Keyword: vacuum
Paper Title Other Keywords Page
MOOCA3 Amorphous Carbon Thin Film Coating of the SPS Beamline: Evaluation of the First Coating Implementation electron, cathode, proton, operation 44
 
  • M. Van Gompel, P. Chiggiato, P. Costa Pinto, P. Cruikshank, C. Pasquino, J. Perez Espinos, A. Sapountzis, M. Taborelli, W. Vollenberg
    CERN, Geneva, Switzerland
 
  As part of the LHC Injector Upgrade (LIU) project, the Super Proton Synchrotron (SPS) must be upgraded in order to inject in the LHC 25 ns bunch spaced beams of higher intensity. To mitigate the Electron Multipacting (EM) phenomenon in the SPS, CERN developed thin film carbon coatings with a low Secondary Electron Yield (SEY). The development went from coating small samples, up to coating of 6 m long vacuum chambers directly installed in the magnets. To deposit the low SEY amorphous carbon (aC) film on the vacuum chamber inner wall of SPS ring components, a modular hollow cathode train was designed. The minimization of the logistical impact requires a strategy combining in-situ and ex-situ coating, depending on the type of components. To validate the implementation strategy of the aC thin films and the in-situ coating process along the 7 km long SPS beamline, approximately 2 cells of B-type bending dipoles and 9 focussing quadrupoles are foreseen to be treated with the aC coating during the Extended Year End Technical Stop (EYETS) 2016-2017. We will discuss the coating technique and evaluate both the implementation process and the resulting coating performance.  
slides icon Slides MOOCA3 [71.421 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOOCA3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB006 Design and Prototyping of New CERN Collimators in the Framework of the LHC Injector Upgrade (LIU) Project and the High-Luminosity (HL-LHC) Project impedance, collimation, dipole, proton 80
 
  • F.-X. Nuiry, O. Aberle, M. Bergeret, A. Bertarelli, N. Biancacci, R. Bruce, M. Calviani, F. Carra, A. Dallocchio, L. Gentini, S.S. Gilardoni, R. Illan Fiastre, I. Lamas Garcia, A. Masi, A. Perillo-Marcone, S. Pianese, S. Redaelli, E. Rigutto, B. Salvant
    CERN, Geneva, Switzerland
 
  In the framework of the Large Hadron Collider (LHC) Injectors Upgrade (LIU) and the High-Luminosity LHC (HL-LHC) Projects at CERN (European Organization for Nuclear Research, in Geneva, Switzerland), collimators in the Super Proton Synchrotron (SPS) to LHC transfer lines as well as ring collimators in the LHC will undergo important upgrades in the forthcoming years, mainly focused during the Long Shutdown 2 foreseen during 2019-2020. This contribution will detail the current design of the TCDIL collimators with a particular emphasis on the engineering developments performed on the collimator jaws, aiming at getting a stringent flatness while consid-ering also the integration of thermal shock resistant materials. The prototyping phase done at CERN will be also described. The activities ongoing to prepare the series production for other LHC collimator types (TCPPM, TCSPM, TCTPM, TCLD) will be presented, describing the role that each of these collimators play on the HL-LHC Project. A focus on the series production processes, the manufacturing and assembly technologies involved and the quality and performance assurance tests will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB029 Experimental Study of Halo Formation at ATF2 simulation, scattering, electron, detector 142
 
  • R.J. Yang, P. Bambade, A. Faus-Golfe, V. Kubytskyi, S. Wallon
    LAL, Orsay, France
  • A. Aryshev, T. Naito
    KEK, Ibaraki, Japan
  • N. Fuster-Martínez
    IFIC, Valencia, Spain
 
  For Accelerator Test Facility 2 (ATF2), as well as other high-intensity accelerators, beam halo has been an important aspect reducing the machine performance and activating the components. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the avail- able theoretical models with an adequate experiment setup. In this paper, the experimental measurement of the beam halo formation from beam gas scattering is presented. The upgrading of an OTR/YAG screen monitor for future halo study is also introduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB068 Bunch Shape Monitor Development in J-PARC Linac electron, quadrupole, focusing, target 271
 
  • A. Miura, J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
  • T. Miyao
    KEK, Ibaraki, Japan
 
  At Japan accelerator reserch complex (J-PARC), the linac, which serves as the injector for the downstream 3-GeV synchrotron, accelerates a negative-hydrogen-ion beam (H) to obtain a 400-MeV beam energy. We use an accelerating frequency of 324 MHz for the accelerator cavities and of 972 MHz. Both the centroid-phase set point at the frequency jump from 324 MHz to 972 MHz and the phase-width control are key issues for suppressing the excess beam loss. In order to optimize a set point of the tuning cavities, we developed a bunch-shape monitor (BSM) to measure the phase width as well as a tuning strategy to minimize the beam loss. In the development of the BSM, the design developed in the INR, Russia. Because the BSM had first experienced to be used between accelearation cavities, we need to protect the leak-magnetic field from quadrupole magnets and outgas impacts to cavities. We installed a BSM again in the beamline, BSM started to measure the phase width and evaluated its performances with a peak-beam-current dependence. We proposed new strategy to use BSM-measurment data for the tuning cavity. This paper describes the BSM development, its modification, and new strategy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB069 Measurement of Transverse Multipole Moments of the Proton Beam in the J-PARC MR quadrupole, multipole, proton, simulation 274
 
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • A. Ichikawa, A. Minamino, K.G. Nakamura, Y. Nakanishi, T. Nakaya, W. Uno
    Kyoto University, Kyoto, Japan
  • T. Koseki, H. Kuboki, M. Okada
    KEK, Tokai, Ibaraki, Japan
 
  Funding: This work was partially supported by MEXT/JSPS KAKENHI Grant Numbers 25105002 and 16H06288.
Transverse multipole moments (quadrupole and more) of the beam may give important informations of the beam such as beam sizes, nonlinear resonances and so on. However higher moments are difficult to measure because signal-to-noise-ratio becomes smaller proportional to the n-th order of the beam-radius-to-vacuum-duct-radius ratio. In order to increase the SNR and to extend the multipole order, we developed and installed a 16 electrode beam monitor in the J-PARC MR, which consists of guard-potential-separated 16 striplines. The calibration method, beam test results will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB091 Transverse Beam Instability Observation and Investigation Using Bunch by Bunch on-Line DAQ System experiment, feedback, storage-ring, data-acquisition 335
 
  • N. Zhang, L.W. Lai, Y.B. Leng
    SSRF, Shanghai, People's Republic of China
 
  Funding: supported by National Natural Foundation of China (11375255 and 11375254)
Tank impedance of in-vacuum insertion device is one important source of beam transverse instability, which was expected to be suppressed by transverse feedback system (TFB). For the observation and study of transverse instability affected by insertion device and TFB, sets of an in-vacuum undulator narrow gap setting and TFB gain setting were operated in a beam-based experiment. A bunch-by-bunch (BYB) position on-line DAQ system was employed in the measurement to characterize frequencies of individual bunches. Bunch-train transverse oscillation amplitude variation were curved by harmonic analysis. In this paper, we will introduce the BTB ADQ system, and report on the measurement experiment and related data analysis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB121 Installation and Test of Pre-series Wire Scanners for the LHC Injector Upgrade Project at CERN controls, laser, electronics, detector 412
 
  • R. Veness, P. Andersson, W. Andreazza, N. Chritin, B. Dehning, J. Emery, A. Goldblatt, D. Gudkov, F. Roncarolo, J.L. Sirvent, J. Tassan-Viol
    CERN, Geneva, Switzerland
 
  A new generation of fast wire scanners is being developed for the LHC Injectors Upgrade (LIU) project at CERN. These will be essential tools for transverse profile measurement with the higher brightness LIU beams, and are planned for installation in 2019 in all three synchrotrons making up the LHC injector chain. An active period of development and test has resulted in prototype installations in the SPS and PSB rings. This paper will summarise the design and report on the results to-date.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB141 Instrumentation and Its Interaction With the Secondary Beam for the Fermilab Muon Campus ion, experiment, simulation, emittance 466
 
  • D. Stratakis, B.E. Drendel, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
The Fermilab Muon Campus will host the Muon g-2 experiment - a world class experiment dedicated to the search for signals of new physics. Strict demands are placed on the beam diagnostics in order to ensure delivery of high quality beams to the storage ring with minimal losses. In this study, we briefly describe the available secondary beam diagnostics for the Fermilab Muon Campus. Then, with the aid of numerical simulations we detail their interaction with the secondary beam. Finally, we compare our results against theoretical findings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB141  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK022 Experimental Investigation of Field-Emission From Silicon Nano-Cone Cathodes cathode, electron, emittance, ion 548
 
  • A. Lueangaramwong, C. Buzzard, V. Korampally, O. Mohsen, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Chattopadhyay
    Northern Illinois Univerity, DeKalb, Illinois, USA
  • R. Divan
    Argonne National Laboratory, Argonne, Illinois, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work is supported by the NSF grant PHY-1535401 with Northern Illinois University
Field emission cathode are capable of forming electron beam with extreme brightness via strong-field excitation from applied electrostatic, or electromagnetic (radiofrequency and laser) fields. Our group, in collaboration with the Argonne Center for Nanoscale Material, has recently developed nanocone cathode. The present paper reports on the experimental characterization of these cathodes both configured as a single-cone emitter or as large arrays of tightly-packed emitter. The tests carried in a diode setup are capable of measuring IV characteristic curves and beam distributions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK038 Initial Operation of the Low-Flux Proton Beamline at the KOMAC 100 MeV Linac proton, target, octupole, operation 585
 
  • S.P. Yun, C.R. Kim, D.I. Kim, H.S. Kim, H.-J. Kwon, S.G. Lee, Y.G. Song
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science, ICT and Future Planning of the Korean Government
Korea multi-purpose Accelerator Complex (KOMAC) has been operating 20 MeV and 100 MeV proton beamlines to provide proton beams to users since 2013. The new beamline and target irradiation facility, which is proposed applicable to development of the detector and simulation of the space radiation, have being constructed for low-flux proton utilization at this year. The new beam lines have the 100 MeV of maximum beam energy and 10 nA of maximum beam current. The new beam line was designed to operate with maximum duty 8%, the flux density of proton beam can be reduced to the 1/10,000 by the graphite collimator. The extracted proton beam energy can be adjustable by the double wedge type energy degrader and also, the beam energy can be selected by dipole magnet. In addition to the two sets of the octupole magnets were prepared for uniform beam irradiation with the ± 5% uniformity. In this paper, the initial operation results of the constructed new beam line is be described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK041 Commissioning of the Stripping Foil Units for the Upgrade of the PSB H Injection System injection, linac, controls, electron 595
 
  • C. Bracco, S. Burger, V. Forte, B. Goddard, G. Guidoboni, L.O. Jorat, B. Mikulec, A. Navarro Fernandez, R. Noulibos, F. Roncarolo, P. Van Trappen, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The PSB will be extensively upgraded during the next long shutdown of the CERN accelerator complex, to double the brightness of the stored beams. The existing multi-turn injection will be replaced by a charge exchange system designed for the 160 MeV hydrogen ions provided by Linac4. Part of the injection equipment has been temporarily installed along the Linac4-to-PSB transfer line and tested with beam. This allowed to gain experience with the system, test the related diagnostics and benchmark calculations with measurements. An additional permanent stripping foil test stand is also installed right after the Linac and will be used to characterise new foils for possible future applications. The main outcomes, issues and applied or planned mitigations are presented for both installations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK047 Commissioning and Results of the Half-Sector Test Installation with 160 MeV H beam from Linac4 injection, linac, operation, proton 619
 
  • B. Mikulec, D. Aguglia, J.C. Allica Santamaria, C. Baud, C. Bracco, S. Burger, G. Guidoboni, L.O. Jorat, C. Martin, A. Navarro Fernandez, R. Noulibos, F. Roncarolo, J.L. Sanchez Alvarez, J. Tan, T. Todorcevic, P. Van Trappen, W.J.M. Weterings, C. Zamantzas
    CERN, Geneva, Switzerland
 
  During the Long Shutdown 2 (LS2) at CERN in 2019/20, the Proton Synchrotron Booster (PSB) will undergo a profound upgrade in the framework of the LHC Injector Upgrade (LIU) project involving also the connection to the new Linac4 injector. The 160 MeV Linac4 H' injection entails a complete replacement of the PSB injection section, including a stripping foil system, injection chicane, an H0/H' dump and novel beam instrumentation. The equivalent of half of this new injection chicane was temporarily installed in the Linac4 transfer line to evaluate the performance of the equipment and prepare controls, interlocks and applications for the connection. Outcomes of this so-called Half-Sector Test (HST) are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK105 Preliminary Study of Injection Transients in TPS Storage Ring septum, injection, kicker, storage-ring 777
 
  • C.H. Chen, B.Y. Chen, J.Y. Chen, M.-S. Chiu, S. Fann, C.S. Huang, C.-C. Kuo, T.Y. Lee, C.C. Liang, Y.-C. Liu, G.-H. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  An optimized injection efficiency is related to a perfect match between the pulsed magnetic fields in the storage ring and transfer line extraction in the TPS. However, misalignment errors, hardware output errors and leakage fields are unavoidable. We study the influence of injection transients on the stored TPS beam and discuss solutions to compensate these. Related simulations and measurements will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA004 Operating Simultaneously Two In-Vacuum Canted Undulators in Synchrotron SOLEIL undulator, photon, radiation, electron 851
 
  • L.S. Nadolski, Y.-M. Abiven, P. Brunelle, N. Béchu, M.-E. Couprie, F.J. Cullinan, X. Delétoille, M. El Ajjouri, C. Herbeaux, N. Hubert, N. Jobert, M. Labat, J.-F. Lamarre, A. Lestrade, A. Loulergue, O. Marcouillé, P. Monteiro, A. Nadji, R. Nagaoka, D. Pédeau, P. Rommeluère, K.T. Tavakoli, M. Valléau, J. Vétéran
    SOLEIL, Gif-sur-Yvette, France
  • C. Benabderrahmane
    ESRF, Grenoble, France
 
  Each long SOLEIL beamline, ANATOMIX and Nanoscopium, takes a photon beam from an in-vacuum undulator with a minimum gap of 5.5 mm. The canted radiation sources are installed in a long straight section of the storage ring. The first closure of both undulators led to the severe damage of the downstream undulator in 2011. The reason for this incident has been investigated and clearly identified. A long-term project has enabled us to find a technical solution for a simultaneous operation of both undulators. A special angle fast interlock was designed and a dedicated photon absorber has been introduced at the entrance of the second undulator while keeping the impact on the beam performance as low as possible. The main technical steps will be reported with an interim solution put in place in spring 2015 and a final solution deployed and validated in May 2016.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA038 Manufacturing Status of the IFMIF LIPAc SRF Linac cryomodule, SRF, cavity, linac 939
 
  • N. Bazin, P. Carbonnier, P. Contrepois, J. Plouin, B. Renard
    CEA/DSM/IRFU, France
  • C. Boulch, A. Bruniquel, J.K. Chambrillon, G. Devanz, P. Hardy, H. Jenhani, N. N'Doye, O. Piquet, A. Riquelme, D. Roudier
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • P. Charon, S. Chel, G. Disset, J. Relland
    CEA/IRFU, Gif-sur-Yvette, France
  • D. Regidor, F. Toral
    CIEMAT, Madrid, Spain
 
  This paper gives the fabrication status of the IFMIF cryomodule. This cryomodule will be part of the Linear IFMIF Prototype Accelerator (LIPAc) whose construction is ongoing at Rokkasho, Japan. It is a full scale of one of the IFMIF accelerator, from the injector to the first cryomodule. The cryomodule contains all the necessary equipment to transport and accelerate a 125 mA deuteron beam from an input energy of 5 MeV up to the output energy of 9 MeV. It consists of a horizontal vacuum tank of around 6 m long, 3 m high and 2.0 m wide, which includes 8 superconducting HWRs for beam acceleration, working at 175 MHz and at 4.45 K, 8 Power Couplers to provide RF power to cavities up to 70 kW CW in LIPAc case and 200 kW CW in IFMIF case, and 8 Solenoid Packages as focusing elements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA040 Status of the ESS Elliptical Cryomodules at CEA Saclay cryomodule, cavity, cryogenics, SRF 945
 
  • P. Bosland, C. Arcambal, F. Ardellier, S. Berry, A. Bouygues, A. Bruniquel, E. Cenni, J.-P. Charrier, C. Cloué, G. Devanz, F. Éozénou, T. Hamelin, X. Hanus, P. Hardy, C. Marchand, O. Piquet, J. Plouin, J.P. Poupeau, T. Trublet
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • G. Costanza
    Lund University, Lund, Sweden
  • C. Darve
    ESS, Lund, Sweden
  • P. Michelato
    INFN/LASA, Segrate (MI), Italy
  • G. Olivier
    IPN, Orsay, France
  • F. Peauger
    CEA/DSM/IRFU, France
 
  The first ESS prototype cryomodule with medium beta cavities named M-ECCTD is being assembled at CEA Saclay. The Q curves of the 4 cavities mounted inside the cryomodule are presented, and the four power couplers have been conditioned at high power before their assembly onto the cavity string. Completion of the M-ECCTD assembly outside clean room is in progress as well as the finalization of the RF power test stand preparation. RF power tests of the M-ECCTD will be performed during summer 2017. CEA is preparing the production of the ESS medium and high beta cryomodules of the series before the test of the M-ECCTD and the contracts for the procurement of the most critical components have already been signed  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA042 CEA Preliminary Design of the Cryomodules for SARAF Phase II Superconducting Linac cavity, cryomodule, simulation, alignment 951
 
  • R. Cubizolles, P. Brédy, D. Chirpaz-Cerbat, P. Hardy, F. Leseigneur, C. Madec, J. Plouin
    CEA/IRFU, Gif-sur-Yvette, France
  • N. Bazin
    CEA/DSM/IRFU, France
  • R. Bruce, Th. Plaisant
    CEA/DRF/IRFU, Gif-sur-Yvette, France
 
  CEA is committed to deliver a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40.1 MeV. The SCL consists of 4 cryomodules and 4 warm sections with diagnostics at the end of each cryomodule. The first two identical cryomodules host 6 half-wave resonator (HWR) low-beta cavities (β = 0.091), 176 MHz, and 6 focusing superconducting solenoids. The last two identical cryomodule welcome 7 HWR high-beta cavities (β = 0.181), 176 MHz, and 4 solenoids. The paper will presents the preliminary design of the cryomodules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA043 Assembly Preparation of the IFMIF SRF Cryomodule cavity, solenoid, cryomodule, SRF 954
 
  • J.K. Chambrillon, N. N'Doye
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • N. Bazin, P. Charon, G. Devanz, P. Hardy, O. Piquet, J. Plouin
    CEA/IRFU, Gif-sur-Yvette, France
  • P. Contrepois, C. Servouin
    CEA/DSM/IRFU, France
 
  This article presents the preparation work performed by CEA for the assembly of the IFMIF Cryomodule. Before the shipping of the components to Japan many tests and trial assemblies has been realized on the CEA site of Saclay, France. The cryomodule, which is part of the Linear IFMIF Prototype Accelerator (LIPAc) under construction at Rokkasho in Japan, will be assembled there under the responsibility of F4E (Fusion for Energy) with CEA assistance. To fulfill the assembly of the cavity string, a cleanroom will be built at Rokkasho under the responsibility of QST.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA044 Conditioning of the Power Couplers for the ESS Elliptical Cavity Prototypes coupling, cavity, controls, pick-up 957
 
