island, New York
  The secondary emission enhanced photoinjector (SEEP) is a very promising new approach to the generation of high-current, high-brightness electron beams. Primary electrons with a few thousand electron-volts of energy strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the “gun” through a Negative Electron Affinity (NEA) surface of the diamond (Hydrogen terminated). We present the calculation of heating power sources and the temperature distribution in details. Some properties of the secondary electron beam related to beam dynamics are also reported. The results show feasibility of this kind of cathode.  
TPPE043 Electron Beam Generation and Transport for the RHIC Electron Cooler emittance, electron, linac, cathode 2774
  • J. Kewisch, I. Ben-Zvi, X.Y. Chang
    BNL, Upton, Long Island, New York
  Funding: Work performed under Contract Number DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy.

An electron cooler, based on an Energy Recovery Linac (ERL) is under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. This will be the first electron cooler operating at high energy with bunched beams. A better understanding of the cooling process and more accurate measurements of Intra Beam Scattering in RHIC have imposed increased requirements on the electron accelerator: Besides a doubling of the bunch charge to 20 nC, the strength of the cooling solenoid was increased five-fold to 5 Tesla. The magnetic field on the cathode should be increased to 500 Gauss to match the magnetization required in the cooling solenoid. This paper reports the measures taken to minimize the electron beam emittance in the cooling section. The front-to-end simulation using different tracking codes is presented.

TPPE046 Computer Simulation of the UMER Gridded Gun cathode, simulation, gun, electron 2908
  • I. Haber, S. Bernal, R.A. Kishek, P.G. O'Shea, Y. Zou
    IREAP, College Park, Maryland
  • A. Friedman, D.P. Grote
    LLNL, Livermore, California
  • M. Reiser
    University Maryland, College Park, Maryland
  • J.-L. Vay
    LBNL, Berkeley, California
  Funding: This work is supported by the U.S. DOE under contract Nos. DE-FG02-02ER54672 and DE-FG02-94ER40855 at the UMD, and DE-AC03-76SF00098 at LBNL and W-7405-ENG-48 at LLNL.

The electron source in the University of Maryland Electron Ring (UMER) injector employs a grid 0.15 mm from the cathode to control the current waveform. Under nominal operating conditions, the grid voltage during the current pulse is sufficiently positive relative to the cathode potential to form a virtual cathode downstream of the grid. Three-dimensional computer simulations have been performed that use the mesh refinement capability of the WARP particle-in-cell code to examine a small region near the beam center in order to illustrate some of the complexity that can result from such a gridded structure. These simulations have been found to reproduce the hollowed velocity space that is observed experimentally. The simulations also predict a complicated time-dependent response to the waveform applied to the grid during the current turn-on. This complex temporal behavior appears to result directly from the dynamics of the virtual cathode formation and may therefore be representative of the expected behavior in other sources, such as some photoinjectors, that are characterized by a rapid turn-on of the beam current.

TPPE051 The Optimization of the Electron Injector Resonance System Based on the Evanescent Oscillations electron, bunching, simulation, emittance 3170
  • S.A. Perezhogin, M.I. Ayzatskiy, K. Kramarenko, V.A. Kushnir, V.V. Mytrochenko, Z.V. Zhiglo
    NSC/KIPT, Kharkov
  The report presents the results of the bunching system optimization and electrons motion simulation in the compact S – band injector. The injector consists of the low-voltage diode electron gun and optimized bunching system based on the resonant system with the evanescent oscillations. The amplitude of RF electrical field is increased along the axis of the bunching system. The resonance system optimization allows to obtain electron bunches with the phase length less than 10° (for 70 % particles) at the injector exit.  
TPPE064 Space-Charge Effects Near a Cathode cathode, electron, simulation, laser 3629
  • V. Gorgadze
    UCB, Berkeley, California
  • J.S. Wurtele
    LBNL, Berkeley, California
  Funding: This work was supported by the Director, Office of Science of the U.S. DOE under Contract No. DE-AC03-76SF00098.

RF photocathode guns are excellent sources of high brightness electron bunches. In the limit of high-current short bunches the electron are complicated space-charge fields. To mitigate space charge effect downstream of the gun it is often desirable to produce electorn bunches with uniform distribution. Our goal is to understand to what extent the non-uniformity of the laser pulse intensity is responsible for a non-uniform electron distribution and to what extent this is due to the electron beam dynamics near to the cathode. We investigate these effects with particle-in-cell simulations and simple theory. These studies are focused on the regime where the peak current as well as the temporal current profile are influenced by the self-fields of the bunch. The simulation code XOOPIC has been employed. The critical current limitation for virtual cathode formation and current density profile at the exit of the injector have been found.

TPPT033 Simulations Using the VORPAL Code of Electron Impact Ionization Effects in Waveguide Breakdown Processes electron, simulation, ion, plasma 2298
  • P. Stoltz, J.R. Cary, P. Messmer, C. Nieter
    Tech-X, Boulder, Colorado
  Funding: Supported by Department of Energy SBIR Grant No. DE-FG03-02ER83554.

We present results of three-dimensional simulations using the VORPAL code of power absorbtion by stray electrons in X-band waveguides. These simulations include field emission from the waveguide surfaces, impact ionization of background gas, and secondary emission from the walls. We discuss the algorithms used for each of these electron effects. We show the power abosrbed as a function of background gas density. Finally, we present scaling results for running these simulations on Linux Clusters.

WPAP035 Emittance Compensation in Flat Beam Production in an RF Gun Linac emittance, electron, simulation, gun 2399
  • S. Wang
    ANL, Argonne, Illinois
  Funding: This research is supported by the U.S. Department of Energy under contract DE-FG02-92ER40747 and the National Science Foundation under contract NSF PHY-0244793.

Ya. Derbenev Proposed a flat beam production method in RF gun Linac, which passes the electron beam through a matched skew quadrupole channel and transform the initially transversely round beam into a flat beam. Fermilab/NICADD Photoinjector Laboratory has performed a lot of experiments, a ratio of 50 of the transverse emittances in x and y plane has been achieved and the ratio of 100 and higher is underway of research. In this paper, the S-shaped flat beam, found both in experiments and simulations, is investigated. The nonlinear transverse force from the RF field when the beam passes the superconducting cavity is found to be one of the sources which produce the transverse S-shape distribution and increase the emittance. An extra solenoid located before the superconducting cavity is proposed to be added to adjust the beam transverse size when the beam passes through the cavity. The resulted transverse nonlinear space-charge force is used to counter-act against the nonlinear transverse force from the RF field. PARMELA simulations have shown that, with proper setup of the extra solenoid, the emittance ratio can be enhanced by a factor of 2 and the S-shaped transverse distribution can also be eliminated.

WPAP037 Novel Method of Emittance Preservation in ERL Merging System in Presence of Strong Space Charge Forces electron, emittance, gun, linac 2512
  • D. Kayran, V. Litvinenko
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U.S. Department of Energy and partially funded by the US Department of Defence

Energy recovery linacs (ERLs) are potential candidates for the high power and high brightness electron beams sources. The main advantages of ERL are that electron beam is generated at relatively low energy, injected and accelerated to the operational energy in a ERL loop with a common linac, then is decelerated in the same loop down to injection energy and dumped. The intrinsic part of any ERL is a merging system for the low-energy beam with a high-energy beam passing around the ERL loop. One of the challenges for generating high charge high brightness e-beam in ERL is development of merging system, which provides achromatic condition for space charge dominated beam and which is compatible with the emittance compensation scheme. In this paper we present principles of operation of such merging system. We also describe an example of such system, which we call Zigzag or Z-system. We use a specific implementation for R&D ERL at Brookhaven for illustration.