  • C. Arcambal, P. Carbonnier, M. Desmons, G. Devanz, T. Hamelin, C. Marchand, C. Servouin
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • C. Darve
    ESS, Lund, Sweden
 
  In the framework of the European Spallation Source (ESS), some power couplers have been designed and manufactured to supply, with RF power, the medium-beta (β=0.67) elliptical cavities of the cryomodule demonstrator. The power couplers work at 704.4 MHz and are tested up to 1.2 MW (repetition rate=14 Hz, RF pulse width close to 3.6 milliseconds). The CEA Saclay is in charge of the design, the manufacturing, the preparation and the conditioning of these power couplers. In this paper, after a general presentation of the power couplers used in the ESS LINAC and their characteristics, we give some détails about the manufacturing and then we describe the different steps of the preparation (cleaning), the assembly of the couplers on the coupling box in cleanroom, the baking of the couplers and the conditioning procedure. Finally, the experimental results obtained in travelling and standing waves on the first pairs of couplers will be shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA057 Structural Investigations of Nitrogen-Doped Niobium for Superconducting RF Cavities niobium, SRF, radio-frequency, cavity 996
 
  • M. Major, L. Alff, M. Arnold, J. Conrad, S. Flege, R. Grewe, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    IKP, Mainz, Germany
 
  Funding: Work supported by BMBF through 05H15RDRBA.
Niobium is the standard material for superconducting RF (SRF) cavities. Superconducting materials with higher critical temperature or higher critical magnetic field allow cavities to work at higher operating temperatures or higher accelerating fields, respectively. Enhancing the surface properties of the superconducting material in the range of the penetration depth is also beneficial. One direction of search for new materials with better properties is the modification of bulk niobium by nitrogen doping. In the Nb-N phase diagram the cubic delta-phase of NbN has the highest critical temperature (16 K). Already slight nitrogen doping of the alpha-Nb phase results in higher quality factors.* Nb samples will be N-doped at the refurbished UHV furnace at IKP Darmstadt. The first results on the structural investigations of the processed Nb samples at the Materials Research Department of TU Darmstadt are presented.
* Grassellino et al., Proc. SRF2015, MOBA06, 48.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA060 Fabrication and Treatment of the ESS Medium Beta Prototype Cavities cavity, controls, operation, feedback 1003
 
  • L. Monaco, A. Bellandi, M. Bertucci, A. Bignami, A. Bosotti, J.F. Chen, P. Michelato, R. Paparella, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • S. Pirani
    ESS, Lund, Sweden
 
  In view of the Medium Beta series cavities production at the industry for the European Spallation Source project, INFN Milano - LASA design prototypes have been fully produced at Ettore Zanon S.p.A. with our supervision. Based on our experience on the production of 1.3 GHz and 3.9 GHz E-XFEL series cavities, we set-up and applied an external quality control activity of the overall production of the prototype cavity, starting from the row materials to the ready to be tested cavity. In this paper, we report the strategy we have adopted on the overall production, mechanical and surface treatments, frequency measurement of subcomponents and cavities and the obtained results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA063 Vertical Tests of ESS Medium Beta Prototype Cavities at LASA cavity, operation, radiation, accelerating-gradient 1015
 
  • A. Bosotti, A. Bellandi, M. Bertucci, A. Bignami, J.F. Chen, C.G. Maiano, P. Michelato, L. Monaco, R. Paparella, P. Pierini, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • S. Pirani
    ESS, Lund, Sweden
 
  In the framework of the INFN activity related to the European Spallation Source collaboration, the LASA infrastructure has been renewed to allow the qualification, in its vertical cryostat, of the 704 MHz medium beta cavity prototypes. A new cryogenic insert has been realized, fully equipped with dedicated mechanical supports, vacuum, thermal sensors and quench diagnostic systems. The RF test station has been upgraded as well with a new PLL electronics rack. The first beta 0.67 cavity prototype designed and produced by INFN Milano has been successfully cold tested at 2.0 K temperature, outperforming the ESS specifications. The technical features of LASA infrastructure, the design of novel components and the experimental results of cavities cold-tests are thoroughly described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA073 Development of Peak Hold Module for Electron Emission in STF-Type Power Coupler for the ILC electron, operation, cryomodule, monitoring 1034
 
  • Y. Yamamoto, E. Kako, T. Shishido
    KEK, Ibaraki, Japan
 
  In STF, the RF conditioning for power coupler is done in several steps from 10 to 1650 μs as specified in TDR for the ILC. The most important signals during the RF conditioning are vacuum level, and electron emission by multipacting. The vacuum level changes continuously, and electron emission has pulse-like behavior, which has much faster response. Therefore, it was necessary to develop the peak hold and isolation modules to evaluate electron emission in short pulse width. This module has two kinds of feature. One is pulse height detection, and the other is total charge detection (integrated signal). During the RF conditioning for power couplers in STF-2 cryomodule, this module perfectly worked, and detected different trend between the pulse height and the total charge. In this paper, the detailed result for the peak hold module will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA078 The Window Replacement and Q Recovery of BEPCII Storage Ring SCC cavity, operation, positron, radiation 1046
 
  • T.M. Huang, J.P. Dai, R. Ge, S.P. Li, Z.Q. Li, H.Y. Lin, Q. Ma, W.M. Pan, Y. Sun, G.W. Wang
    IHEP, Beijing, People's Republic of China
  • P. Sha
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  The storage ring RF system for the upgrade of the Beijing Electron Positron Collider (BEPCII) adopted two 500 MHz superconducting cavities: west for the positron ring (BPR); east for the electron ring (BER). The excessive heating of the west window was observed in Nov.2013, and not cured thoroughly*. After two years operation, the window cracked suddenly on Nov.18th, 2015. The replacement of the window was subsequently implemented in tunnel. However, the quality factor (Q) of the cavity decayed a lot after the window replacement. 90 degrees Celsius N2 gas baking of the outer surface of the cavity was carried out in situ and the Q recovered in a short time. This paper will present the process of the window replacement and the cavity Q recovery in detail.
* Tong-ming Huang et al., Chinese Physics C Vol. 40, No. 6 (2016) 067001
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA094 ESS Spoke Cavity Conditioning at FREIA cavity, software, controls, feedback 1074
 
  • H. Li, K.J. Gajewski, L. Hermansson, M. Jobs, R.J.M.Y. Ruber, R. Santiago Kern
    Uppsala University, Uppsala, Sweden
 
  The first ESS double spoke cavity installed with RF power coupler was tested in the HNOSS cryostat at the FREIA Laboratory. Power coupler and cavity conditioning have been optimized in order to reach high efficiency and high availability by reducing the time and effort of the overall conditioning process. Meanwhile, an optimal procedure for ESS conditioning is studied. This paper presents the study result and experience of the RF conditioning procedure for the first ESS double spoke cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA096 The Crab Cavities Cryomodule for SPS Test cavity, cryomodule, HOM, monitoring 1081
 
  • C. Zanoni, A. Amorim Carvalho, K. Artoos, S. Atieh, K. Brodzinski, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, T. Dijoud, K. Eiler, G. Favre, P. Freijedo Menendez, M. Garlaschè, L. Giordanino, S.A.E. Langeslag, R. Leuxe, H. Mainaud Durand, P. Minginette, M. Narduzzi, V. Rude, M. Sosin, J.S. Swieszek
    CERN, Geneva, Switzerland
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  RF Crab Cavities are an essential part of the HL-LHC upgrade. Two concepts of such systems are being developed: the Double Quarter Wave (DQW) and the RF Dipole (RFD). A cryomodule with two DQW cavities is in advanced fabrication stage at CERN for their tests with protons in the SPS during the 2018 run. The cavities must be operated at 2 K, without excessive heat loads, in a low magnetic environment and in compliance with CERN safety guidelines on pressure and vacuum systems. A large set of components, such as a thermal shield, a two layers magnetic shield, RF lines, helium tank and tuner is required for the successful and safe operation of the cavities. The assembly of all these components with the cavities and their couplers forms the cryomodule. An overview of the design and fabrication strategy of this cryomodule is presented. The main components are described along with the present status of cavity fabrication and processing and cryomodule assembly. The lesson learned from the prototypes, the helium tank above all, and first manufactured systems is also included.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA098 Strategy Towards Non-Interrupted Operation of Superconducting Radio Frequency Modules at NSRRC SRF, operation, cryogenics, cavity 1088
 
  • Ch. Wang, F.Y. Chang, L.-H. Chang, M.H. Chang, J. Chen, L.J. Chen, F.-T. Chung, M.-C. Lin, Z.K. Liu, C.H. Lo, C.L. Tsai, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  Two modern 3rd generation light sources, the well-developed 1.5-GeV Taiwan Light Source (TLS) and the new constructed 3-GeV Taiwan Photon Source (TPS), are now in routine operation. Both storage rings are powered by the superconducting RF (cavity) modules, one CESR-type SRF module for the TLS since 2005 and two KEKB-type SRF modules for the TPS since 2014. Thanks to continuous efforts, the operational reliability of SRF modules at NSRRC is now compatible or better in comparison with the best operation record of room temperature cavities ever achieved at TLS (1992-2004). How to improve the long term availability but hold the achieved reliability of SRF modules such as to maximize the available annual user beam time, especially, under requirements on high RF power operation, become a new operational challenge, especially for the SRF modules at TPS which is now routinely operated with a forward RF power around 150-kW individually and expected to push to 300-kW in the coming future. Here we report our strategy and achievement to minimize long term interrupt of SRF operation owing to regular full-thermal cycling and annual maintenance of cryogenic plant.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA099 The Study of Electromagnet Compensated High Power Ferrite Circulator Operation With Superconducting RF Cavity cavity, SRF, klystron, operation 1091
 
  • T.-C. Yu, F.Y. Chang, L.-H. Chang, M.H. Chang, L.J. Chen, F.-T. Chung, M.-C. Lin, Z.K. Liu, C.H. Lo, C.L. Tsai, M.H. Tsai, Ch. Wang, M.-S. Yeh
    NSRRC, Hsinchu, Taiwan
 
  In a high power RF system for accelerator application, the circulator is very important for protecting klystron or IOT from damage due to high reflection power from the cavity. When there is no beam current passing through the superconducting RF cavity of the accelerator, almost 100% RF power will be reflected from the cavity even the cavity is on resonance. The circulator shall be able to forward the reflected power to the load and remain good matching and isolation condition between ports at klystron and the cavity. However, for a ferrite material based circulator, the magnetic field within circulator would be temperature dependent which would cause the variation of input return loss and isolation between ports. Additional DC current driving electromagnet field is thus re-quired for compensating the temperature variation. Even with the compensating DC current, the circulator is still not ideal for practical operation especially when the performance of the circulator is strongly phase dependent. The phenomenon observed in actual operation with one set of SRF systems in NSRRC is thus reported in this article.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA132 Production of Copper-Plated Beamline Bellows and Spools for LCLS-II cryomodule, controls, cavity, simulation 1167
 
  • K.M. Wilson, B. Carpenter, E. Daly, N.A. Huque, T. Peshehonoff
    JLab, Newport News, Virginia, USA
  • T.T. Arkan, A. Lunin, K.S. Premo
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515
The SLAC National Accelerator Laboratory is currently constructing a major upgrade to its accelerator, the Linac Coherent Light Source II (LCLS-II). Several Department of Energy national laboratories, including the Thomas Jefferson National Accelerator Facility (JLab) and Fermi National Accelerator Laboratory (FNAL), are participating in this project. The 1.3-GHz cryomodules for this project consist of eight cavities separated by bellows (expansion joints) and spools (tube sections), which are copper plated for RF conduction. JLab is responsible for procurement of these bellows and spools, which are delivered to JLab and FNAL for assembly into cryomodules. Achieving accelerator-grade copper plating is always a challenge and requires careful specification of requirements and application of quality control processes. Due to the demanding technical requirements of this part, JLab implemented procurement strategies to make the process more efficient as well as provide process redundancy. This paper discusses the manufacturing challenges that were encountered and resolved, as well as the strategies that were employed to minimize the impact of any technical issues.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA132  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXB1 Non-destructive Beam Profile Monitors ion, electron, photon, focusing 1234
 
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  This paper will present an overview and comparison between beam induced fluorescence, residual gas ionization and gas jet based beam profile monitors, based on recent experimental and theoretical results at different labs. The achievable image/profile quality and resolution limits will be discussed, along with design consideration for different particle species and primary beam energies. Details may be provided about different classic and novel approaches to gas jet shaping, including nozzle-skimmer and Freznel Zone Plate configurations. Finally, particular challenges such as those arising from monitoring multiple beams in parallel (e.g. proton and electron beam in HLLHC) and solutions for targeting the energy limit within the HLLHC project will be presented.  
slides icon Slides TUXB1 [12.557 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUXB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAB1 First LHC Transverse Beam Size Measurements With the Beam Gas Vertex Detector detector, target, hardware, data-acquisition 1240
 
  • A. Alexopoulos, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, V. Kain, R. Matev, M.N. Rihl, V. Salustino Guimaraes, R. Veness, S. Vlachos, B. Würkner
    CERN, Geneva, Switzerland
  • A. Bay, F. Blanc, S. Gianì, O. Girard, G.J. Haefeli, P. Hopchev, A. Kuonen, T. Nakada, O. Schneider, M. Tobin, Q.D. Veyrat, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, W. Karpinski, T. Kirn, S. Schael, A. Schultz von Dratzig, G. Schwering, M. Wlochal
    RWTH, Aachen, Germany
 
  The Beam Gas Vertex detector (BGV) is an innovative beam profile monitor based on the reconstruction of beam-gas interaction vertices which is being developed as part of the High Luminosity LHC project. Tracks are identified using several planes of scintillating fibres, located outside the beam vacuum chamber and perpendicular to the beam axis. The gas pressure in the interaction volume is adjusted such as to provide an adequate trigger rate, without disturbing the beam. A BGV demonstrator monitoring one of the two LHC beams was fully installed and commissioned in 2016. First data and beam size measurements show that the complete detector and data acquisition system is operating as expected. The BGV operating parameters are now being optimised and the reconstruction algorithms developed to produce accurate and fast reconstruction on a CPU farm in order to provide real time beam profile measurements to the LHC operators.  
slides icon Slides TUOAB1 [3.456 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOAB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB026 Status of the Cryogenic Undulator CPMU-17 for EMIL at BESSY II / HZB undulator, Windows, permanent-magnet, feedback 1372
 
  • J. Bahrdt, J. Bakos, W. Frentrup, S. Gottschlich, C. Kuhn, G. Pfeiffer, C. Rethfeldt, A. Rogosch-Opolka, M. Scheer, B. Schulz, L. Ziemann
    HZB, Berlin, Germany
 
  The CPMU-17 is the hard X-ray radiation source of a canted double undulator system for the Energy Materials In-situ Laboratory EMIL at BESSY II [1]. Various ambitious concepts are realized in this undulator such as Dy-hardened PrFeB-magnets, direct liquid Nitrogen cooling, dual loop feedback gap drive based on an optical micrometer and a low permeability stainless steel In-Vacuum(IV)-girder without keepers. The magnets are sorted according to Helmholtz coil and stretched wire data. Reproducibility and accuracy measurements of two IV-measurement tools needed for the CPMU-17 are presented: an IV-Hall probe bench and an IV-Moving Wire.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB029 UHV Photocathode Plug Transfer Chain for the BERLinPro SRF-Photoinjector SRF, cathode, cavity, laser 1381
 
  • J. Kühn, J. Borninkhof, M. Bürger, A. Frahm, A. Jankowiak, T. Kamps, M.A.H. Schmeißer, M. Schuster
    HZB, Berlin, Germany
  • P. Murcek, J. Teichert, R. Xiang
    HZDR, Dresden, Germany
 
  A dedicated particle free UHV photocathode plug transfer chain from the preparation system to the SRF-Photoinjector was set up and commissioned at HZB for the BERLinPro project. The plug handling system was designed in collaboration with the ELBE team at HZDR, where the same transfer chain is in commissioning phase. In the future the exchange of photocathodes between the laboratories offers the possibility to test different types of photocathodes in different SRF-photoinjectors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB032 Development of a Cryogenic GaAs DC Photo-Gun for High-Current Applications electron, cathode, cryogenics, ion 1391
 
  • S. Weih, T. Eggert, J. Enders, M. Espig, Y. Fritzsche, N. Kurichiyanil, M. Wagner
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by DFG (GRK 2128) and BMBF (05H15RDRB1)
For high-current applications of GaAs photocathodes it is necessary to maximize the charge lifetime of the cathode material to ensure reliable operation. By means of cryogenic cooling of the electrode, the local vacuum conditions around the source can be improved due to cryogenic adsorption of reactive rest-gas molecules at the surrounding walls. Furthermore, the cooling also allows a higher laser power deposited in the material, resulting in higher currents that can be extracted from the cathode. Ion-backbombardment is expected to be reduced using electrostatic bending of the electrons behind the cathode. To measure the characteristics of such an electron source, a dedicated set-up is being developed at the Photo-CATCH test facility in Darmstadt.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB036 Training and Characterization of 1.5m Long Conduction Cooled Superconducting Undulator Coils with 20 mm Period Length undulator, synchrotron, radiation, storage-ring 1399
 
  • A.W. Grau, S. Casalbuoni, N. Glamann, T. Holubek, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
  • C. Boffo, T.A. Gerhard, M. Turenne, W. Walter
    Babcock Noell GmbH, Wuerzburg, Germany
 
  The Institute for Beam Physics and Technology (IBPT) of the Karlsruhe Institute of Technology (KIT), and the company Babcock Noell GmbH (BNG) are running an R&D program on superconducting undulators (SCUs). The collaboration is working on a SCU with 20 mm period length (SCU20) for ANKA, the test facility and synchrotron radiation source, run by the IBPT. The 1.5 m long undulator coils have been tested in a conduction-cooled environment. This contribution describes the training, the stability and the thermal behavior of the coils.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB050 A Lifetime Study of CsK2Sb Multi-Alkali Cathode cathode, laser, electron, experiment 1440
 
  • M. Kuriki, L. Guo, M. Urano, A. Yokota
    HU/AdSM, Higashi-Hiroshima, Japan
  • K. Negishi
    Iwate University, Morioka, Iwate, Japan
  • Y. Seimiya
    KEK, Ibaraki, Japan
 
  Funding: Quantum beam project by the Ministry of Education, Culture, Sports, Science, and Technology, entitled High Brightness Photon Beam by Laser Compton Scattering and Cooperative supporting Program for Research Education in University by KEK(High Energy Accelerator Research Organization)
\rm CsK2Sb is a high performance photo-cathode for accelerators requiring the high brightness electron beam. It can be driven by a green laser generated as SHG of a solid state laser. The quantum efficiency is as high as 10\%. In this article, the robustness of the cathode was studied experimentally. We found that 1/e lifetime of the cathode was inversely proportional to the vacuum pressure. The normalized temporal life was \rm (4.72± 0.08)× 10-5~Pa.hour for 532 nm laser. The lifetime regarding to the extracted charge density was also inversely proportional to the vacuum pressure. The normalized charge life was \rm (1.19± 0.03± 0.04)× 10-4 Pa.C/mm2. The cathode is robust enough for a high brightness electron accelerator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB055 Development of compact magnetic field measurement system available for in-vacuum undulators undulator, brightness, emittance, photon 1449
 