WPAP038 Photoemission Studies on BNL/AES/JLab all Niobium, Superconducting RF Injector laser, cathode, electron, gun 2556
  • T. Rao, I. Ben-Zvi, A. Burrill, H. Hahn, D. Kayran, Y. Zhao
    BNL, Upton, Long Island, New York
  • M.D. Cole
    AES, Medford, NY
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  Funding: Under contract with the U.S. DOE, Contract No. DE-AC02-98CH10886.

Photoemission from all niobium superconducting injector is of considerable interest for the development of higher average current electron sources. In the past year, we have generated photocurrent from such an injector by irradiating the back wall of the 1/2 cell cavity with 248 nm and 266 nm laser beams. In this paper, we present the results of these measurements including the quantum efficiency, and its dependence on the field and wavelength. Issues related to the quenching of the cavity by the laser radiation will also be addressed.

WPAP043 Production of Transverse Controllable Laser Density Distribution in Fermilab/NICADD Photoinjector laser, electron, simulation, emittance 2783
  • J.L. Li, J.L. Li
    Rochester University, Rochester, New York
  • P. Piot, R. Tikhoplav
    Fermilab, Batavia, Illinois
  The Fermilab/NICADD photoinjector laboratory consist of a photoemission electron source based on an L band rf-gun. The CsTe photocathode is illuminated by an ultrashort UV laser. The transport line from the laser to the photocathode was recently upgraded to allow imaging of an object plane located ~20 m from the photocathode. This upgrade allows the generation of transverse laser distributions with controlled nonuniformity, yielding the production of an electron beam with various transverse densities patterns. Measuring the evolution of the artificial pattern on the electron bunch provides information that can be used to benchmark numerical simulations and investigate the impact of space charge. Preliminary data on these investigations are presented in the present paper.  
WPAP044 Advanced Electromagnetic Analysis for Electron Source Geometries cathode, electron, gun, acceleration 2815
  • M. Hess, C.S. Park
    IUCF, Bloomington, Indiana
  One of the challenging issues for analytically modeling electron sources, such as rf photoinjectors, is how to incorporate fully electromagnetic effects which are generated by the electron beam. The main difficulties that arise in finding an analytical solution of the electromagnetic fields are due to the complex shape of the conductor boundary, as well as the complicated structure of the beam density and current. Both of these problems can be handled self-consistently by using an electromagnetic Green’s function method. In this paper, we present a solution to the exact electromagnetic fields, which were derived from the Green’s function, for a simplified electron source conductor geometry, namely a semi-infinite circular pipe with an endcap. We assume that the beam currents are in the axial direction and satisfy the continuity equation in conjunction with the beam charge density, but may have arbitrary spatial and time dependency. We discuss how these analytical methods may be extended to include in the effect of one or multiple irises, which are found in rf photoinjector systems.  
WPAP055 A 3D Parallel Beam Dynamics Code for Modeling High Brightness Beams in Photoinjectors simulation, emittance, cathode, brightness 3316
  • J. Qiang, S.M. Lidia, R.D. Ryne
    LBNL, Berkeley, California
  • C. Limborg-Deprey
    SLAC, Menlo Park, California
  Funding: This work was supported by a SciDAC project in accelerator physics which is supported by the U.S. DOE/SC Office of High Energy Physics and the Office of Advanced Scientific Computing Research.

In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS and LUX photoinjectors. We also include a comparison of IMPACT-T and PARMELA results, and a comparison of IMPACT-T and ASTRA results.