  • M. Adachi, R. Kato, T. Shioya, K. Tsuchiya
    KEK, Ibaraki, Japan
 
  A low-emittance 3-GeV KEK-LS* ring has been designed at KEK. KEK-LS's undulators can produce extremely high brightness light ranging from VUV to X-ray. Brightness of undulator light strongly depends on the phase error of its periodic magnetic field. Then a precise magnetic field adjustment is required in order to prevent the reduction of the brightness performance. Generally, the adjustment is performed by the conventional field measurement system equipped with hole-probes on a huge stone table. But, for the in-vacuum undulator, the measurement must be performed without the vacuum chamber. The additional phase error caused by reattaching the chamber is not negligible for the low emittance rings. Therefore, some groups have developed measurement systems available for the direct field measurement inside the chamber**,***. We have started to develop a compact measurement system. Our system is compacted and stabilized by utilizing the rigid metal beam of the undulator frame instead of the stone table. In the conference, we will report the detail of the system and the present status of the development.
* KEK-LS HP, http://kekls.kek.jp/
** T. Tanaka, et al., Physical Review ST-AB, vol.12, p.120702 (2009).
*** M. Musardo, et al., Proceedings of IPAC2015, Richmond, VA, USA, p.1693 (2015).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB064 Development of a PrFeB Cryogenic Permanent Magnet Undulator (CPMU) Prototype at IHEP cryogenics, undulator, permanent-magnet, photon 1469
 
  • H.H. Lu, W. Chen, L. Gong, X.Y. Li, L.Z. Li, S.C. Sun, Y.J. Sun, Y.F. Yang, L. Zhang, X.Z. Zhang, S.T. Zhao
    IHEP, Beijing, People's Republic of China
 
  A PrFeB cryogenic permanent magnet undulator (CPMU) prototype is under construction for High Energy Photon Source Test Facility (HEPS-TF) at IHEP. The device is a full scale in-vacuum undulator with a magnetic length of 2 meters and a period of 13.5 mm, and it will work at less than 85K. The whole design scheme of prototype is presented and the specifications are given, where the consideration of in-vacuum magnetic measurement bench is also included. The development progress is introduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB066 Mechanical Design of a Cryogenic Permanent Magnet Undulator at IHEP cryogenics, undulator, permanent-magnet, photon 1475
 
  • S.C. Sun, W. Chen, L. Gong, X.Y. Li, L.Z. Li, H.H. Lu, Y.J. Sun, Y.F. Yang, L. Zhang, X.Z. Zhang, S.T. Zhao
    IHEP, Beijing, People's Republic of China
 
  High Energy Photon Source (HEPS) at Institute of High energy Physics (IHEP) is a new 6 GeV third generation electron storage ring. Insertion devices play a significant role in achieving the high performance of the photon source. A 13.5mm period-length Cryogenic Permanent Magnet Undulator (CPMU) prototype is designed and under construction. The mechanical structure designed based on physical requirements will be presented.
Work supported by Project of High Energy Photon Source Test Facility,
email address: sunsc@ihep.ac.cn
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB068 Design of the CPMU Vacuum System at the HEPS undulator, cryogenics, radiation, photon 1482
 
  • L. Zhang, H.H. Lu, S.C. Sun
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is a 3rd generation synchrotron radiation light source. Its beam energy is 6 GeV and its emittance is less than 60 pm'rad, which can provide high brilliance hard X-rays to several tens of experimental stations. The Cryogenic Permanent Magnet Undulator (CPMU) is one of the key components to achieve the high brilliance. And its vacuum system is necessary to provide an ultra-high vacuum environment for CPMU operation. To design the CPMU vacuum system, we do experiments to test the outgassing rate, estimate the total gas load, calculate the effective pumping speed, design the baking program and select all pumps and other vacuum equipments. This paper presents the design specifications and the assemblage status of the CPMU vacuum system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB105 Field Measurement System for a Cryogenic Permanent Magnet Undulator in TPS undulator, cryogenics, permanent-magnet, multipole 1559
 
  • C.K. Yang, C.H. Chang, T.Y. Chung, W.H. Hsieh, J.C. Huang, C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
 
  Short period in-vacuum, permanent magnet undulators operating at cryogenic temperatures are being developed worldwide to serve as brilliant and coherent light sources for medium energy storage rings. A hybrid cryogenic permanent magnet undulator (CU) with PrFeB magnets has now been designed and constructed at NSRRC [1]. To characterize the performance and to determine magnetic field errors after cool down poses some technical chal-lenges compared to room temperature undulators. A new system combining a Hall probe and a stretched wire has been designed to measure the field integrals, trajectory, phase errors, and K value under low temperature and vacuum conditions. Field measurements in this cryogenic undulator will be performed around 77 K as well as at room temperature, making temperature dependent calibra-tion of the Hall probes necessary. The main features and improvement of the measurement and calibration system are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB106 Development of a Cryogenic Permanent Magnet Undulator for the TPS undulator, permanent-magnet, cryogenics, radiation 1562
 
  • J.C. Huang, C.H. Chang, T.Y. Chung, C.-S. Hwang, J.C. Jan, C.S. Yang, C.K. Yang
    NSRRC, Hsinchu, Taiwan
  • H. Kitamura
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  Development of a cryogenic permanent magnet undu-lator (CPMU) at the Taiwan Photon Source (TPS) is the most recent activity toward a new light source for the Phase-II beamlines. A hybrid-type CPMU with a period length of 15 mm is under construction with PrFeB permanent-magnet materials. A maximum effective magnetic field of 1.77 T at a gap of 3 mm is expected when the magnets (PMs) are cooled down around 77 K. The features desired for the TPS CPMU are low-intrinsic-phase-error characteristics and high thermal budget for various kinds of heat loads. The design of the TPS CPMU is discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB107 Study of 60 Hz Beam Orbit Fluctuations in the Taiwan Photon Source SRF, shielding, photon, insertion-device 1566
 
  • C.H. Huang, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, K.H. Hu, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source is a 3 GeV synchrotron light source at NSRRC. To achieve high quality experimental results, it is important to minimize beam motion. During the installation of insertion devices and front-ends, the beam motion around 60 Hz became significant. The response matrix together with singular value decomposition was used to identify the transmitter of the superconducting radio frequency system as the source for the 60 Hz perturbations. This was subsequently corrected by rerouting the grounding of the mains in the transmitters. Yet, the 60Hz orbit fluctuation became even more serious after the next shutdown. A serious of experiments are performed to dig out that the beam was disturbed by the magnetic field from newly installed fan motors. Shielding the fans with mu-metal and increasing the distance between fan and beam pipe drastically reduced the leakage field and greatly increased beam stability. These errors could be prevented at the design stage in the ideal case. However, these errors happened finally and need to be dug out and eliminated. The method and experiences are summarized in this report. These will benefit others who facing the similar problems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB117 Conceptual Design of a Novel SCAPE Undulator undulator, photon, simulation, lattice 1596
 
  • Y. Ivanyushenkov, J.F. Fuerst, E. Gluskin, Q.B. Hasse, M. Kasa, Y. Shiroyanagi, E. Trakhtenberg
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
A concept of a novel SuperConducting Arbitrarily Polarizing Emitter, or SCAPE, has recently been suggested at the Advanced Photon Source. It consists of two pairs - both vertical and horizontal - of superconducting planar magnets assembled around a beam vacuum chamber. Such a device will be capable of generating either planar or circularly polarized photons, depending on which pair of magnets is energized. The magnetic simulation suggests that due to the employment of superconducting technology, the expected magnetic field is higher than that of the APPLE undulators. The SCAPE undulators could be useful for the fourth generation of storage rings with a multi-bend achromat lattice, as well as for the FELs where utilization of round beam vacuum chambers becomes possible. The results of magnetic modelling, as well as the design concept of the SCAPE, are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB121 Bench Measurements and Beam Tests of a Prototype Stripline Kicker for Swap-Out Injection in the ALS-U kicker, impedance, injection, alignment 1599
 
  • S. De Santis, J.M. Byrd, T.H. Luo, G.C. Pappas, C. Steier, C.A. Swenson, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The ALS upgrade to a diffraction-limited light source (ALS-U Project) relies on a swap-out injection scheme, where the circulating current is maintained constant by injecting on-axis fresh bunch trains, replacing old trains, which are simultaneously extracted. The realization of a stripline kicker to perform such an operation presents several challenges in terms of optimal matching to the pulser, contributions to the beam coupling impedance, and dissipation of the power deposited by the stored beam. To test our design choices for the ALS-U kicker, we have built and installed on the ALS a kicker with characteristics similar to the design for the ALS-U, as the more challenging aspects of the project are concerned. In particular, while the small distance between stripline electrodes reduces the required pulser voltage, the extreme proximity of the circulating beam requires a careful evaluation of the interaction between beam and kicker. In this paper we present the first measurements with beam, after the test kicker installation, together with the results of bench measurements performed on a cold model and computer simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB127 A Cryogenically Cooled High Voltage DC Photogun gun, electron, cryogenics, cathode 1618
 
  • H. Lee, I.V. Bazarov, L. Cultrera
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  A DC high voltage photogun with cryogenically cooling of the electrode has been newly built at Cornell University. This gun is designed to provide a DC high voltage and a photocathode in this gun can be cooled down to a cryogenic temperature. A photocathode puck design from INFN/DESY/LBNL is used, so we will be able to run a photocathode from other institutions as well. This paper describes the mechanical, thermal, and high voltage design of this gun. We also present data of high voltage conditioning and the thermal profile along the electrode structure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK033 Test and Commissioning Results of NSC KIPT 100 MeV/ 100 kW Electron Linear Accelerator, Subcritical Neutron Source Driver electron, neutron, gun, klystron 1751
 
  • A.Y. Zelinsky, O.E. Andreev, V.P. Androsov, S.V. Bazarov, O. Bezditko, O.V. Bykhun, Y.L. Chi, A.N. Gordienko, V.A. Grevtsev, A. Gvozd, D.Y. He, X. He, V.E. Ivashchenko, A.A. Kalamayko, I.I. Karnaukhov, I.M. Karnaukhov, X.C. Kong, V.P. Lyashchenko, H.Z. Ma, M. Moisieienko, S. Pei, X.H. Peng, A.V. Reuzayev, I.M. Subotenko, D.V. Tarasov, V.I. Trotsenko, X. Wang
    NSC/KIPT, Kharkov, Ukraine
  • Y.L. Chi, D.Y. He, X. He, X.C. Kong, H.Z. Ma, S. Pei, X.H. Peng, X. Wang
    IHEP, Beijing, People's Republic of China
  • S. Shu
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  Neutron Source on the base of subcritical assembly has been constructed and is under commissioning in NSC KIPT, Kharkov, Ukraine. The source uses 100 MeV/ 100 kW electron linear accelerator as a driver. The accelerator was designed and manufactured in IHEP, Beijing, China. The accelerator has been assembled at NSC KIPT, all accelerator systems and components were and accelerator is under commissioning. Reports describes the status of the NSC KIPT 100 MeV/ 100 kW electron linear accelerator. The results of the first tests are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK051 Statistics on High Average Power Operation and Results from the Electron Beam Characterization at PITZ gun, operation, cathode, Windows 1806
 
  • Y. Renier, P. Boonpornprasert, J.D. Good, M. Groß, H. Huck, I.I. Isaev, D.K. Kalantaryan, M. Krasilnikov, X. Li, O. Lishilin, G. Loisch, D. Melkumyan, A. Oppelt, H.J. Qian, T. Rublack, C. Saisa-ard, F. Stephan, Q.T. Zhao
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • M. Bousonville, S. Choroba, S. Lederer
    DESY, Hamburg, Germany
 
  The Photo Injector Test Facility at DESY in Zeuthen (PITZ) develops, tests and characterizes high brightness electron sources for FLASH and European XFEL. Since these FELs work with superconducting accelerators in pulsed mode, also the corresponding normal-conducting RF gun has to operate with long RF pulses. Generating high beam quality from the photo-cathode RF gun in addition requires a high accelerating gradient at the cathode. Therefore, the RF gun has to ensure stable and reliable operation at high average RF power, e.g. 6.5 MW peak power in the gun for 650 μs RF pulse length and 10 Hz repetition rate for the European XFEL. Several RF gun setups have been operated towards these goals over the last years. The latest gun setup is in operation since March 2016 and includes RF Gun 4.6 with an improved contact spring design. The RF input distribution consists of a coaxial coupler, a T-combiner and 2 RF windows from DESY production. In this contribution we will present statistics on the high average power operation and results from the characterization of the produced electron beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK057 The Real-Time Waveform Mask Interlock System for the RF Gun Conditioning of the ELI-NP Gamma Beam System gun, operation, real-time, software 1822
 
  • S. Pioli, D. Alesini, A. Gallo, L. Piersanti
    INFN/LNF, Frascati (Roma), Italy
  • F. Cardelli, L. Palumbo
    University of Rome La Sapienza, Rome, Italy
  • D.T. Palmer
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
 
  The new Gamma Beam System (GBS), within the ELI-NP project, under installation in Magurele (RO) by INFN, as part of EuroGammas consortium, can provide gamma rays that open new possibilities for nuclear photonics and nuclear physics. ELI-GBS gamma rays are produced by Compton back-scattering to get monochromaticity (0,1% bandwidth), high flux (1013 photon/s the highest in the world), tunable directions and energies up to 19 MeV. Such gamma beam is obtained when a high-intensity laser collides a high-brightness electronbeam with energies up to 720 MeV. The RF-Gun, made with the novel clamping gasket technique, working in '-mode at 100 Hz with a max. RF input of 16 MW, RF peak field of 120 MV/m and filling time of 420 ns was fully tested and conditioned few month ago at ELSA. This paper will describe the real-time fast-interlock system based on waveform mask technique used during RF Gun conditioning in order to monitor on-line reflected RF signals for a faster pulse-to-pulse detection of breakdowns and to ensure the safety of Gun and modulator tripping such devices before next RF pulse.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK058 The Machine Protection System for the ELI-NP Gamma Beam System electron, laser, gun, operation 1824
 
  • S. Pioli, D. Alesini, D. Di Giovenale, G. Di Pirro, A. Gallo, L. Piersanti, A. Vannozzi, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • F. Cardelli, L. Palumbo
    University of Rome La Sapienza, Rome, Italy
 
  The new Gamma Beam System (GBS), within the ELI-NP project, under installation in Magurele (RO) by INFN, as part of EuroGammas consortium, can provide gamma rays that open new possibilities for nuclear photonics and nuclear physics. ELI-GBS gamma rays are produced by Compton back-scattering to get monochromaticity (0,1% bandwidth), high flux (1013 photon/s the highest in the world), tunable directions and energies up to 19 MeV. Such gamma beam is obtained when a high-intensity laser collides a high-brightness electron beam with energies up to 720 MeV with a repetition rate of 100 Hz in multi-bunch mode with trains of 32 bunches. An advanced Machine Protection System was developed in order to ensure proper operation for this challenging facility. Such system operate on different layers of the control system to be interfaced with all sub-systems of the control system. It's equipped with different beam loss monitors based on Cherenkov optical fiber, hall probes, fast current transformer together with BPM and an embedded system based on FPGA with distributed I/O over EtherCAT to monitor vacuum and RF systems which requires fast response to be interlocked within the next RF pulse.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK063 The Configurable Software Interlock System for HLS-II software, operation, EPICS, controls 1836
 
  • Y. Song, G. Liu, K. Xuan
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The interlock system is an essential component for an accelerator facility. A configurable software interlock system(SIS) is designed for Hefei Light Source II (HLS-II), which complements the hardware interlock system to ensure equipment and operators' safety. The system is developed using Python under the EPICS framework with the method of separating the configuration file from the interlock program. The interlock logic is completely determined by the configuration file and its nested tree structure is easy to expand. The test results indicate that the new software interlock system is reliable, flexible and convenient to operate. This paper will describe the design and the construction of HLS-II SIS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK067 Online Monitoring of the ADS Test Cryostat Cold Mass With WPM cryomodule, alignment, cryogenics, monitoring 1848
 
  • H.Y. Zhu
    Institute of High Energy Physics (IHEP), People's Republic of China
  • L. Dong, L.L. Men, Z. Wang
    IHEP, Beijing, People's Republic of China
  • B. Li
    CSNS, Guangdong Province, People's Republic of China
 
  Superconducting devices in particle accelerator demand strict operating environment: cryostat with ultra high vacuum and almost absolute zero temperature 2K-4K. This brings a big problem to survey and alignment work: how to preserve the magnets alignment precision in the cryostat, especially after such a big range temperature change. The complicate structure of magnet girder and cryogenic pipes make it difficult to do precise contraction simulation. So wire position monitor (WPM) is designed to measure the device contraction in cryomodule. Accelerator Driven System (ADS) Injector-I is a proton Linac, WPM system was assembled in its first cyomodule TCM. WPM is precisely calibrated, assembled at the same height as magnets. System noise, contraction stability and repeatability are analyzed in detail. Contraction coefficient of girder system is calculated by contraction data and temperature data, the result matches with the thermal coefficient of stainless steel very well. After commissioning, two thermal cycles were recorded, average contraction value was 1.35mm. The commissioning data shows about 0.2mm contraction difference with the same girder structure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK069 PXIe Embedded Control Station Based the Electric Breakdown Data Acquisition and RF Conditioning System for C-Band Accelerating Structures Using for Shanghai Soft X-Ray Free Electron Laser (SXFEL) controls, hardware, FPGA, laser 1855
 
  • Y. Li, W. Fang, J.Z. Gong, Q. Gu, J.J. Guo, L. Li, Z.B. Li, J.H. Tan, C.C. Xiao, J.Q. Zhang, M. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  Funding: Shanghai Institute of Applied Physics, The Chinese Academy of Science., National Development and Reform Commission, the People's Republic of China., National Natural Science Foundation of China.
Shanghai Soft X-Ray Free Electron Laser (SXFEL) adopts C-band structure to accelerate the electron to 1.5-GeV. Due to high gradient operation, the electric breakdown and structure conditioning problems need to be perfectly resolved. For this purpose, we develop an automatic conditioning control and electric breakdown data acquisition system. The control based on a PXI Express (PXIe) embedded frame and the LabView-FPGA technique. The prototype system design, the software programming and hardware test will be introduced. The experiment setup and test results for a low-level signal will be shown.
' Corresponding author: liyingmin@sinap.ac.cn
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK079 Development and Status of Protection Functions for the Normal Conducting LINAC at ESS linac, proton, timing, monitoring 1880
 
  • R. Andersson, E. Bargalló, S. Kövecses, A. Nordt, M. Zaera-Sanz
    ESS, Lund, Sweden
  • C. Hilbes, M. Rejzek
    ZHAW, Winterthur, Switzerland
 
  The European Spallation Source faces a great challenge in succeeding with its ambitious availability goals. The aim is to construct a machine that allows for 95% availability for neutron beam production. This goal requires a robust protection system that allows for high availability by continuously monitoring and acting on the machine states, in order to avoid long facility downtimes and optimize the operation at any stage. The normal conducting section consists of the first 48 meters of the machine, and performs the initial acceleration, bunching, steering, and focusing of the beam, which sets it up for optimal transition into the superconducting section. Through a fit-for-purpose risk management process, a set of protection functions has been identified. The risk identification, analysis, and treatment were done in compliance with modern safety and ISO standards. This ensures that the risks, in this case downtime and equipment damage, are properly prevented and mitigated. This paper describes this process of defining the protection functions for the normal conducting linac at ESS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK083 Methodology, Design and Physical Deployment of Highly Dependable PLC Based Interlock Systems for ESS PLC, interface, operation, hardware 1887
 