WPAT053 Results of a High-Power Klystron Dip Test in the KEK Linac klystron, cathode, linac, injection 3235
  • K. Nakao, S. Fukuda, H. Katagiri, T. Matsumoto, S. Michizono, T. Takenaka, Y. Yano, M. Yoshida
    KEK, Ibaraki
  Dip test, which is the measurement of a klystron heater activity, is recently adopted as the standard measurement to maintain the klystron operation in the KEK electron-positron linac. In 2003, we began to use a dip test as the quick way to measure the emission characteristics from the klystron cathode. After the successful results, we made the dedicated measuring systems and measured the dips of the cathode emission of 60 operating klystrons in KEK electron-positron linac. These data are important to estimate the klystron cathode life and used to select the candidate klystrons of replacement in the summer maintenance period.  
WOPA002 Experimental Results from the Small Isochronous Ring cyclotron, simulation, electron, focusing 159
  • E.P. Pozdeyev
    Jefferson Lab, Newport News, Virginia
  • F. Marti, R.C. York
    NSCL, East Lansing, Michigan
  • J.A. Rodriguez
    CERN, Geneva
  Funding: Work supported by NSF Grant # PHY-0110253 and DOE Contract DE-AC05-84ER40150.

The Small Isochronous Ring (SIR) is a compact, low-energy storage ring designed to investigate the beam dynamics of high-intensity isochronous cyclotrons and synchrotrons at the transition energy. The ring was developed at Michigan State University and has been operational since December 2003. It stores 20 keV hydrogen beams with a peak current of 10-20 microamps for up to 200 turns. The transverse and longitudinal profiles of extracted bunches are measured with an accuracy of approximately 1 mm. The high accuracy of the measurements makes the experimental data attractive for validation of multi-particle space charge codes. The results obtained in the ring show a fast growth of the energy spread induced by the space charge forces. The energy spread growth is accompanied by a breakup of the beam bunches into separated clusters that are involved in the vortex motion specific to the isochronous regime. The experimental results presented in the paper show a remarkable agreement with simulations performed with the code CYCO. In this paper, we discuss specifics of space charge effects in the isochronous regime, present results of experiments in SIR, and conduct a detailed comparison of the experimental data with results of simulations.

ROPB003 Electron Cloud Dynamics in High-Intensity Rings electron, SNS, dipole, quadrupole 245
  • L. Wang, J. Wei
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U.S. Department of Energy. SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

Electron cloud due to beam induced multipacting is one of the main concerns for the high intensity rings because the electron multipacting becomes stronger with the increment of beam intensity. Electrons generated and accumulated inside the beam pipe form an "electron cloud" that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the dynamics of the typical electron multipacting in various magnetic fields and mitigation measures in both long bunch and short bunch rings.

ROPB008 Halo Mitigation Using Nonlinear Lattices focusing, collimation, simulation, damping 620
  • K.G. Sonnad, J.R. Cary
    CIPS, Boulder, Colorado
  This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simulation.  
RPPP005 Simulation Study of a Dogbone Damping Ring wiggler, damping, emittance, simulation 928
  • Y. Ohnishi, K. Oide
    KEK, Ibaraki
  Damping ring is one of the major issues in the future linear collider (ILC). We discuss the design of the dogbone damping ring and the performance that includes dynamic apertures, space charge effects, and optics corrections.  
RPPT011 Optimized Bunch Compression System for the European XFEL emittance, optics, linac, RF-structure 1236
  • T. Limberg, V. Balandin, R. Brinkmann, W. Decking, M. Dohlus, K. Floettmann, N. Golubeva, Y. Kim, E. Schneidmiller
    DESY, Hamburg
  The European XFEL bunch compressor system has been optimized for greater flexibility in parameter space. Operation beyond the XFEL design parameters is discussed in two directions: achieving the uppermost number of photons in a single pulse on one hand and reaching the necessary peak current for lasing with a pulse as short as possible on the other. Results of start-to-end calculations including 3D-CSR effects, space charge forces and the impact on wake fields demonstrate the potential of the XFEL for further improvement or, respectively, its safety margin for operation at design values.  
RPPT016 Effects of Wakefields on the Microbunching Instabilities at PAL-XFEL linac, impedance, synchrotron, synchrotron-radiation 1473
  • E.-S. Kim
    PAL, Pohang, Kyungbuk
  We present effects of the wakefields in accelerating structures of the S-band linac on the microbunching instabilties at the PAL-XFELs. Analytical calculations are performed to investigate the gains of the instabilities in the accelerator system for the PAL-XFELs.  
RPPT020 Space Charge Effects for the ERL Prototype Injector Line at Daresbury Laboratory emittance, dipole, linac, quadrupole 1676
  • B.D. Muratori, H.L. Owen
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • C. Gerth
    DESY, Hamburg
  • M.J. de Loos, S.B. van der Geer
    PP, Soest
  Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will operate at a beam energy of 35 MeV. In this paper we examine the space charge effects on the beam dynamics in the ERLP injector line. A Gaussian particle distribution is tracked with GPT (General Particle Tracer) through the injection line to the main linac to calculate the effect of 3Dspace charge in the dipoles. The nominal beam energy in the injection line is 8.3 MeV and the bunch charge 80 pC. The effects of space charge on the transverse and longitudinal emittance are studied for various electron beam parameter settings.  
RPPT030 Alternate Tunings for the Linac Coherent Light Source Photoinjector emittance, laser, cathode, injection 2140
  • C. Limborg-Deprey, P. Emma
    SLAC, Menlo Park, California
  Funding: This work was supported by US Department of Energy, contract No. DE-AC03-76SF00515A06.

The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10 ps long electron bunches of 1nC with a normalized transverse emittance of less than 1 mm.mrad for 80% of the slices constituting the core of the bunch at 135 MeV. Tolerances and regulation requirements are tight for this tuning. The main contribution to emittance is the "cathode emittance which counts for 0.72 mm.mrad for the nominal tuning. As the "cathode emittance" scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2nC, we believe we can achieve an emittance closer to 0.4 mm.mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the nominal one. In this paper, we also discuss how emittance could be further reduced by using the appropriate laser pulse shaping.

FPAE035 Steps Towards a 3 mA, 1.8 MW Proton Beam at the PSI Cyclotron Facility cyclotron, target, injection, simulation 2405
  • P.A. Schmelzbach, S.R.A. Adam, A. Adelmann, H. Fitze, G. Heidenreich, J.-Y. Raguin, U. Rohrer, P.K. Sigg
    PSI, Villigen
  The PSI Cyclotron Facility produces routinely a 1.8-1.9 mA proton beam at 590 MeV. The beam power reaches 1.1 MW at the the pion production targets and 0.7 MW at the neutron spallation target SINQ. The accelerator complex will be analysed in respect to his potential for future improvements. The ongoing developments aiming to increase the beam intensity to 3 mA and hence the beam power to 1.8 MW will be discussed. Smooth extrapolations of the observed machine parameters as well as recent advances in the theoretical treatment of space charge dominated beams show that this goal can be achieved with available technologies. IA new RF-cavity operated at a voltage in excess of 1 MV has been successfully tested and installed in the Ring Cyclotron. Bunchers for the low energy and the medium energy transfer lines are in the design phase. A conceptual study of new accelerating cavities to replace the obsolete flattop-cavities of the Injector Cyclotron has been performed. While the upgrade of the Ring Cyclotron with four new cavities will be completed in 2008, it is still an open question whether this accelerator will be operated in the "round beam" mode like the Injector Cyclotron or with an upgraded flattopping system.  
FPAP014 Electron Cloud Measurements in the SPS in 2004 electron, simulation, vacuum, proton 1371
  • D. Schulte, G. Arduini, V. Baglin, J.M. Jimenez, F. Zimmermann
    CERN, Geneva
  Novel measurements of the electron cloud have been performed in the SPS in 2004. In this machine the beam consists of a number of short bunch trains. By varying the distance between these trains it is possible to witness the survival of the electrons after the bunch passage. In this paper, results from simulations and experiments are compared.  
FPAP022 Long Time Simulation of LHC Beam Propagation in Electron Clouds simulation, electron, emittance, injection 1769
  • B. Feng, A.F. Ghalam, T.C. Katsouleas
    USC, Los Angeles, California
  • E. Benedetto, F. Zimmermann
    CERN, Geneva
  • V.K. Decyk, W.B. Mori
    UCLA, Los Angeles, California
  In this report we show the simulation results of single-bunch instabilities caused by interaction of a proton beam with an electron cloud for the Large Hadron Collider (LHC) using the code QuickPIC [1]. We describe three new results: 1) We test the effect of the space charge of the beam on itself; 2) we add the effect of dispersion in the equation of motion in the x direction, and 3) we extend previous modeling by an order of magnitude (from 50ms to 500ms) of beam circulation time. The effect of including space charge is to change the emittance growth by less than a few percent. Including dispersion changes the plane of instability but keeps the total emittance approximately the same. The longer runs indicate that the long term growth of electron cloud instability of the LHC beam cannot be obtained by extrapolating the results of short runs.  
FPAP029 Nonlinear Delta-f Particle Simulations of Collective Effects in High-Intensity Bunched Beams simulation, coupling, collective-effects, focusing 2107
  • H. Qin, R.C. Davidson, S.R. Hudson, E. Startsev
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U.S. Department of Energy.