  • M. Zaera-Sanz, S. Kövecses, A. Nordt
    ESS, Lund, Sweden
 
  Approximately 350 resistive magnets, 110 vacuum gate valves and 30 interceptive devices will be installed in the 600 m long linear accelerator at ESS, transporting the proton beam from the source to the target station. In order to protect this equipment from damage and to take the appropriate actions required to minimise recovery time, a dedicated set of PLC based interlock systems are being designed. The magnet powering interlock system will safely switch off a Power Converter (PC) upon the detection of an internal magnet or PC failure. The interceptive devices interlock system will protect Faraday cups, wire scanners, EMUs and LBMs from a beam mode that they cannot withstand by allowing/removing permission for movement. The vacuum gates interlock system will protect the gate valves in case of unexpected closing. The target interlock system will protect the target system by acting on motors, compressors, etc. These interlock systems will inform the beam interlock system to inhibit further beam operation by stopping beam if required. The methodology, design and physical deployment of the four interlock systems will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK085 HL-LHC Alignment Requirements and Associated Solutions alignment, quadrupole, target, monitoring 1893
 
  • H. Mainaud Durand, S. Bartolome-Jimenez, T. Dijoud, A. Herty, M. Sosin
    CERN, Geneva, Switzerland
  • M. Duquenne, V. Rude
    ESGT-CNAM, Le Mans, France
 
  To increase by more than 10 times the luminosity reach w.r.t the first 10 years of the LHC lifetime, the HL-LHC project will replace nearly 1.2 km of the accelerator during the Long Shutdown 3 scheduled in 2024 [1][2][3]. This paper presents the HL-LHC alignment and internal metrology requirements of all the new components to be installed, from the magnet components to the beam instrumentation and vacuum devices. As for the LHC, a combination of Hydrostatic Levelling Sensors (HLS) and Wire Positioning Sensors (WPS) is proposed for the alignment of the main components, but on a longer distance (210 m instead of 50 m), generating technical challenges for the installation of the stretched wire and for the maintenance of the alignment systems. Innovative measurements methods and instrumentation are under study to perform the position monitoring inside a cryostat of cold masses and crab cavities, in a cold (2K) and radioactive (1 MGy/year) environment, as well as to carry remote measurements in the tunnel of the intermediary components. The proposed solutions concerning the determination of the position and the re-adjustment of the components are detailed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK101 Development and Construction of Safety and Control Systems for the TPS Front End Interlock controls, photon, status, radiation 1947
 
  • J. -Y. Chuang, C.K. Chan, Y.M. Hsiao, C.K. Kuan, Y.Z. Lin, I.C. Sheng, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
  • C.S. Lin
    NPUST, Pingtung, Taiwan
 
  The Taiwan photon source (TPS) at NSRRC (National Taiwan Photon Source) is a 3rd generation, 3 GeV storage ring with designed current of 500 mA. In phase-I, six insertion device beamlines have been available to users after the safety interlock systems were commissioned and reviewed. National Instrument (NI) compact RIO 9030 is used for the front end interlock control system, and both scan and FPGA modes are activated in a hybrid mode to enhance the safety reliability. The personnel and machine protection system as well as EPICS communications of the TPS control system are presented in this paper as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK102 Introduction of Operating Procedures at TPS controls, operation, injection, electron 1951
 
  • C.S. Huang, B.Y. Chen, C.H. Chen, J.Y. Chen, M.-S. Chiu, S. Fann, C.H. Kuo, T.Y. Lee, C.C. Liang, W.Y. Lin, Y.-C. Liu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is the latest generation of 3 GeV synchrotron light source which subsystem includes magnet, power supply, vacuum, RF system, insertion device, control system, etc. The operating procedures and checking items are complex. To speed up the machine start-up and shut-down procedures, check the system's status, and prevent misoperation, we summarize the procedures for routine operation and develop the integrated control interface, which concentrates most machine information and control functions into a single window. This interface clearly indicates the machine status and improves operational efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK105 The Design Improvement of Horizontal Stripline Kicker in TPS Storage Ring kicker, impedance, storage-ring, operation 1961
 
  • P.J. Chou, C.K. Chan, C.-C. Chang, K.T. Hsu, K.H. Hu, C.K. Kuan, I.C. Sheng
    NSRRC, Hsinchu, Taiwan
 
  We plan to replace the existing horizontal stripline kicker of the transverse feedback system with an improved design. Large reflected power was observed at the downstream port of stripline kicker driven by the feedback amplifier. A rapid surge of vacuum pressure was observed when we tested the high current operation in TPS storage ring in April 2016. A burned feedthrough of the horizontal stripline kicker was discovered during a maintenance shutdown. The improved design is targeted to reduce the reflection of driving power from feedback system and to reduce beam induced RF heating. This major modification of the design is described. The results of RF simulation performed with the electromagnetic code GdfidL are reported as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK113 Performance of the Fast Orbit Feedback System with the Double-Double Bend Achromat Installed in Diamond Light Source storage-ring, feedback, sextupole, controls 1989
 
  • S. Gayadeen, G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  At Diamond Light Source, the Double-Double Bend Achromat (DDBA) lattice upgrade involved the conversion of one cell of the storage ring from a double bend achromat (DBA) structure to a double-DBA (DDBA). The new cell includes corrector magnets that are different in design to the DBA corrector magnets. The DDBA vacuum chamber cross section is also different from the DBA cells and includes both stainless steel and copper sections over which corrector magnets are fitted. The performance of the Fast Orbit Feedback (FOFB) used for electron beam stabilisation with the DDBA cell installed is presented in this paper. Firstly the different corrector magnet dynamic responses are characterised and secondly the closed loop performance of the FOFB is measured and analysed for the upgraded lattice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK115 Control System Developments for the Diamond Light Source DDBA Upgrade controls, feedback, storage-ring, software 1996
 
  • W.A.H. Rogers, M.G. Abbott, K.A.R. Baker, N.W. Battam, M.J. Furseman, I.J. Gillingham, P. Hamadyk, M.T. Heron, D.G. Hickin, S.C. Lay, I.P.S. Martin, A.J. Rose
    DLS, Oxfordshire, United Kingdom
 
  Upgrading one Double Bend Achromat cell to a Double Double Bend Achromat (DDBA) cell in the Diamond Light Source storage ring* necessitated a broad range of changes to the overall control system. These changes covered developments to the interface layer of the controls system to incorporate changes to the underlying instrumentation, associated development of user interface, changes to real-time feedback and feed-forward processes and to the online accelerator model. Given the pressures to minimise the shutdown length, the control system developments were optimised for time effective installation and commissioning. This paper outlines the control system developments for DDBA, the management process and lessons learnt from this process.
* R.P. Walker et al., The Double-Double Bend Achromat (DDBA) Lattice Modification for the Diamond Storage Ring, Proc. IPAC 2014, MOPRO103, (2014)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK122 Bunch-by-Bunch Feedback Kickers for SPEAR3 kicker, impedance, feedback, ion 2012
 
  • K. Tian, W.J. Corbett, J.D. Fox, S.M. Gierman, R.O. Hettel, X. Huang, A.K. Krasnykh, N. Kurita, D.J. Martin, J.A. Safranek, J.J. Sebek
    SLAC, Menlo Park, California, USA
  • Q. Lin
    DongHua University, Songjiang, People's Republic of China
  • D. Teytelman
    Dimtel, San Jose, USA
 
  SPEAR3 operates with a large cross-section copper vacuum chamber, mode-damped RF cavities and low-impedance insertion devices. As a result, the beam is passively stable for 280-bunch circulating beam current up to 500ma when the background gas pressure is low. In the future, more small-gap insertion devices will be installed and plans are underway to implement resonant bunch-crabbing for the ultrafast x-ray research program. These requirements drive the need for a fast, bunch-by-bunch feedback system to control beam instabilities, remove unwanted satellite bunches and resonantly crab select bunches on demand. In this paper we present a conceptual design for the transverse bunch-by-bunch stripline kickers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA056 Ionization Loss and Dynamic Vacuum in Heavy Ion Synchrotrons injection, ion, synchrotron, heavy-ion 2201
 
  • L.H.J. Bozyk, P.J. Spiller
    GSI, Darmstadt, Germany
 
  Dynamic vacuum effects, induced by charge exchange processes and ion impact driven gas desorption, generate an intensity limitation for high intensity heavy ion synchrotrons. In order to reach ultimate heavy ion intensities, medium charge state heavy ions are used. The cross sections for charge exchange in collisions with residual gas molecules for such beams are much higher, than for highly charged heavy ion beams. Therefore high pumping power is required to obtain a very low static residual gas pressure and to suppress vacuum dynamics during operation. In modern heavy ion synchrotrons different techniques are employed: NEG-coating, cryogenic pumping, and low-desorption ion-catcher. The unique StrahlSim code allows the comparison of different design options for heavy ion synchrotrons. Different aspects of dynamic vacuum limitations are summarized, such as the dependence on different injection parameter. A comparison between a room temperature and a cryogenic synchrotron from the vacuum point of view is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA096 Detection of H0 Particles in MEBT2 Chicane of J-PARC Linac linac, ion, diagnostics, detector 2308
 
  • J. Tamura, H. Ao, T. Maruta, A. Miura, T. Morishita, K. Okabe, M. Yoshimoto
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Futatsukawa, T. Miyao
    KEK, Ibaraki, Japan
  • Y. Nemoto
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
 
  In the Japan Proton Accelerator Research Complex (J-PARC), H0 particles generated by collisions of accelerated H beams with residual gases are considered as one of the key factors of the residual radiation in the high energy accelerating section of the linac. To diagnose the H0 particles, the new beam line for analyzing H0 and H particles was installed in the second medium energy beam transport (MEBT2), which is the matching section from the separated-type drift tube linac (SDTL) to the annular-ring coupled structure linac (ACS). The analysis line consists of four dipole magnets for giving the H beam chicane orbit, and a wire scanner monitor (WSM) for measuring the horizontal shift of the H beam. To detect the H0 particles, a carbon plate is installed to the WSM. In the beam commissioning, we detected the signals of H0 particles penetrating the plate and observed the transition of the signal with various vacuum condition in the SDTL section.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA100 High Power Conditioning and First Beam Acceleration of the CSNS DTL-1 DTL, cavity, acceleration, linac 2320
 
  • Y. Wang, A.H. Li, B. Li, J. Peng, P.H. Qu, X.L. Wu
    CSNS, Guangdong Province, People's Republic of China
  • Q. Chen, M.X. Fan, K.Y. Gong, H.C. Liu
    IHEP, Beijing, People's Republic of China
 
  The CSNS DTLs are divided into 4 cavities. The DTL-1 was transferred and installed in the CSNS Linac tunnel in August of 2015. The RF high power conditioning of DTL-1 started in December 2015 and ended in February 2016. At the end, we finished DTL-1 high power conditioning mission with peak power 1.5MW (1.1 times design value), 1.625% duty factor (650us, 25Hz). And the first beam has been successfully accelerated to the design value 21.6MeV with nearly 100% transmission efficiency. In this paper, the details of conditioning process were presented and one severe RF discharge breakdown was described specifically, which occurred during high power conditioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA108 Development of 1 MeV/n RFQ for Ion Beam Irradiation rfq, ion, cavity, ion-source 2343
 
  • H.S. Kim
    KAERI, Daejon, Republic of Korea
  • Y.-S. Cho, H.-J. Kwon, Y.G. Song, S.P. Yun
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC (Korea Multi-purpose Accelerator Complex) operation fund of KAERI by MSIP (Ministry of Science, ICT and Future Planning).
For the purpose of the ion beam irradiation, especially for helium beam application to semiconductor industry, an ion beam RFQ is under development at KOMAC (Korea Multi-purpose Accelerator Complex). The output energy of the RFQ is determined to be 1 MeV/n, which corresponds to 4 MeV in helium beam case, in consideration of the penetration depth in the silicon substrate. The RFQ is a four-vane type and will be fabricated through vacuum brazing technique. The RF power of 130 kW at 200 MHz will be provided to the RFQ by using a solid-state RF amplifier through two coaxial RF couplers with coaxial RF windows. The details of the RFQ development including some design features and fabrication methods will be given in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA120 Design and Fabrication of ESS-Bilbao RFQ Linac rfq, cavity, proton, simulation 2373
 
  • J.L. Muñoz, I. Bustinduy, I. Rueda, D. de Cos
    ESS Bilbao, Zamudio, Spain
 
  The RFQ accelerator for ESS-Bilbao is presented. This device will complete ESS-Bilbao injection chain after the ion source and LEBT. Design, carried out by ESS-Bilbao team, was finished in 2015. Machining has started in 2016. The RFQ is a 4-vane structure, aimed to accelerate protons from 45 keV to 3.0 MeV and operating at 352.2 MHz. It has a total length of about 3.1 meters, divided in 4 segments. Segments themselves are formed by 2 major and 2 minor vanes, assembled together by using polymeric vacuum gaskets instead of brazing or other welding system. In this paper the design is presented, including the beam dynamics, RF cavity design, field flatness and frequency tuning. Cooling and thermo-mechanical design is also described. Mechanical design, including vacuum strategy and test models, is also briefly described (there is a dedicated poster on this). The first segment fabrication is scheduled to finish before the end of 2016, so vacuum and low power RF tests results would also be included in the presented paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA153 Accelerator-Based Education Activities at JINR controls, electron, linac, radiation 2455
 
  • M.A. Nozdrin, D. Belozerov, K. Gikal, V. Kobets, S. Pakuliak, V. Shabratov, G. Shirkov, D. Shvidkiy, K. Verlamov, A. Zhemchugov, D. Zlydenny
    JINR, Dubna, Moscow Region, Russia
 
  Professional practice is essential to train an engineer. However, many activities are impossible to run at high school, especially if they require sophisticated equipment such as accelerators. A series of practical engineering courses is being set up at the Joint Institute for Nuclear Research to overcome these difficulties while educating students from the JINR Member States. A dedicated 'training' beamline of the Linac-200 electron accelerator is being constructed to practice the beam management and diagnostics, including the operation of standard beamline elements such as a bending dipole, quadrupoles, a sextupole and steerers. Various types of particle detectors can be used in the beam area as well in order to study the passage of electrons and photons through matter and to learn about the detector operation and properties. The practice at the beam will be accompanied by a series of hands-on trainings on radiation protection, vacuum and RF technology, electronics and metrology.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA153  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCA2 Experience of Taiwan Photon Source Commissioning and Operation operation, radiation, injection, booster 2495
 
  • Y.-C. Liu, C.H. Chen, J.Y. Chen, M.-S. Chiu, P.J. Chou, S. Fann, C.S. Huang, C.-C. Kuo, T.Y. Lee, C.C. Liang, G.-H. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  The TPS commissioning period is from August 2014 to March 2016. The experience of phase I [1] (bare lattice 2014.8~2015.3) and phase II [2,3] (SRF and insertion devices 2015.9~2016.3) commissioning is overviewed. Taiwan Photon Source (TPS) started user operation in March 2016. The delivery user time reached 3211 hours. The continuous improvements of integrated accelerator performance are described and future developments are discussed.  
slides icon Slides WEOCA2 [32.368 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOCA2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCA3 Status of the Development of Superconducting Undulators at the Advanced Photon Source undulator, photon, FEL, storage-ring 2499
 
  • Y. Ivanyushenkov, C.L. Doose, J.F. Fuerst, E. Gluskin, Q.B. Hasse, M. Kasa, Y. Shiroyanagi
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
Superconducting planar undulator (SCU) technology has been developed and is currently in use at the Advanced Photon Source (APS). The experience of building and operating the first short-length, 16-mm period superconducting undulator, SCU0, paved the way for two 1-m long, 18-mm period devices, SCU18-1 and SCU18-2. The first of those undulators has been in operation since May 2015, while the second one replaced SCU0 in September 2016. The possibility of building planar SCUs with a high quality field has been demonstrated at the APS. The measured phase errors of SCU18-2 at the design operational current are only 2 degrees rms, for example. An FEL SCU prototype - a 1.5-m long, 21-mm period undulator - was also built and tested as part of an LCLS SCU R&D program. This undulator successfully achieved all LCLS-II undulator requirements including a phase error of 5 degrees rms. The superconducting undulator technology also allows the fabrication of circular polarizing devices. Currently, a new helical SCU is under construction at the APS. In addition, the concept of a novel Superconducting Arbitrarily Polarizing Emitter, or SCAPE, has been suggested and is now under development.
 
slides icon Slides WEOCA3 [2.826 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOCA3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZB1 Review and Prospects of RF Solid State Amplifiers for Particle Accelerators cavity, coupling, power-supply, booster 2537
 
  • P. Marchand
    SOLEIL, Gif-sur-Yvette, France
 
  Thanks to the growth of high power semiconductor technology, solid state power amplifier (SSPA) systems with several hundred kW RF power are now available for various accelerator fields. Following the successful development at 352 MHz that took place at SOLEIL in the 2000s, the technology was transferred to industry and SSPAs at different frequencies, power levels, and pulse lengths have been widely adopted. In this paper we report about the SOLEIL experience with SSPAs and review the used or planned SSPAs in other accelerator facilities.  
slides icon Slides WEZB1 [13.860 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEZB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB044 Construction and Commissioning of Direct Beam Transport Line for PF-AR injection, linac, beam-transport, operation 2678
 
  • N. Higashi, S. Asaoka, K. Furukawa, K. Haga, K. Harada, T. Higo, T. Honda, H. Honma, N. Iida, H. Iwase, K. Kakihara, T. Kamitani, M. Kikuchi, Y. Kishimoto, Y. Kobayashi, K. Kodama, K. Kudo, T. Kume, K. Mikawa, T. Mimashi, F. Miyahara, H. Miyauchi, S. Nagahashi, H. Nakamura, N. Nakamura, T. Natsui, K.N. Nigorikawa, Y. Niwa, T. Nogami, T. Obina, Y. Ogawa, M. Ono, T. Ozaki, H. Sagehashi, T. Sanami, M. Sato, M. Satoh, T. Suwada, M. Tadano, T. Tahara, R. Takai, H. Takaki, S. Takasaki, M. Tanaka, Y. Tanimoto, M. Tawada, N. Toge, T. Uchiyama, A. Ueda, Y. Yamada, M. Yamamoto, M. Yoshida
    KEK, Ibaraki, Japan
 
  PF-AR was constructed as an accumulator ring for TRISTAN, and in the KEKB era it has been revitalized as a 6.5 GeV synchrotron radiation source. The injection energy was 3 GeV and the beam was accelerated to 6.5 GeV prior to the user run. The original beam transport line (BT) from the LINAC to the PF-AR shared its upstream part with the the BT line of KEKB High Energy Ring (HER). The injection-mode change from PF-AR to HER or vice versa needs about 10 minutes for the magnet cycling procedure of the shared part. In SuperKEKB, the upgrade of KEKB, the lifetime of HER is about 10 minutes. The mode-switch operation of the BT is, therefore, not allowed for maintaining the highest luminosity of the SuperKEKB. In order to avoid this problem, a new 6.5 GeV BT line dedicated to PF-AR has been constructed. This also enables the top-up injection for the user run. The commissioning of the new BT line has been completed in this March, and now the first user run has been operated successfully.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB067 Electron Beam Lifetime in SOLARIS Storage Ring electron, storage-ring, scattering, damping 2731
 