The collective effects in high-intensity 3D bunched beams are described self-consistently by the nonlinear Vlasov-Maxwell equations.* The nonlinear delta-f method,** a particle simulation method for solving the nonlinear Vlasov-Maxwell equations, is being used to study the collective effects in high-intensity 3D bunched beams. The delta-f method, as a nonlinear perturbative scheme, splits the distribution function into equilibrium and perturbed parts. The perturbed distribution function is represented as a weighted summation over discrete particles, where the particle orbits are advanced by equations of motion in the focusing field and self-consistent fields, and the particle weights are advanced by the coupling between the perturbed fields and the zero-order distribution function. The nonlinear delta-f method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations. A self-consistent 3D kinetic equilibrium is first established for high intensity bunched beams. Then, the collective excitations of the equilibrium are systematically investigated using the nonlinear delta-f method implemented in the Beam Equilibrium Stability and Transport (BEST) code.

*R.C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, 2001). **H. Qin, Physics of Plasmas 10, 2078 (2003).

FPAP031 Model of Electron Cloud Build Up with Secondary Ion-Electron Emission as a Source of Delayed Electrons electron, ion, vacuum, proton 2197
  • V.G. Dudnikov, G. Dudnikova
    BTG, New York
  For explanation of anomaly long electron cloud surviving after the gap between bunches it was proposed beam particle leaking to the gap and anomaly high reflectivity of low energy electrons in collision with pipe wall. We will attract an attention to some other possibilities of efficient electron generation in the high vacuum environment and delay electron generation after gap between bunches. Model of electron cloud build up with secondary ion-electron emission as a source of delay electrons is presented and discussed. This model is used for explanation of bunched beam instability in Los Alamos PSR, prediction of e-cloud generation in SNS, and can be important for pressure rise in cold sections of RHIC. A fast desorbtion by ion of physically adsorbed molecules can explain a "first pulse Instability" observed in LA PSR  
FPAP034 Space-Charge Transport Limits in Periodic Channels lattice, resonance, focusing, simulation 2348
  • S.M. Lund
    LLNL, Livermore, California
  • S. R. Chawla
    UCB, Berkeley, California
  Funding: Research performed under the auspices of the US DOE by the University of California at LLNL and LBNL under contract Nos. W-7405-Eng-48 and DE-AC03-76SF00098.

It has been observed in both experiment and particle in cell simulations that space-charge-dominated beams suffer strong emittance growth in alternating gradient quadrupole transport channels when the undepressed phase advance σ0 increases beyond about 80 degrees per lattice period. Transport systems have long been designed to respect this phase advance limit but no theory has been proposed to date to explain the the cause of the limit. Here we propose a mechanism to parametrically explain the transport limit as being due to classes of halo particle orbits moving close to the beam edge in phase-space when σ0 increases beyond 80 degrees. A finite beam edge and/or perturbation acting on an edge particle can then act to move edge particles to large amplitude and lead to large increases in beam phase space area, lost particles, and degraded transport. A core particle model for a uniform density elliptical beam in a periodic focusing lattice was written and is applied to parametrically analyze this process for both periodic alternating gradient quadrupole and solenoidal transport lattices. Self-consistent particle in cell simulations are also carried out to support results.

FPAT028 Extraction Compression and Acceleration of High Line Charge Density Ion Beams ion, acceleration, simulation, heavy-ion 2032
  • E. Henestroza, C. Peters, S. Yu
    LBNL, Berkeley, California
  • R.J. Briggs
    SAIC, Alamo, California
  • D.P. Grote
    LLNL, Livermore, California
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2 is proportional to the line charge density. Thus it is possible to accelerate a matched beam at constant line charge density. An experiment, NDCX-1c is being designed to test the feasibility of this type of injectors, where we will extract a 1 microsecond, 100 mA, potassium beam at 160 keV, decelerate it to 55 keV (density ~0.2 microC/m), and load it into a 2.5 T solenoid where it will be accelerated to 100–150 keV (head to tail) at constant line charge density. The head-to-tail velocity tilt can be used to increase bunch compression and to control longitudinal beam expansion. We will present the physics design and numerical simulations of the proposed experiment

FPAT079 Data Base Extension for the Ensemble Model Using a Flexible Implementation simulation, multipole, quadrupole, sextupole 4036
  • W. Ackermann, T. Weiland
    TEMF, Darmstadt
  Funding: Work supported by DESY, Hamburg.

To guarantee an adequate design and a proper functionality of various machine components it is of great importance to perform detailed studies of charged particle transport. However, it is often not necessary to initiate individual kinetic simulations. When the evolution of integral quantities is of research interest, it is worth treating an investigated particle ensemble as a whole and applying a macroscopic formulation. Using a collision-less kinetic approach, the simplified model is derived from the well-known Vlasov equation. Instead of solving directly this equation, one can use moments of the density function obtained by means of an averaging process. This formalism had been implemented into the beam dynamics simulation program V-Code and a fundamental database of various beam line elements like cavities, drift spaces, solenoids, quadrupoles and steerers was set up. A flexible realization of the C++ code representing the cavities and the drift spaces can be automatically used for an arbitrary order of moments applying a symbolic algebra program. A useful extension to the remaining beam line elements together with appropriate simulation results is presented in the paper.

FOAD005 Commissioning of the University of Maryland Electron Ring (UMER) injection, quadrupole, dipole, emittance 469
  • S. Bernal, G. Bai, D.W. Feldman, R. Feldman, T.F. Godlove, I. Haber, J.R. Harris, M. Holloway, R.A. Kishek, J.G. Neumann, P.G. O'Shea, C. Papadopoulos, B. Quinn, D. Stratakis, K. Tian, J.C. Tobin Thangaraj, M. Walter, M. Wilson
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
  Funding: This work is funded by the U.S. Department of Energy under grants DE-FG02-94ER40855 and DE-FG02-92ER54178, and the office of Naval Research under grant N00014-02-1-0914.

The University of Maryland electron ring (UMER) is a low-energy, high current recirculator for beam physics research. The ring is completed for multi-turn operation of beams over a broad range of intensities and initial conditions. UMER is addressing issues in beam physics with relevance to many applications that rely on intense beams of high quality. Examples are advanced accelerators, FEL’s, spallation neutron sources and future heavy-ion drivers for inertial fusion. We review the motivation, ring layout and operating conditions of UMER. Further, we present a summary of beam physics areas that UMER is currently investigating and others that are part of the commissioning plan: from transverse beam dynamics (matching, halo formation, strongly asymmetric beams, space-charge waves, etc), longitudinal dynamics (bunch capture/shaping, evolution of energy spread, longitudinal space-charge waves, etc.) to future upgrades and planned research (acceleration and resonance traversal, modeling of galactic dynamics, etc.) We also emphasize the computer simulation work that is an integral part of the UMER project.