  • M.B. Jaglarz, P.B. Borowiec, A. Kisiel, A.I. Wawrzyniak
    Solaris, Kraków, Poland
  • A.M. Marendziak
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  Solaris storage ring is a recently constructed and commissioned machine. At the beginning of storage ring operation the lifetime was very short mostly dominated by the ion trapping and residual gas scattering. After a 390 A·h of beam cleaning the measured total lifetime has reached 20 h for 100mA of a stored current. Since the main contribution to the total lifetime in the storage ring comes from single Coulomb and Touschek scattering the dependence of the residual gas pressure and the vertical aperture of storage ring is investigated. Moreover to improve the Touschek lifetime the 3rd harmonic cavities were installed. Recently the cavities were tuned close to the resonance and the total lifetime increased significantly. This presentation will report on the lifetime measurements and calculations carried out for Solaris 1.5 GeV storage ring at different vacuum and RF conditions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB068 Residual Gas in the Vacuum System of the Solaris 1.5GeV Electron Storage Ring storage-ring, electron, ion, injection 2734
 
  • A.M. Marendziak, S. Piela, M.J. Stankiewicz, A.I. Wawrzyniak, M. Zając
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
  • E. Al-Dmour
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Solaris is a third generation light source constructed at the Jagiellonian University in Kraków, Poland. The machine was designed by the MAX IV Laboratory team. The replica of the 1.5 GeV storage ring with 96 m circumference of a vacuum system was successfully built and now the synchrotron facility is after the 3rd phase of commissioning. Recent installation of the Residual Gas Analyzer (RGA) in the storage ring allows now for evaluation of the residual gas composition. Within this paper the result of residual gas analysis in the vacuum system of storage ring during different states of the machine will be presented. Result of vacuum performance regarding beam cleaning and beam lifetime will be presented. Moreover, the NEG strips performance will be evaluated and reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB072 Apple II Undulator and Front End Design for the New LOREA Beamline at ALBA polarization, undulator, dipole, wiggler 2747
 
  • J. Campmany, L.G.O. Garcia-Orta, J. Marcos, V. Massana
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA synchrotron has started the construction of a new beamline LOREA, for Low-Energy Ultra-High-Resolution Angular Photoemission for Complex Materials. It will operate in the range of 10 to 1500 eV and will use polarized light. In order to produce the light to be used in this beamline, several options have been studied, and finally an Apple II design has been chosen. The device can operate as an undulator at low energies and as a wiggler at high energies, reaching a wide energy range. The high demanding characteristics of the beamline in terms of energies lead to a device providing high power and wide beam in some working modes. This situation has been a challenge for the Front End design, especially for the vertically polarized mode, with some changes with respect to standard ALBA front ends. In this paper we present the magnetic design and expected performances of the device, that currently is being built by KYMA, as well as the Front End design, that currently is being built by RMP and TVP.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB093 Mechanical Engineering of the Diamond DDBA Upgrade insertion-device, storage-ring, insertion, electron 2794
 
  • N.P. Hammond, A.G. Day, R.K. Grant, R. Holdsworth, J. Kay
    DLS, Oxfordshire, United Kingdom
 
  The Diamond storage ring has been upgraded to replace one cell of Double Bend Achromat (DBA) with a Double Double Bend Achromat (DDBA). This upgrade has enabled the construction of a new straight to install a much brighter insertion device X-ray source for a new beamline rather than use a weaker bending magnet source. The engineering challenges and experience from this project are described, especially those aspects relevant to building a future low emittance storage ring at Diamond.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB094 Diamond: Ten Years of Operation operation, cavity, storage-ring, controls 2797
 
  • V.C. Kempson
    DLS, Oxfordshire, United Kingdom
 
  In January 2017 Diamond Light Source reached ten years of operation, providing beam to beam lines and users. At the start of operations there was an initial suite of 7 beam lines, phase 1. We are now in the later part of a phase 3 beam line upgrade bringing the total number of beam lines up to 29+ which is close to maximum capacity. The 3GeV storage ring has had a number of modifications and improvements across the last 10 years culminating in the recent (Autumn 2016) addition of a major local lattice modification, DDBA , reported elsewhere at this conference. This review paper will look at machine improvements operationally and machine developments that improved overall performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB096 Diamond Light Source: A 10-year View of the Past and Vision of the Future cavity, operation, feedback, emittance 2804
 
  • R.P. Walker, R. Bartolini, C. Christou, P. Coll, M.P. Cox, M.T. Heron, J. Kay, V.C. Kempson, S. Milward, G. Rehm
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Diamond Light Source has been in regular operation for users for 10 years and so it is an appropriate moment to review the successes and challenges of the past, and also consider the vision for the next 10 years.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB104 Status of the Conceptual Design of ALS-U emittance, lattice, kicker, storage-ring 2824
 
  • C. Steier, A.P. Allézy, A. Anders, K.M. Baptiste, J.M. Byrd, K. Chow, G.D. Cutler, S. De Santis, R.J. Donahue, R.M. Duarte, J.-Y. Jung, S.C. Leemann, M. Leitner, T.H. Luo, H. Nishimura, T. Oliver, O. Omolayo, J.R. Osborn, G.C. Pappas, S. Persichelli, M. Placidi, G.J. Portmann, S. Reyes, D. Robin, F. Sannibale, C. Sun, C.A. Swenson, M. Venturini, W.L. Waldron, E.J. Wallén, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The ALS-U upgrade promises to deliver diffraction limited performance throughout the soft x-ray range by lowering the horizontal emittance to about 50~pm resulting in 2-3 orders of brightness increase for soft x-rays compared to the current ALS. The design utilizes a multi bend achromat lattice with on-axis swap-out injection and an accumulator ring. One central design goal is to install and commission ALS-U within a short dark period. This paper summarizes the status of the conceptual design of the accelerator, as well as some results of the R&D program that has been ongoing for the last 3 years.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK008 Problems in SuperKEKB Vacuum System During the Phase-1 Commissioning and Their Mitigation Measures wiggler, electron, photon, positron 2925
 
  • Y. Suetsugu, H. Hisamatsu, T. Ishibashi, K. Kanazawa, K. Shibata, M. Shirai, S. Terui
    KEK, Ibaraki, Japan
 
  The first (Phase-1) commissioning of the SuperKEKB, an energy-asymmetric electron-positron collider in KEK, Japan, started in February and ended in June, 2016. The vacuum system of the main ring worked well through the commissioning period as a whole, but experienced several problems, such as the electron cloud effect (ECE) in the positron ring, the pressure bursts accompanying beam losses due to dust particles in the beam pipe, an air leak at a connection flange due to the direct hitting of synchrotron radiation (SR), and so on. Towards the next (Phase-2) commissioning, countermeasures to these problems are taken during the shutdown period. For example, permanent magnets generating axial magnetic fields are attached to beam pipes at drift spaces for the suppression of the ECE. Knockers, which can artificially drop dust particles attached to the top surface in beam pipes by continuous impacts, are prepared to the beam pipes at which the pressure bursts had been frequently observed. Bellows chambers with masks are installed to protect the leaked flange from SR. The problems and their mitigation measures will be summarized in the presentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK011 Ceramic Chamber Used in SuperKEKB High Energy Ring Beam Abort System kicker, operation, target, injection 2936
 
  • T. Mimashi, N. Iida, M. Kikuchi, K. Kodama, T. Mori
    KEK, Ibaraki, Japan
  • K. Abe
    Hitachi Power Semiconductor Device, Ltd., Hitachishi, Ibaraki, Japan
 
  The water-cooled type ceramic chambers were used for Super-KEKB high energy ring beam abort system. Since the horizontal abort kicker magnets are required to have very fast rise time and large current, the gap of kicker magnet must be as small as possible. The thin and compact ceramic chamber were developed. The chamber has racetrack type chamber whose inner diameter is 60mm in horizontal and 40 mm in vertical. And the gap of horizontal kicker magnet is 70mm. The thickness of the ceramic chamber is 30 % reduced from that of KEKB. The 500mm long hollow type ceramic, which includes cooling water path inside, is fabricated. It makes the structure of ceramic chamber simple and compact. The new copper electroforming is applied to deposit the 100μmeter thickness Cu conducting layer on the inner wall of Kovar. The Cu conducting layer reduces the heat generated by image beam current on the Kovar brazering. They are installed in the Super-KEKB electron ring beam abort system, and used in the phase 1 operation. The paper describes the performance of the water-cooled ceramic chamber under phase 1 operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK025 Spectral Diagnostics of Argon Plasma in a 10mm Aperture Plasma Window plasma, electron, cathode, ion 2978
 
  • P.P. Gan, S. Huang, Y.R. Lu, S.Z. Wang, Z.X. Yuan, K. Zhu
    PKU, Beijing, People's Republic of China
 
  A 10 mm diameter 60 mm long plasma window has been designed and managed to generate arc discharge with argon gas experimentally in Peking University. Based on the previous experiments and simulations, we have measured the electron temperature and density of the plasma via argon spectral diagnostics, and analyzed the conditions to satisfy the criterion of local thermal equilibrium (L.T.E). The electron temperature is in the range of 12000 K to 16000 K. The electron density is in the range of 2.2×1016 cm-3 to 3.2×1016 cm-3, increasing with discharge current and gas flow rate. The results indicate that our argon plasma is in the L.T.E status. The sealing pressure characteristics of the plasma window is mentioned as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK054 Evaluation and Attenuation of Sirius Components Impedance impedance, HOM, dipole, storage-ring 3048
 
  • H.O.C. Duarte, L. Liu, S.R. Marques
    LNLS, Campinas, Brazil
 
  The Sirius in-vacuum components have their design improvements, possibilities and choices presented, where wake heating, single-bunch and multi-bunch effects and mechanical aspects were taken into account. The results were finally evaluated and added to the Sirius impedance budget.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK055 Analysis and Countermeasures of Wakefield Heat Losses for Sirius HOM, impedance, simulation, storage-ring 3052
 
  • H.O.C. Duarte, L. Liu, S.R. Marques, T.M. da Rocha, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Design evaluation and possible solutions for several in-vacuum components of Sirius are presented, having their impedance analysis focused on mitigating the wake heating impact. Thermal and/or structural simulation of the models are carried out by considering the heat load directly obtained from wakefield simulations with resistive wall boundary conditions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK058 Preliminary Longitudinal Impedance Model for the ESRF-EBS impedance, simulation, undulator, storage-ring 3063
 
  • S.M. White
    ESRF, Grenoble, France
 
  In light sources, longitudinal beam coupling impedance can deteriorate performance through bunch lengthening or increased longitudinal emittance due to the microwave instability. Simulation estimates are therefore required to devise the appropriate counter-measures if necessary. The main contributors to the longitudinal impedance model of the new ESRF-EBS storage ring were simulated. A preliminary longitudinal impedance model is presented and preliminary tracking simulations are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK066 Calculation of Wakefields and Higher Order Modes for the Vacuum Chamber of the CMS, ATLAS, ALICE and LHCb Experiments for the HL-LHC wakefield, higher-order-mode, dipole, impedance 3081
 
  • R. Wanzenberg, O. Zagorodnova
    DESY, Hamburg, Germany
  • E. Métral, B. Salvant
    CERN, Geneva, Switzerland
 
  Funding: Partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The High Luminosity Large Hadron Collider (HL-LHC) project was started with the goal to extend the discovery potential of the Large Hadron Collider (LHC). The HL-LHC study implies also upgraded dimensions of the experimental beam pipes of the CMS, ATLAS, ALICE and LHCb experiments. The trapped monopole and dipole Higher Order Modes (HOMs) and the short range wakefields for the new design of the vacuum chambers were calculated with help of the computer codes MAFIA and ECHO2D. The results of the short range wakefields calculations and the HOMs calculations are presented in this report. The short range wakefields are presented in terms of longitudinal and transverse wake potentials and also in terms of loss and kick parameters. Selected results from the HOMs calculations , including the the frequency, the loss parameter, the R/Q and the Q value are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK071 Resistive-Wall Impedance Effects for the New KEK Light Source impedance, betatron, feedback, storage-ring 3095
 
  • N. Nakamura
    KEK, Ibaraki, Japan
 
  KEK Light Source (KEK-LS) is a 3-GeV storage ring of 20-cell HMBA (Hybrid Multi-Bend Achromat) lattice*, which is planned to be constructed as a successor of the two existing Photon Factory storage rings (PF ring and PF-AR) in the KEK Tsukuba Campus. In this ring, a lot of in-vacuum undulators with a small magnetic gap (4 mm at minimum) will be installed and the vacuum pipe of a small aperture (25 mm in diameter) will be used. In addition, NEG coating, having a low electric conductivity, will be utilized for the vacuum pipe to ensure a sufficient beam lifetime early in the machine commissioning. In this paper, the heating power due to the longitudinal RW impedance and the growth rate of coupled-bunch instability caused by the transverse RW impedance are calculated and the effects of the RW impedance on KEK-LS are presented.
* K. Harada et al., Proc. of IPAC2016, Busan, Korea, pp.3251-3253; K. Harada et al., these proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK077 Shielding of Beam Pipe on Rapidly Varying Magnetic Field simulation, shielding, feedback, emittance 3107
 
  • N. Wang, J. Chen, S.K. Chen, P. He, G. Xu
    IHEP, Beijing, People's Republic of China
 
  In low emittance rings, beam is quite sensitive to orbit oscillations. Fast correctors will be used to correct the beam orbit. The fast varying magnetic field will generate eddy current on the beam pipe, which will in turn change the phase and the amplitude of the magnetic field. The shielding effect of the beam pipe on a fast varying magnetic field is simulated for different frequencies. The results are also benchmarked with the measurements in the lab.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK078 Development of the Impedance Model in HEPS impedance, kicker, injection, feedback 3110
 
  • N. Wang, Z. Duan, X.Y. Li, H. Shi, S.K. Tian, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is a new designed photon source at beam energy of 6 GeV. Due to the small beam pipe aperture and a large number of insertion devices in the machine, the impedance can drive collective instabilities and limit the machine performance. Therefore, a thorough estimation of the coupling impedance is necessary in controlling the total impedance of the whole machine. A primary impedance model is obtained for the storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK089 Characterization of Resonant Impedances of CERN-SPS Gate Valves impedance, simulation, resonance, coupling 3139
 
  • T. Kaltenbacher, J. Repond, C. Vollinger
    CERN, Geneva, Switzerland
 
  For the CERN High Luminosity LHC project, a doubling of bunch intensity is foreseen. However, this intensity increase is currently limited by the LHC injector chain, in part due to longitudinal multi-bunch instabilities in the SPS. Therefore, the implementation of an accurate SPS impedance model was started some time ago in order to obtain a better understanding of instability sources and develop mitigation measures. In this paper, we present the electromagnetic characterization of commonly used all-metal gate valves with respect to their contribution to the SPS longitudinal impedance. The valve impedance was evaluated with commercially available EM-field simulation programs and verified with RF-bench measurements. Using this input, it was possible to obtain in particle simulations the dependence of the multi-bunch stability threshold on the number of these valves. A practical means of mitigation is to use a commercially available impedance shielded version of these gate valves. We also present the associated reduction in beam coupling impedance and the expected gain in beam stability if all existing unshielded valves are replaced by shielded valves.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK090 Characterization of Shielding for the CERN-SPS Vacuum Flanges With Respect to Beam Coupling Impedance impedance, shielding, resonance, coupling 3143
 
  • T. Kaltenbacher, C. Vollinger
    CERN, Geneva, Switzerland
 
  Longitudinal multi-bunch instabilities in the CERN-SPS pose a serious limitation for future beam intensities required for high luminosity LHC. Hence, an impedance model for the SPS accelerator was developed from which one group of vacuum flanges could be identified as being a major culprit for these instabilities. These flanges support high impedance modes and their impact on beam stability was traced to a longitudinal mode at about 1.4GHz. For improvement of multi-bunch stability threshold, this group of flanges will be shielded as part of an impedance reduction campaign. We describe the evaluation of different impedance shielding designs proposed to reduce the longitudinal beam coupling impedance of this group of vacuum flanges in the SPS. EM-field simulations were performed to identify remaining resonances in these vacuum flanges with impedance shield prototypes installed, and the simulation models were benchmarked with RF-measurements. Depending on the performance and other parameters, the most suitable shield design will be selected, built and installed. As a first step, the installation of one shielding design in some positions in the SPS is planned for the beginning of 2017.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK100 The Applicability of NEG Coated Undulator Vessels for the CLARA FEL Test Facility FEL, wakefield, undulator, impedance 3181
 
  • O.B. Malyshev, K.B. Marinov, K.J. Middleman, N. Thompson, R. Valizadeh, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • O.B. Malyshev, K.J. Middleman, N. Thompson, R. Valizadeh, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  CLARA is a FEL test facility at Daresbury Laboratory (DL), UK. The undulator vacuum chamber is 20 m long with inner diameter 6 mm and its vacuum performance can benefit from a NEG coating. The thickness of the coating layer must be carefully optimised. A layer ~ 1 um would help the vacuum but a thinner layer would be partially transparent for the EM field reducing the resistive wall wakefields due to the NEG. A very thin layer, however, may not yield the necessary vacuum performance. Two types of NEG coatings produced at DL - dense and columnar - were considered. Their bulk conductivities were measured in a separate study. The resistive wall wakefield impedance was calculated following the standard approach for multilayer vessels. A 250 fs rms electron bunch was generated in ASTRA and its wakefield was obtained from the vessel impedance. The FEL performance was then studied through GENESIS simulations and the result compared to the case with no wakefields. It was found that NEG layers thicker than 100 nm give an unacceptable reduction of the FEL power and the vacuum performance of such thin coatings is unknown. Possible solutions to this problem are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK102 Measurement of RF Resonances and Measured Impact on Transverse Multibunch Instabilities from In-vacuum Insertions Devices resonance, damping, coupling, dipole 3188
 
  • G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  Diamond Light Source has currently 15 in-vacuum insertion devices (ID) installed, mostly built in-house. Their measured impact on multi-bunch mode damping as a result of varying magnet gap was shown before, now we augment these with measurements of broadband frequency spectra with stored beam obtained using an antenna placed in the ID vacuum. Finally, we present off-line measurements of resonances in the ID vessel acquired using a vector network analyser and two antennae installed in-vacuum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK106 Impedance and Collective Effects for the Advanced Light Source Upgrade at LBNL impedance, simulation, wakefield, cavity 3192
 
  • S. Persichelli, J.M. Byrd, S. De Santis, D. Li, T.H. Luo, C. Steier, M. Venturini
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The upgrade of the Advanced Light Source (ALS-U) consists of a multiband achromat ultralow emittance lattice for the production of diffraction-limited soft x-rays. A very important issue for ALS-U is represented by instabilities induced by wakefields, that may limit the peak current of individual bunches and the total beam current. In addition, vacuum chamber apertures of few millimeters, that are a key feature of low-emittance machines, can result in a significant increase in the Resistive Wall (RW) impedance. In this paper we present progress on establishing short range wakefield model for ALS-U and evaluating the impact on the longitudinal and transverse single-bunch dynamics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK117 A Comprehensive Study of the Microwave Instability lattice, simulation, storage-ring, electron 3224
 
  • A. Blednykh, B. Bacha, G. Bassi, O.V. Chubar, M.S. Rakitin, V.V. Smaluk, M. Zhernenkov
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-SC0012704
Several instability thresholds and special waveform beam pattern have been observed during measurements of the horizontal beam size change vs single bunch current by the synchrotron light monitor (SLM) camera installed in a low dispersion area of the NSLS-II storage ring. The electron beam energy spread from In-Vacuum Undulator (IVU) of the Soft Matter Interfaces (SMI) beam line confirmed the microwave beam pattern behavior as a current dependent effect. The numerically obtained total longitudinal wakepotential by the GdfidL code allowed us to compare the measured results with particle tracking simulations using the SPACE code. The instability thresholds behavior at different RF voltages are in some sort of overarching agreement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA016 Dielectric Laser Accelerator Investigation, Setup Substrate Manufacturing and Investigation of Effects of Laser Induced Electromigration RF Cavity Breakdown Influences laser, electron, acceleration, controls 3286
 
  • M. Hamberg, M. Jacewicz, J. Ögren
    Uppsala University, Uppsala, Sweden
  • M. Karlsson, E. Vargas Catalan
    Uppsala University, Department of Engineering Sciences, Uppsala, Sweden
  • M. Kuittinen, I. Vartiainen
    UEF, Joensuu, Finland
 
  Funding: I thank Stockholm Uppsala centre for FEL research for funding.
Dielectric laser acceleration (DLA) where the high electric fields in lasers are used to accelerate electrons next to nanofabricated dielectric structures has recently been proven in proof of concept studies. In this paper I describe investigations setup and substrate manufacturing. Additionally we describe using the setup for evaluating RF structure breakdown due to laser induced electromigration occurences.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA020 Dual-Grating Dielectric Accelerators Driven by A Pulse-Front-Tilted Laser laser, electron, simulation, accelerating-gradient 3299
 
  • Y. Wei, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M.M. Dehler, E. Ferrari, N. Hiller, R. Ischebeck
    PSI, Villigen PSI, Switzerland
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Dual-grating Dielectric Laser-driven Accelerators (DLAs) are considered to be one of the most promising technologies to miniaturize future particle accelerators. Accelerating gradients in the GV/m range seem accessible and 690 MV/m has been demonstrated in fused silica structures. However, the increase in beam energy is limited by the short interaction length between the laser pulses and the electron bunch. In this contribution, a pulse-front-tilt operation for a laser beam is studied to extend the interaction length, resulting in a greater energy gain for a dual-grating DLA. The VSIM code is used to compare this new scheme with the commonly used approach of a normally incident laser beam and advantages are summarized.
[1]T. Plettner, et al., Phys. Rev. ST Accel. Beams 9, 111301 (2006)
[2]K. P. Wootton, et al., Opt. Lett., 41, 2696 (2016).
[3]E. A. Peralta, et al., Nature 503, 91 (2013)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA043 Study of the Suitability of 3D Printing for Ultra-High Vacuum Applications laser, radiation, electron 3356
 
  • S. Jenzer, M. Alves, N. Delerue, A. Gonnin, D. Grasset, F. Letellier-Cohen, B. Mercier, E. Mistretta, C. Prevost
    LAL, Orsay, France
  • A. Vion
    BV Proto, Sévenans, France
  • J-P. Wilmes
    AGS Fusion, Izernore, France
 
  Funding: IN2P3/CNRS
In the recent year additive fabrication (3D printing) has revolutionized mechanical engineering by allowing the quick production of mechanical components with complex shapes. So far most of these components are made in plastic and therefore can not be used in accelerator beam pipes. We have investigated samples printed using a metal 3D printer to study their behavior under vacuum. We report on our first tests showing that such samples are vacuum compatible and comparing pumping time.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA048 Particle Generation of CapaciTorr Pumps operation, detector, SRF, synchrotron 3363
 
  • S. Lederer, L. Lilje
    DESY, Hamburg, Germany
  • E. Maccallini, P. Manini, F. Siviero
    SAES Getters S.p.A., Lainate, Italy
 
  Non Evaporable Getter pumps have been used since four decades in various scientific and industrial Ultra High and Extremely Ultra High Vacuum applications. For the majority of applications properties like high pumping speed vs. small size, powerless operation and hydrocarbon cleanliness are main aspects for the usage. In addition to this a growing number of applications nowadays also require particle free systems. In this paper we report on investigations on in-vacuum particle creation during the conditioning and activation process of CapaciTorr pumps.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA049 Vacuum- and Bake-Out-Testbenches for the HESR at FAIR dipole, quadrupole, ion, heavy-ion 3366
 
  • H. Jagdfeld, M. Bai, U. Bechstedt, N. Bongers, P. Chaumet, F.M. Esser, F. Jordan, F. Klehr, G. Langenberg, G. Natour, U. Pabst, D. Prasuhn, L. Semke, F. Zahariev
    FZJ, Jülich, Germany
 
  The High-Energy Storage Ring (HESR) is one part of the international Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt. Forschungszentrum Jülich (IKP and ZEA-1) is responsible for the design and development of the HESR. The HESR is designed for antiprotons and heavy ion experiments as well. Therefore the vacuum is required to be 10-11 mbar or better. To achieve this also in the curved sections, where 44 bent dipole magnets are installed, NEG coated dipole chambers will be used to reach the needed pumping speed and capacity. For activation of the NEG a bake-out system is needed. Two test benches were installed to investigate the required equipment needed to reach this low pressure: A vacuum test bench to investigate the influence of different types and quantity of vacuum pumps for the straight sections of the HESR A bake-out test bench for checking the achievable end pressure and develop the bake-out system for the NEG coated dipole chambers in the curved sections of the HESR The results of the tests and the bake-out concept including the layout of the control system and the special design of the heater jackets inside the dipoles and quadrupoles are presented.
1 Central Institute of Engineering, Electronics and Analytics- Engineering and Technology ZEA-1
2 Institute for nuclear physics
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA050 Developments for the Injection Kicker Vacuum System of the HESR at FAIR injection, kicker, controls, ion 3369
 
  • F. Zahariev, M. Bai, N. Bongers, P. Chaumet, F.M. Esser, R. Gebel, H. Glückler, S. Hamzic, H. Jagdfeld, B. Laatsch, W. Lesmeister, L. Reifferscheidt, M. Retzlaff, L. Semke, R. Tölle
    FZJ, Jülich, Germany
  • G. Natour
    Forschungszentrum Jülich GmbH, Central Institute of Engineering, Electronics and Analytics, Jülich, Germany
 
  The Research Center Jülich has taken the leadership of a consortium being responsible for the design and manufacturing of the High-Energy Storage Ring (HESR) going to be part of FAIR. The HESR is designed both for antiprotons and for heavy ion experiments. The injection kicker system of the HESR is located directly behind the septum and consists of two pumping crosses for pumps and measurement devices as well as two vacuum tanks housing the four ferrite magnets which will be operated with 40 kV, 4kA. As well as the magnets, the adjustments frames and the electrical feedthroughs will be installed inside the tanks. Due to the large surface of the magnets the injection kicker system will be very sensitive with regard to the achievable vacuum quality that is expected to be in the order of 10-11 mbar or better. Thus the vacuum system is designed to heat up to 250°C. In order to investigate the achievable end pressure and to develop the heating system a test facility was constructed. The actual vacuum layout of the injection kicker system as well as the experimental test results will be presented and in similar the layout of the control system of the test facility will be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA058 Development of HOM Absorber for SuperKEKB electron, HOM, photon, plasma 3394
 
  • S. Terui, T. Ishibashi, Y. Suetsugu, Y. Takeuchi, K. Watanabe
    KEK, Ibaraki, Japan
  • H. Ishizaki, A. Kimura, T. Sawhata
    Metal Technology Co. Ltd., Ibaraki, Japan
 
  Higher-order modes (HOM) absorbers are necessary components for recent high-power accelerators in order to prevent beam instabilities (e.g. HOM- Beam Break Up instabilities) or the overheating of vacuum components. Several kinds of absorber materials, such as SiC, ferrite and Kanthal, have been investigated and applied in accelerators. Among these materials, ferrite has been found to be superior to others because of its higher HOM absorbing efficiency. However, because of its low tensile strength and small thermal expansion rate, it cannot be easily bonded to other metals thus limiting its use as a HOM absorber. We reported the success of the fabrication of ferrite-copper-blocks using the spark plasma sintering (SPS)-technique last year. This year we report testing with a high-power RF source and measuring gas desorption rate after baking and secondary electron yield.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA059 Construction of the New Septum Magnet Systems for PF-Advanced Ring septum, injection, linac, storage-ring 3398
 
  • A. Ueda, S. Asaoka, T. Honda, S. Nagahashi, N. Nakamura, T. Nogami, H. Takaki, T. Uchiyama
    KEK, Ibaraki, Japan
 
  From July 2016 we are constructing a new beam transport (BT) line for the Photon Factory Advanced Ring (PF-AR). The new BT line was designed to transport the full energy 6.5-GeV beam directly from the LINAC, and the top up injection will be possible for the PF-AR. We designed and produced new pulsed septum magnet systems for this project. Two pulsed septum magnets are used for the injection of the 6.5-GeV beam. The septum magnets were constructed with a passive type magnet, a copper eddy current shield and a silicon steel magnetic shield. The magnetic fields of these magnets have been measured by the search coil method. We paid attention to evaluating eddy current losses of the SUS beam duct in the magnetic field measurement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA062 Improvements of Vacuum System in J-PARC 3 GeV Synchrotron injection, kicker, operation, cavity 3408
 
  • J. Kamiya, Y. Hikichi, M. Kinsho, Y. Namekawa, K. Takeishi, T. Yanagibashi
    JAEA/J-PARC, Tokai-mura, Japan
  • A. Sato
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
 
  The RCS vacuum system has been upgraded since the completion of its construction towards the objectives of both better vacuum quality and higher reliability of the components. For the better vacuum quality, (1) pressure of the injection beam line was improved to prevent the H beam from converting to H0; (2) leakage in the beam injection area due to the thermal expansion was eliminated by applying the adequate torque amount for the clamps; (3) new in-situ degassing method of the kicker magnet was developed. For the reliability increase of the components, (1) A considerable number of fluoroelastmer seal was exchanged to metal seal with the low spring constant bellows and the light clamps; (2) TMP controller for the long cable was developed to prevent the controller failure by the severe electrical noise; (3) A number of TMP were installed instead of ion pumps in the RF cavity section as an insurance for the case of pump trouble.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA070 Alignment and Calibration for Collimation System in CSNS/RCS collimation, alignment, laser, shielding 3432
 
  • J.B. Yu, L. Dong, L. Kang, B. Li, X.J. Nie, A.X. Wang, G.Y. Wang, X.L. Wang, J.S. Zhang
    IHEP, Beijing, People's Republic of China
  • J.X. Chen, T. Luo, C.J. Ning
    CSNS, Guangdong Province, People's Republic of China
 
  Funding: National Natural Science Foundation of China (Grant Nos.11375217)
In order to reduce the uncontrolled losses in the localized station, the beam collimation system has been performed for the 1.6GeV synchrotron of CSNS. The CSNS/RCS transverse collimation system is designed to be a two-stage system which consists of one primary collimator and four secondary collimators. All collimators had completed processing and now been installed in the tunnel. To meet the requirements of physical system, alignment for collimation system have to be done before circulating beams. This paper will show the alignment technique of collimation system. Then some problems during the alignment process will be mentioned. For the primary collimator will be replaced in second-stage of CSNS, and the alignment for the replaced collimator will be introduced finally.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA090 The Vacuum System of MAX IV Storage Rings: Installation and Conditioning storage-ring, ion, synchrotron, linac 3468
 
  • E. Al-Dmour, M.J. Grabski
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The installation of the vacuum system of the 3 GeV storage ring was started in November 2014 and finished in May 2015. In August 2015 the commissioning of the storage ring started, the first stored beam has been achieved on the 15th of September 2015. The installation of the vacuum system of the 1.5 GeV storage ring was done from September 2015 and the main part finished in December 2015, the connection to the Linac with the transfer line has been done in August 2016. In September 2016 the commissioning of the 1.5 GeV storage ring started with the first stored beam achieved on the 30th of September 2016. The vacuum system conditioning for the two rings was successful; the average dynamic pressure reduction and the increase in the lifetime with the accumulated beam dose is a demonstration of the good performance of the vacuum system. The installation procedure and the results of the conditioning together with the latest developments are introduced here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA096 Thermal Analysis of the LHC Injection Kicker Magnets injection, kicker, operation, simulation 3479
 
  • L. Vega Cid, M.J. Barnes, V. Vlachodimitropoulos, W.J.M. Weterings
    CERN, Geneva, Switzerland
  • A. Abánades
    ETSII UPM, Madrid, Spain
 
  Funding: Research supported by the HL-LHC project.
The CERN Large Hadron Collider LHC is equipped with two fast pulsed magnet systems (MKIs) that inject particle beams coming from the injector chain. Operation with high intensity beams for many hours can lead to significant beam induced heating of the ferrite yokes of the MKIs. When the ferrite exceeds the Curie temperature of 125°C it loses its magnetic properties, preventing further injection until the ferrite cools down, potentially causing a delay of several hours. Hence important upgrades of the beam-screen were implemented after Run 1 of LHC. However, the High-Luminosity (HL) LHC will be operated with significantly higher intensity beams and hence additional measures are required to limit the ferrite temperature. These magnets operate under ultra-high vacuum conditions: convection is negligible and, as a result of low emissivity of the inside of the vacuum tanks, thermal radiation is limited. A detailed study of the thermal behaviour of these magnets is reported and compared with measurements. In addition several options to improve cooling of the ferrites are presented and analysed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA100 Operational Experience of the Upgraded LHC Injection Kicker Magnets During Run 2 and Future Plans injection, kicker, electron, impedance 3495
 
  • M.J. Barnes, A. Adraktas, G. Bregliozzi, L. Ducimetière, B. Goddard, B. Salvant, J. Sestak, L. Vega Cid, W.J.M. Weterings, C. Yin Vallgren
    CERN, Geneva, Switzerland
 
  During Run 1 of the LHC, one of the injection kicker magnets caused occasional operational delays due to beam induced heating with high bunch intensity and short bunch lengths. In addition, there were also sporadic issues with vacuum activity and electrical flashover of the injection kickers. An extensive program of studies was launched and significant upgrades were carried out during Long Shutdown 1 (LS 1). These upgrades included a new design of beam screen to reduce both beam coupling impedance of the kicker magnet and the electric field associated with the screen conductors, hence decreasing the probability of electrical breakdown in this region. This paper presents operational experience of the injection kicker magnets during the first years of Run 2 of the LHC, including a discussion of faults and kicker magnet issues that limited LHC operation. In addition, in light of these issues, plans for further upgrades are briefly discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA108 Operational Feedback and Analysis of Current and Future Designs of the Injection Protection Absorbers in the Large Hadron Collider at CERN injection, impedance, operation, alignment 3517
 
  • D. Carbajo Perez, N. Biancacci, C. Bracco, G. Bregliozzi, M. Calviani, M.I. Frankl, L. Gentini, S.S. Gilardoni, G. Iadarola, I. Lamas Garcia, A. Lechner, A. Perillo-Marcone, B. Salvant
    CERN, Geneva, Switzerland
 
  Two injection protection absorbers, so-called TDIs (Target Dump Injection), are installed close to Interaction Points IP2 and IP8 of the Large Hadron Collider (LHC) right downstream of the injection kicker magnets (MKI). Malfunction or timing errors in the latter lead to wrong steering of the beam, which must then be intercepted by the TDI to avoid downstream equipment (which includes superconducting magnets) damage. In recent years, MKI failures during operation have brought to light opportunities for improvement of the TDI. The upgrade of this absorber, so-called TDIS (where S stands for segmented), is conceived as part of the High Luminosity-LHC (HL-LHC) project and those operational issues are taken into account for its design. The present document describes not only the aspects related to the current TDI performance and their impact in its successor's design but also the key modifications to cope with the stronger requirements associated to the higher luminosity goal.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA109 Design of the New PS Internal Dumps, in the Framework of the LHC Injector Upgrade (LIU) Project simulation, dumping, operation, injection 3521
 
  • G. Romagnoli, J.A. Briz Monago, M. Calviani, J.J. Esala, E. Grenier-Boley, A. Masi, F.-X. Nuiry, A. Perillo-Marcone, T. Polzin, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  For the LHC injectors upgrade (LIU) at CERN, the two PS (Proton Synchrotron) dumps will be redesigned and upgraded for the new high intensity beams. The EN-STI group is in charge of the design and installation of the new dumps, foreseen for the next CERN's Long Shutdown in 2019-2020. As internal dumps, the PS dumps have been installed in 1975 directly in the PS vacuum ring between the main bending magnets and they are operating since then. The dumps enter the beam line when requested by beam operation, with a 6 kg Cu block moved quickly with a spring-based mechanism. This Cu block is not expected to survive the impact of the future beams. A new design is presented for the dump core based on FLUKA-ANSYS coupled simulations. The dumps should work with any PS beam foreseen within LIU, be water cooled in ultra-high vacuum medium, and enter the beam chamber in less than 250 ms. The dump should be used 200000 times per year, with a lifetime of 20 years, with almost zero maintenance. The new challenging design is based on an oscillating thin blade shaving turn after turn the circulating beam. The material considered for the blade are Cu, Ti or CuCrZr with embedded cooling channels.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA110 Analysis and Operational Feedback on the New Design of the High Energy Beam Dump in the CERN SPS operation, simulation, shielding, interlocks 3524
 
  • P. Rios Rodriguez, J.A. Briz Monago, M. Calviani, K. Cornelis, S. De Man, R. Esposito, S.S. Gilardoni, B. Goddard, J.L. Grenard, D. Grenier, M. Grieco, J. Humbert, V. Kain, F.M. Leaux, C. Pasquino, A. Perillo-Marcone, J.R.F. Poujol, S. Sgobba, D. Steyart, F.M. Velotti, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  CERN's Super Proton Synchrotron (SPS) high-energy internal dump (Target Internal Dump Vertical Graphite, known as TIDVG) is required to intercept beams from 102 to 450 GeV. The equipment installed in 2014 (TIDVG#3) featured an absorbing core composed of different materials surrounded by a water-cooled copper jacket, which hold the UHV of the machine. An inspection of a previous equipment (TIDVG#2) in 2013 revealed significant beam induced damage to the aluminium section of the dump, which required imposing operational limitations to minimise the risk of reproducing this phenomenon. Additionally, in 2016 a vacuum leak was detected in the dump assembly, which imposed further limitations, i.e. a reduction of the beam intensity that could be dumped per SPS supercycle. This paper presents a new design (TIDVG#4), which focuses on improving the operational robustness of the device. Moreover, thanks to the added instrumentation, a careful analysis of its performance (both experimentally and during operation) will be possible. These studies will help validating technical solutions for the design of the future SPS dump to be installed during CERN's Long Shutdown 2 in 2020 (TIDVG#5).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA114 Optimising Machine-Experiment Interventions in HL-LHC shielding, operation, radiation, experiment 3540
 
  • F. Sanchez Galan, C. Adorisio, I. Bergstrom, D. Brethoux, S. Evrard, A. Gaddi, L.P. Krzkempek, M. Lazzaroni, J. Perez Espinos, M. Raymond, H. Vincke
    CERN, Geneva, Switzerland
 
  Funding: This Research is supported by the HL-LHC project
The luminosity reach of the HL-LHC experiments implies new constraints for the protection of the inner triplets from the machine debris. In general activation levels will increase a factor of 15-30 from the 2015 values (LS1), affecting both radiation tolerance of equipment and maintenance scenarios. The design of new equipment takes into account these constraints and the entire layout of tunnel equipment near the interaction regions will al-low for simplified maintenance. In particular, new ab-sorbers will replace the existing protection of the ma-chine-experiment cavern boundaries, with an optimised layout of the region. This paper summarises the main constraints (both physical and operational) existing at the region, together with the solutions adopted to reduce worker's dose.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA121 Thermal Experimet Results on TPS Beam Position Monitors impedance, simulation, cavity, storage-ring 3554
 
  • Y.T. Huang, C.K. Chan, J. -Y. Chuang, I.C. Sheng, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  Beam position monitors mounted in straight sections exhibit an unusual temperature rise which is attributed to poor thermal and electrical conductivity of the stainless steel BPM chamber, to the vicinity to RF-bellows, and the large button electrode size to get superior signal levels. Thermocouples tied to BPM flanges and RF bellows show that the temperature could reach 50 oC when storing a beam current of 400 mA and BPMs located between two RF-bellows in RF cavity sections responds by even 5-10 oC higher values than average. To resolve this issue, off site experiments and simulations were conducted to further understand the heat flow in the whole structure. In this paper we discuss more details of these studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA122 Two Year Operational Experience With the Tps Vacuum System storage-ring, synchrotron, operation, radiation 3557
 
  • Y.C. Yang, C.K. Chan, J. -Y. Chuang, Y.T. Huang, C.C. Liang, I.C. Sheng
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS), a 3-GeV third generation synchrotron light source, was commissioned in 2014 December and is now currently operated in top-up mode at 300mA for users. During the past two years, the machine was completed to meet design goals with among others the installation of superconducting cavities (SRF), the installation of insertion devices (ID) and the correction of vacuum chamber structure downstream from the IDs. The design goal of 500mA beam current was achieved with a total accumulated beam dose of more than 1000Ah, resulting in three orders of magnitude reduction of out-gassing. As the beam current was increased, a few vacuum problems were encountered, including vacuum leaks, unexpected pressure bursts, etc. Vacuum related issues including high pressure events, lessons learned and operational experience will be presented and discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA123 Beam Cleaning of the Vacuum System of the TPS Storage Ring without Baking in Situ injection, storage-ring, synchrotron, synchrotron-radiation 3561
 
  • C.K. Chan, C.-C. Chang, B.Y. Chen, C.M. Cheng, Y.T. Cheng, J. -Y. Chuang, Y.M. Hsiao, Y.T. Huang, I.C. Sheng, C. Shueh, L.H. Wu, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  A maintenance procedure without baking in situ has been successfully developed and applied to maintain and upgrade the TPS storage ring vacuum system to shorten the machine downtime. The data of photon-stimulated desorption(PSD) reveal that no obvious discrepancy between the in-situ baked and the non-in-situ baked vacuum systems. A beam conditioning dose of extent only 11.8 A·h is required to recover rapidly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA127 Design of a 3.5 T Superconducting Multipole Wiggler radiation, photon, wiggler, simulation 3564
 
  • J.C. Jan, C.-H. Chang, H.-H. Chen, S.D. Chen, T.Y. Chung, C.-S. Hwang, F.-Y. Lin, G.-H. Luo
    NSRRC, Hsinchu, Taiwan
 
  A 3.5 T superconducting multipole wiggler (SMPW) has been designed through the collaboration of National Synchrotron Radiation Research Center (NSRRC) and Synchrotron Light Research Institute (SLRI). The SMPW will support the hard X-ray source for the X-ray absorption spectroscopy (XAS) beamline in SLRI. The design concept of the SMPW follows from, and improves on, the operating experience of the superconducting magnet in NSRRC. An improvement of the operation and compatible with the cooling capacity of the cryogenic system, is the design goal. A quick and easy recovery of the magnet from a quench event is also required. The design of the magnet circuit and the mechanical of the SMPW are also discussed herein.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA134 Impedance Measurement of Vacuum Chamber Components for the Advance Photon Source (APS) Upgrade impedance, simulation, cavity, photon 3583
 
  • M.P. Sangroula
    IIT, Chicago, Illinois, USA
  • R.M. Lill, R.R. Lindberg, X. Sun
    ANL, Argonne, Illinois, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH11357.
The proposed Advance Photon Source Upgrade (APS-U) employs a multi-bend achromat (MBA) lattice to increase the photon brightness by two to three orders of magnitude. One of the main design challenges of the upgrade is to minimize rf heating and collective instabilities associated with the impedance of small-aperture vacuum components. As part of this effort, my research focuses on impedance measurement and simulation of various MBA vacuum components. Here, we present the summary of the impedance contributions for the APS-U and describe our planned impedance measurement technique, including some measurement results for the non-evaporative getter (NEG)-coated copper chamber and simulation results for other critical components using a novel Goubau line (G-line) set up.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA134  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA136 Vacuum System for the Diamond Light Source DDBA Upgrade dipole, simulation, electron, photon 3587
 
  • M.P. Cox, M.J. Duignan, R. Howard, S.C. Lay, A.G. Miller, H.S. Shiers, A. Wolfenden
    DLS, Oxfordshire, United Kingdom
 
  One cell of the Diamond Light Source (Diamond) storage ring was upgraded in late 2016 to a Double Double Bend Achromat (DDBA) configuration to provide an additional mid-achromat insertion device straight. For practical reasons it was decided to use discrete non-evaporable getter (NEG) pumps rather than NEG coatings. This paper outlines the vacuum design of the up-grade, the reasons for the choices made and the vacuum simulation tools used as well as describing the vacuum system engineering, assembly, installation and commissioning. The measured vacuum performance is found to be in close agreement with the simulations and a simple expression is derived for the beam gas lifetime.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA137 Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project photon, storage-ring, lattice, radiation 3590
 
  • B.K. Stillwell, B. Billett, B. Brajuskovic, J.A. Carter, E.S. Kirkus, M.A. Lale, J.E. Lerch, J. R. Noonan, M.M. O'Neill, B.G. Rocke, K.J. Suthar, D.R. Walters, G.E. Wiemerslage, J. Zientek
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction, and rf cavity straight sections. An overview of progress in these areas is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA137  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA146 Vacuum System Design and Simulation for CHESS-U dipole, operation, distributed, electron 3612
 
  • Y. Li, S.T. Barrett, D.C. Burke, J.V. Conway, X. Liu, A. Lyndaker
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by National Science Foundation Reward #DMR-1332208
A major upgrade project (dubbed CHESS-U) is planned to elevate performance of Cornell High Energy Synchrotron Source (CHESS) to the state-of-art 3rd generation light sources. In the project, about 80-m of Cornell Electron Storage Ring (CESR) will be replaced with double-bend achromat (DBA) lattice to reduce electron beam emittance. In this presentation, we will describe designs of the CHESS-U vacuum system, including new beam pipe extrusions and chambers, sliding joints, and crotch absorbers. Vacuum pumping system consists of distributed pumps (in the form of NEG strips) in the dipole chambers, and compact discrete NEG/Ion pumps in the quad straight and undulator beampipes. MolFlow+ is used to evaluate pumping performances of the CHESS-U vacuum system. First, we demonstrate that the planned vacuum pumping system can achieve and sustain required ultra-high vacuum level in CHESS-U operations, after an initial beam conditioning. Second, we will explore beam commissioning processes of the new vacuum chambers, and simulate the saturation of the NEG strips during the commissioning. These simulations will aid continuing design optimization for the CHESS-U vacuum pumping system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA146  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA2 Coherent Synchrotron Radiation and Wake Fields With Discontinuous Galerkin Time Domain Methods wakefield, synchrotron, synchrotron-radiation, radiation 3649
 
  • D. A. Bizzozero, H. De Gersem, E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: This work is supported by DESY, Hamburg.
Coherent synchrotron radiation (CSR) is an essential issue in modern accelerators. We propose a new method to examine CSR in the time domain using an unstructured Discontinuous Galerkin (DG) method. The method uses a 2D spatial discretization in the longitudinal and transverse coordinates (Z,X) with a Fourier series decomposition in the transverse coordinate Y and computes the fields modally. Additionally, by alignment of mesh element interfaces along a source reference orbit, DG methods can naturally handle discontinuous or thin sources in the transverse X direction. We present an overview of the method, illustrate it by calculating wake potentials in a model problem, and in a bunch compressor.
 
slides icon Slides THOBA2 [2.526 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THOBA2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBB1 High Power Test Results of the Eli-NP S-Band Gun Fabricated with the New Clamping Technology Without Brazing gun, cathode, operation, klystron 3662
 
  • D. Alesini, A. Battisti, M. Bellaveglia, A. Falone, A. Gallo, V.L. Lollo, L. Pellegrino, S. Pioli, S. Tomassini, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • F. Cardelli, L. Palumbo
    University of Rome La Sapienza, Rome, Italy
  • L. Ficcadenti, V. Pettinacci
    INFN-Roma, Roma, Italy
  • D.T. Palmer
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • L. Piersanti
    INFN-Roma1, Rome, Italy
 
  High gradient RF photoguns have been a key development to enable several applications of high quality electron beams. They allow the generation of beams with very high peak current and low transverse emittance, satisfying the tight demands for free-electron lasers, energy recovery Linacs, Compton/Thomson Sources and high-energy linear colliders. A new fabrication technique for this type of structures has been recently developed and implemented at the Laboratories of the National Institute of Nuclear physics in Frascati (LNF-INFN, Italy). It is based on the use of special RF-vacuum gaskets that allow avoiding brazing in the realization process. The S-band gun of the Compton-based ELI-NP gamma beam system (GBS) has been fabricated with this new technique. It operates at 100 Hz with 120 MV/m cathode peak field and long RF pulses to allow the 32 bunch generation foreseen for the GBS. High gradient tests have been performed at full power full repetition rate and have shown the extremely good performances of the structure in term of breakdown rates. In the paper we report and discuss all experimental results with details of the electromagnetic design and mechanical realization processes.  
slides icon Slides THOBB1 [6.211 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THOBB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB020 Coupling Impedances and Collective Effects for FCC-ee impedance, collective-effects, coupling, collider 3734
 
  • E. Belli, M. Migliorati
    University of Rome La Sapienza, Rome, Italy
  • G. Castorina, B. Spataro, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • A. Novokhatski
    SLAC, Menlo Park, California, USA
  • S. Persichelli
    LBNL, Berkeley, California, USA
 
  A very important issue for the Future Circular Collider (FCC) is represented by collective effects due to the self-induced electromagnetic fields, which, acting back on the beam, could produce dangerous instabilities. In this paper we will focus our work on the FCC electron-positron machine: in particular we will study some important sources of wake fields, their coupling impedances and the impact on the beam dynamics. We will also discuss longitudinal and transverse instability thresholds, both for single bunch and multibunch, and indicate some ways to mitigate such instabilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB022 Ion Instability in SuperKEKB Phase I Commissioning ion, simulation, feedback, betatron 3741
 
  • K. Ohmi, H. Fukuma, Y. Suetsugu, M. Tobiyama
    KEK, Ibaraki, Japan
 
  Ion instability has been observed in SuperKEKB phase I commissioning. Unstable modes, their growth rates, tune shift were measured. Frequency of the unstable modes is slower than theoretical prediction and the growth rate is also slower. We discuss possible model to explain the measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB039 Novel Manufacturing Concepts for 12 GHz High Gradient Accelerating Structures operation, alignment, linac, damping 3787
 
  • A. Solodko, S. Atieh, N. Catalán Lasheras, A. Grudiev, S. Lebet, W. Wuensch
    CERN, Geneva, Switzerland
  • H. Zha
    TUB, Beijing, People's Republic of China
 
  CLIC high gradient accelerating structures (AS) work-ing in X-band are made of copper ultra-high precision discs, requiring both milling and turning operations. Discs are then joint together by diffusion bonding. The rest of important technical systems, such as vacuum, cooling and manifolds, to house damping silicon carbide absorbers, are brazed to the bonded disc stack afterwards. This manufacturing technique has been successfully demonstrated but it is very challenging and needs an accurate assembly at every production step. Main issues concern vacuum-tightness, misalignment, deformations during different assembly operations, defects of braz-ing/bonding operations (gaps, a leak of brazing material) etc. Preparation and repairs are time and resource con-suming and increase the final price of the accelerating structure. This paper describes the novel manufacturing concepts for 12 GHz high gradient AS and focuses on new joining techniques as electron beam welding or brazing, new engineering solutions, as rectangular cells or structures made of halves are being considered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB135 Digital LLRF for MAX IV cavity, LLRF, FPGA, interlocks 4037
 
  • A. Salom, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • Å. Andersson, R. Lindvall, L. Malmgren, A.M. Milan, A.M. Mitrovic
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV facility consists of a 3 GeV Storage Ring(SR), a 1.5 GeV SR, and a linear accelerator (fed by two guns) that serves as a full-energy injector to the rings, but also as a driver for the Short Pulse Facility. The RF systems of the two SRs work at 100MHz. There are 6 normal conducting capacity loaded accelerating cavities and three Landau passive cavities in the 3GeV SR. In the 1.5GeV SR there are two accelerating cavities and two Landau cavities with the same characteristics. Each of these cavities is fed by a modular 60kW SSA. In the 3 GeV SR the power will be doubled by adding a second SSA when required. A digital Low Level RF system has been developed using commercial uTCA boards, with a Virtex-6 FPGA mother board (Perseus 601X) and two double stack FMC boards with fast ADCs and DACs. The large capabilities of state-of-the-art FPGAs allowed including the control of two normal conducing cavities and two landau cavities in one single LLRF system, reducing the development costs. Other utilities like the handling of fast interlocks and post-mortem analysis were also added to this system. This paper summarizes the main capabilities and performance of this DLLRF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB135  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB147 Automatic Local Aperture Measurements in the SPS dipole, target, proton, quadrupole 4073
 
  • V. Kain, H. Bartosik, S. Cettour Cave, K. Cornelis, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The CERN SPS (Super Proton Synchrotron) serves as LHC injector and provides beam for the North Area fixed target experiments. It is equipped with flat vacuum chambers to accommodate the large horizontal beam size required during transition crossing and slow extraction. At low energy, the vertical acceptance becomes critical with high intensity large emittance fixed target beams. Optimizing the vertical available aperture is a key ingredient to optimize transmission and reduce activation around the ring. Aperture measurements are routinely carried out after each shutdown. Global vertical aperture measurements are followed by detailed bump scans at the locations with the loss peaks. During the 2016 run a tool was developed to provide an automated local aperture scan around the entire ring. This allowed to establish detailed reference measurements of the vertical aperture and identify directly the SPS aperture bottlenecks. The methodology applied for the scans will be briefly described in this paper and the analysis discussed. Finally, the 2016 SPS measured vertical aperture will be presented and compared to the results obtained with the previous method.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB147  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK001 Copper Accelerating Structure Fabrication With Controled Cu-Ag Joining Conditions experiment, controls, data-analysis, distributed 4104
 
  • V. Danielyan, V.S. Avagyan, S.G. Dekhtiarov, T.H. Mkrtchyan, S. Naghdalyan, A.S. Simonyan, V. V. Vardanyan
    CANDLE SRI, Yerevan, Armenia
  • A.V. Tsakanian
    HZB, Berlin, Germany
 
  The paper is devoted to the development of technological processes of copper accelerating structures fabrication from oxygen-free copper. The experimental set-up for vacuum brazing of long accelerating structures with optimal Cu-Ag joining conditions is described. The experimental results of precise machining and subsequent vacuum brazing of Ag-Cu eutectic are presented  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK029 THE RF CAVITY FOR THE INDUS-2 STORAGE RING cavity, HOM, dipole, operation 4154
 
  • C. P. Pasotti, M. Bocciai, P. Pittana, M. Rinaldi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  A new Elettra-type cavity has been delivered to the Raja Ramanna Centre for Advanced Technology (RRCAT) Indus-2 facility. This cavity is the very same of those already installed several years ago with some optimization of the cooling channels. It is the Elettra-type cavity, normal conducting copper single cell but resonating at 505.8 MHz. The cavity description, the full characterization of the accelerating mode (L0) and high order modes (HOM) and the acceptance tests are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK030 THE RF CAVITY FOR THE SESAME FACILITY cavity, storage-ring, controls, pick-up 4158
 
  • C. P. Pasotti, M. Bocciai, M. Rinaldi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • D.S. Foudeh, E. Huttel
    SESAME, Allan, Jordan
 
  SESAME is a 2.5 GeV Synchrotron Light Source under commissioning in Allan (Jordan). It will be the first inter-national research centre in the Middle East [1]. It is a cooperative venture with support provided by several international organizations and scientific laboratories. Elettra-Sincrotrone Trieste (Italy) is among them. In the framework of the collaboration agreement among SESAME (Jordan), INFN (Italy) and Elettra-Sincrotrone Trieste, four 500 MHz normal conducting (NC) copper cavities have been built and commissioned at Elettra and then successfully installed in the SESAME storage ring. The cavities properties, their fabrication process, their characterization at low and high RF power is presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK032 Installation and Low Power Test of IFMIF-EVEDA RFQ at Rokkasho Site rfq, linac, cavity, dipole 4162
 
  • E. Fagotti, L. Antoniazzi, A. Baldo, A. Battistello, L. Bellan, P. Bottin, M. Comunian, A. Conte, L. Ferrari, M.G. Giacchini, F. Grespan, M. Montis, A. Palmieri, A. Pisent, D. Scarpa
    INFN/LNL, Legnaro (PD), Italy
  • D. Agguiaro, A.G. Colombo
    INFN- Sez. di Padova, Padova, Italy
  • F. Borotto Dalla Vecchia, G. Dughera, G. Giraudo, P. Mereu, R. Panero
    INFN-Torino, Torino, Italy
  • P. Cara, R. Heidinger
    Fusion for Energy, Garching, Germany
  • M. Furini, C. Gessi
    INFN-Bologna, Bologna, Italy
  • D. Gex
    F4E, Germany
  • R. Ichimiya, Y. Ikeda, A. Kasugai, K. Kondo, S. O'hira, K. Sakamoto, T. Shinya, M. Sugimoto
    QST, Aomori, Japan
  • J. Knaster, A. Marqueta, G. Pruneri, F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
 
  The IFMIF-EVEDA RFQ is composed of 18 modules for a total length of 9.8 m and is designed to accelerate the 125 mA D+ beam up to 5 MeV at the frequency of 175 MHz. The RFQ is subdivided into three Super-Modules of six modules each. The Super-Modules were shipped to Rokkasho (Japan) at the beginning of 2016, pre-assembled 3 m far from the final location and tuned to reach target field flatness requirements. Just after conclusion of injector commissioning, the tuned RFQ was disassembled, moved and reassembled in the final location. After confirmation that field flatness was not affected by this movement, high power couplers were installed and tuned and all the structure was baked. Assembling, tuning and coupling results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK033 RF-Mechanical Design and Prototyping of the SPES RFQ rfq, interface, alignment, simulation 4166
 
  • L. Ferrari, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  The SPES RFQ is designed in order to accelerate beams in CW with A/q ratios from 3 to 7 from the Charge Breeder through the MRMS and the selection and injection lines up to the MEBT. RFQ is composed of 6 modules about 1.2 m long each. Each module is basically composed of a Stainless Steel Tank and four OFE Copper Electrodes (obtained by brazing of two subassemblies in order to spare material). A copper layer is electrodeposited on the tank inner surface and a spring joint between tank and electrode is used in order to seal the RF. In this paper the main result of the design of the RFQ (with particular focus on the RF-mechanical aspects and thermo-structural calculations), the RFQ prototyping strategy as well as the construction and assembly procedure of RFQ modules are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK035 Rf Properties of a 175 MHz High-Q Load Circuit rfq, operation, coupling, linac 4169
 
  • S. Maebara, M. Sugimoto
    QST, Aomori, Japan
 
  For an RF input coupler test, a 175MHz high-Q load circuit based on a 6 1/8 in. co-axial waveguide was developed. This circuit consists of the RF input coupler, a trombone-type phase shifter and a stub tuner. The coupler with a loop antenna and the stub tuner are located in edges of the circuit, the loop antenna and the tuner work for a short plate. When RF input power is injected into the circuit, a high-voltage standing wave is excited by adjusting the tuner. The power of standing wave required for the tests is also accumulated due to its low resistive loss. At the operation frequency of 175 MHz, the resistive loss of 0.046ohm is measured and an equivalent RF power of 200 kW is accumulated by the RF input power of 740 W. In this circuit, the bandwidth is narrow to be ±5 kHz in S11 parameter of less -20 dB, but the equivalent RF power of 200 kW-14 sec CW could be achieved after sufficient RF aging. Using this high-Q load circuit, all the fabricated 9 couplers were successfully tested for RF contact defects, unnecessary low-Q value and extraordinary outgassing. This article describes these RF properties in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK046 Design, Fabrication and Cold Test of a C-Band Barrel Open Cavity Pulse Compressor cavity, coupling, klystron, simulation 4200
 
  • S. Shu
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
  • M. Hou, S. Pei, N.B. Song, J.R. Zhang, F. Zhao
    IHEP, Beijing, People's Republic of China
 
  The first prototype of the C band barrel open cavity (BOC) pulse compressor has been manufactured by the Institute of High Energy Physics (IHEP), Beijing, which is used to test the brazing process and the RF properties of the structure at low power. The whispering gallery mode TM6, 1,1 with an unload Q of 100, 000 was adopt to oscillate in the cavity, and the coupling factor was optimized to achieve the highest power gain. This paper mainly deals with the RF design, mechanical design and cold test of the C band BOC pulse compressor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK049 High Power Conditioning of the DTL-1 for CSNS DTL, cavity, linac, ion 4207
 
  • H.C. Liu, Q. Chen, K.Y. Gong
    IHEP, Beijing, People's Republic of China
  • M.X. Fan, A.H. Li, B. Li, J. Peng, P.H. Qu, Y. Wang, X.L. Wu
    CSNS, Guangdong Province, People's Republic of China
 
  The RF tuning of the first DTL tank for the China spalla-tion neutron source was finished leading to a stabilized-uniform accelerating field. After the installation of the DTL-1 in the linac tunnel, the high power conditioning was carried out deliberately. Consequently a peak RF power of 1.6MW with 25Hz repetition rate and 650'sec pulse width was put into the tank stably. A 3MeV H ion was injected into the DTL-1 and was successfully accel-erated to 21.6MeV with almost 100% transmission. Dur-ing the operation, The DTL-1 tank worked stable in the design power level. The conditioning details will be pre-sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK055 Power-Conditioning Cavity Design and Measurement of the Coaxial Coupler for the Injector of XiPAF Project cavity, rfq, coupling, DTL 4218
 
  • Y. Lei, X. Guan, W. Wang, X.W. Wang, Q.Z. Xing, H.Y. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
 
  For the RF high power conditioning on coaxial power couplers of the XiPAF (Xi'an Proton Application Facility), the RF high power-conditioning cavity was designed and manufactured. The cavity consists of a rectangular reso-nant cavity with two ports, which one is connected with input coupler from RF power source and the other one is connected with output coupler, and a tuner. The tuning frequency range could cover 325 (+0.5, -9.5) MHz. The measured Q factors are matched with the design results generally. But the S-parameter is not ideal compared to the simulation. This paper will present the design and low power measurement results of the cavity  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK064 Beam Lifetime Analysis of HLS-II Storage Ring storage-ring, scattering, operation, emittance 4242
 
  • K. Xuan, C. Li, J.Y. Li, G. Liu, G. Liu, J.G. Wang, L. Wang, W. Xu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Beam lifetime is one of the important parameters of electron storage rings, which can describe the particle loss rate quantitatively and is restrict by quantum lifetime, beam-gas scattering and Touschek effect. The upgrade project of Hefei light source, named HLSII, has greatly improved the performance of the light source. The beam lifetime has been maintained at more than 5 hours. In this paper, a combined analysis method is derived by the analysis of the beam lifetime, and the method is applied to the HLSII storage ring. The experimental results show that this method is simple and reliable for the analysis of the Touschek lifetime and beam-gas scattering lifetime.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK081 Design and Construction of a High-Gradient RF Lab at IFIC-Valencia klystron, linac, diagnostics, network 4272
 
  • A. Vnuchenko, T. Argyropoulos, C. Blanch Gutiérrez, D. Esperante Pereira, A. Faus-Golfe, J. Giner Navarro
    IFIC, Valencia, Spain
  • N. Catalán Lasheras, G. McMonagle, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
 
  The IFIC High-Gradient (HG) Radio Frequency (RF) laboratory is designed to host a high-power infrastructure for testing HG S-band normal-conducting RF accelerating structures and has been under construction since 2016. The main objective of the facility is to develop HG S-band accelerating structures and to contribute to the study of HG phenomena. A particular focus is RF structures for medical hadron therapy applications. The design of the laboratory has been made through collaboration between the IFIC and the CLIC RF group at CERN. The layout is inspired by the scheme of the Xbox-3 test facility at CERN, and it has been adapted to S-band frequency. In this paper we describe the design and construction status of such a facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK083 Mechanical Fabrication of ESS-Bilbao RFQ rfq, cavity, linac, software 4279
 
  • J.L. Muñoz, I. Bustinduy, J. Martin, A. Ortega, I. Rueda, A. Zugazaga
    ESS Bilbao, Zamudio, Spain
  • M.A. Carrera, A. Garbayo
    AVS, Elgoibar, Spain
 
  The fabrication of the first segment of ESS-Bilbao's RFQ has started in 2016. The segment, of about 800 mm in length, is an assembly of 4 elements: two major vanes and two minor ones. The assembly will be done by making use of carefully-designed vacuum polymeric gaskets instead of brazing. Electron beam welding has been used during fabrication of the vanes. Apart from conventional CAD systems, a home-made tool for vane modulation solid generation has been successfully used. Machining process from copper blocks to final elements is described in detail. Also, the software tools created to assess the quality of the vanes by analyzing the metrology measurements, particularly of the modulation, are described in the paper. In order to test and validate the chosen vacuum strategy, an aluminum model using the same gaskets as the final model was built and tested. Results will also be presented. The fabrication of the first segment is expected to end up in early 2017, so assembly, segment alignment and vacuum tests with the real device will also be included in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK094 Linac4 PIMS Construction and First Operation cavity, linac, alignment, operation 4307
 
  • R. Wegner, G. Favre, P. Françon, J.-M. Geisser, F. Gerigk, J.-M. Giguet, J. Hansen, J.-B. Lallement, A.M. Lombardi, S. Papadopoulos, M. Polini, M. Redondas Monteserin, T. Tardy, N. Thaus, M. Vretenar
    CERN, Geneva, Switzerland
  • W. Behr, M. Pap
    Forschungszentrum Jülich GmbH, Central Institute of Engineering, Electronics and Analytics, Jülich, Germany
  • G. Brzezinski, P. Krawczyk, L. Kujawinski, M. Marczenko
    NCBJ, Świerk/Otwock, Poland
 
  Linac4, CERN's new H injector Linac uses PI-Mode Structures (PIMS) for the energy range between 103 and 160 MeV. 180 copper elements for 12 PIMS cavities have been fabricated in a collaboration between CERN, NCBJ and FZJ from 2011 to 2016. The cavities have been assembled, RF tuned and validated at CERN. This paper reports on the results as well as the experience with construction, installation, RF conditioning and first operation with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK095 High Power X-Band Generation Using Multiple Klystrons and Pulse Compression klystron, controls, detector, network 4311
 
  • B.J. Woolley, T. Argyropoulos, N. Catalán Lasheras, G. McMonagle, S.F. Rey, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • D. Esperante Pereira
    IFIC, Valencia, Spain
  • J. Tagg
    National Instruments Switzerland, Ennetbaden, Switzerland
  • M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
 
  CERN has constructed and is operating a new X-band test stand containing two pairs of 12 GHz, 6 MW klystrons. By power combination through hybrid couplers and the use of pulse compressors, up to 45 MW of peak power can be sent to any of 4 test slots at pulse repetition rates up to 400 Hz. The test stand is dedicated to RF conditioning and testing of high gradient accelerating structures for the CLIC study and also future X-band FELs. Operations have been ongoing for a few months, with initial operation dedicated to control algorithm development. Significant progress has been made in understanding the unique challenges of high power RF combination and phase switching using RF hybrids.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK097 High Power Tests of a Prototype X-Band Accelerating Structure for CLIC klystron, linac, electron, collider 4318
 
  • R. Zennaro, H. Blumer, M. Bopp, T. Garvey, L. Rivkin
    PSI, Villigen PSI, Switzerland
  • T. Argyropoulos, D. Esperante Pereira
    IFIC, Valencia, Spain
  • N. Catalán Lasheras, A. Grudiev, G. McMonagle, A. Solodko, I. Syratchev, R. Wegner, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • T.G. Lucas, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Funding: Partially funded by SNF FLARE grant 20FL20147463
We present the design, construction and high-power test of an X-band radio-frequency accelerating structure, built as a prototype for the CERN LInear Collider (CLIC) study. X-band structures have been attracting increasing attention in recent years with applications foreseen in the domains of compact free electron lasers, medical accelerators and as diagnostics for ultra-short (femtosecond) electron bunches (when used in deflecting mode). To date, the main motivation for developments in this field has been as accelerating structures for linear colliders such as CLIC. In the context of a CERN/PSI collaboration we have built a prototype structure based on an existing CERN design, but with some modification, and following, as closely as possible, the realization and vacuum brazing techniques employed in the production of the C-band structures for the Swiss Free Electron Laser, SwissFEL. We will present the basic design of the structure and describe the fabrication process. The results of high power conditioning of the structure at CERN on an X-box test stand, to assess conditioning times, accelerating field and measure breakdown rates, will also be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK106 Low Power RF Characterisation of the 400 Hz Photoinjector for CLARA cathode, cavity, simulation, linac 4342
 
  • L.S. Cowie, P. Goudket, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • T.J. Jones
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CLARA High Repetition Rate Photoinjector comprises an S-band dual feed cavity and will operate at a repetition rate of up to 400 Hz and is capable of reaching an electric field strength on the cathode of 120 MV/m. The cavity was brazed after tuning and arrived at Daresbury Laboratory in February 2016. Extensive low power RF testing has been performed including measurements of the quality factors and coupling, pass-band mode frequencies, on axis field and RF repeatability of replacement of cathode plug. The dual feed coupler has been tuned and a Magic Tee type splitter installed. The photoinjector is now installed on the VELA beam line for commissioning and characterisation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK118 Final Assembly and Testing of MICE RF Modules at LBNL cavity, coupling, low-level-rf, HOM 4377
 
  • T.H. Luo, A.R. Lambert, D. Li, S.P. Virostek, J.G. Wallig
    LBNL, Berkeley, California, USA
  • T.G. Anderson, A.D. Bross, D.W. Peterson
    Fermilab, Batavia, Illinois, USA
  • M.A. Palmer
    BNL, Upton, Long Island, New York, USA
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: Work supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231
The international Muon Ionization Cooling Experiment aims to demonstrate the transverse cooling of a muon beam by ionization interaction with absorbers and re-acceleration in RF cavities. The final MICE cooling channel configuration has two RF modules, each housing a 201 MHz RF cavity to compensate the longitudinal energy loss in the absorbers. Two RF modules have been assembled and tested at LBNL. This paper reports the final assembly work, as well as the vacuum test and low level RF measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK120 The RF and Mechanical Design of a Compact, 2.5 kW, 1.3 GHz Resonant Loop Coupler for the APEX Buncher Cavity cavity, electron, operation, resonance 4380
 
  • S.P. Virostek, F. Sannibale, J.W. Staples
    LBNL, Berkeley, California, USA
  • H.J. Qian
    DESY Zeuthen, Zeuthen, Germany
 
  Funding: This work is supported by the Office of Science, United States Department of Energy under DOE contract DE-AC02-05CH11231.
The Advanced Photo-injector Experiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL) is an injector system designed to demonstrate the capability of a normal conducting 186 MHz RF gun operating in CW mode to deliver the brightness required by X-ray FEL applications operating at MHz repetition rate, such as LCLS-II. A 240 kV, 1.3 GHz CW buncher cavity design was developed as part of the APEX experiment. The two-cell cavity profile has been optimized to minimize the RF power requirements and to remove multipacting resonances over the full range of operation. In order to excite the cavity stably at pi-mode and remove the dipole-like coupler kick, the two cells are to be independently driven by four, 2.5 kW, coaxial resonant loop couplers with integrated ceramic windows and a matching section in the body of the coupler. The coupler's inner conductor has a single diameter change at a specified distance from the ceramic insulator in order to cancel the wave reflected from the ceramic window, thus comprising the matching section. The details of the RF analysis, mechanical design, fabrication and testing of the coupler are presented here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK123 Magnetron Design for Amplitude Modulation cavity, injection, cryomodule, radiation 4389
 
  • M.L. Neubauer, A. Dudas, S.A. Kahn
    Muons, Inc, Illinois, USA
  • R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  The amplitude modulation (AM) of a magnetron is accomplished by varying the magnetic field which changes the current to the anode and the output power of the injection locked magnetron. The purpose of the AM is to compensate for microphonics in super conducting cavities by maintaining a constant gradient. The frequency range for the microphones is below 200 Hz. At these frequencies, eddy currents are encountered in the magnetron anode that reduce the effectiveness of the varying magnetic field on the magnetron current. A novel anode design is described which minimizes eddy currents and a method for manufacturing this novel magnetron anode is presented  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK124 Using Conductive Nanoparticles to Reduce the Surface Charging of Ceramics cryogenics, electron, experiment, cavity 4392
 
  • M.L. Neubauer, A. Dudas
    Muons, Inc, Illinois, USA
  • F. Marhauser
    JLab, Newport News, Virginia, USA
 
  Beam pipe ceramics used for various purposes suffer from the problem of surface charging in the presence of an electron beam. A novel technique has been proposed for a method for reducing the charging effects by filling nano sized pores in the ceramic with a conductive medium. Pores in ceramics can be formed in a chain with varying depths depending on sintering temperatures and methods for creating the pores. In the pre-formed condition of these novel ceramics, a nanoparticle slurry is infused by capillary action into the ceramic and fired at temperatures and atmospheres to stabilize the conductive medium inside the ceramic. The microwave characteristics of these ceramics will be investigated in a Phase I program with the design of a complete beam pipe lossy ceramic in a Phase II.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK129 Non-Linear Inserts for the IOTA Ring electron, alignment, operation, quadrupole 4407
 
  • F.H. O'Shea, R.B. Agustsson, P.S. Chang, Y.C. Chen
    RadiaBeam, Santa Monica, California, USA
  • D.W. Martin, J.D. McNevin
    RadiaBeam Systems, Santa Monica, California, USA
 
  Funding: Work supported by DOE under contract DE-SC0009531.
We present here the complete non-linear insert for the IOTA ring at Fermilab. In particular, we will show the results for the magnetic measurements and a discussion of leak correction in the unusually shaped vacuum chamber. A test assembly of the insert has been successfully completed and the insert functions mechanically as designed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA002 Numerical Investigation of Beam Halo From Beam Gas Scattering in KEK-ATF emittance, simulation, scattering, damping 4410
 
  • R.J. Yang, P. Bambade
    LAL, Orsay, France
  • K. Kubo, T. Okugi, N. Terunuma, D. Zhou
    KEK, Ibaraki, Japan
 
  To demonstrate the final focus schemes of the Future Linear Collider (FLC), the Accelerator Test Facility 2 (ATF2) at KEK is devoted to focus the beam to a RMS size of a few tens of nanometers (nm) vertically and to provide stability at the nm level at the virtual Interaction Point (IP). However, the loss of halo particles upstream will introduce background to the diagnostic instrument measuring the ultra-small beam, using a laser interferometer monitor. To help the realization of the above goals and beam operation, understanding and mitigation of beam halo are crucial. In this paper, we present the systematical simulation of beam halo formation from beam gas Coulomb scattering (BGS) in the ATF damping ring. The behavior of beam halo with various machine parameters is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA010 Electron Cloud Simulations for the Main Ring of J-PARC electron, simulation, proton, detector 4436
 
  • B. Yee-Rendón, R. Muto, K. Ohmi, K. Satou, M. Tomizawa, T. Toyama
    KEK, Ibaraki, Japan
 
  The simulation of beam instabilities is a helpful tool to evaluate potential threats against the machine protection of the high intensity beams. At Main Ring (MR) of J-PARC, signals related to the electron cloud have been observed during the slow beam extraction mode. Hence, several studies were conducted to investigate the mechanism that produces it, the results confirmed a strong dependence on the beam intensity and the bunch structure in the formation of the electron cloud, however, the precise explanation of its trigger conditions remains incomplete. To shed light on the problem, electron cloud simulations were done using an updated version of the computational model developed from previous works at KEK. The code employed the signals of the measurements to reproduce the events seen during the surveys.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA028 Multi-Bunch Instabilities Measurement and Analysis at the Diamond Light Source impedance, damping, insertion-device, insertion 4485
 
  • R. Bartolini, R.T. Fielder, E. Koukovini-Platia, G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  The characterisation of the multi-bunch dynamics at the Diamond light source is performed with an advanced TMBF system that is capable of operating fast grow damp experiments thus allowing the exploration of many machine conditions. We report here the latest results of the measurement campaign, the implication on the machine impedance model and some of the intricacies of the analysis and interpretation of the experimental data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA039 Nanopositioning and Actuation in Extreme Environment Using Piezoelectric Multilayer Actuators and Motors radiation, diagnostics, operation, electron 4519
 
  • C. Mangeot
    Noliac A/S, Kvistgaard, Denmark
 
  Piezoelectric devices find numerous applications in Science projects, when precise and fast positioning is needed, particularly in harsh environment. This paper reviews some of the latest environmental tests performed on piezoelectric devices, illustrating how they enable higher performance or even new technical solutions. In the field of particle accelerators and instrumentation, two applications can be mentioned: the precise goniometer to be installed in the Large Hadron Collider (LHC) and active Lorentz force detuning compensation systems*. Multilayer actuators have been demonstrated over a wide range of temperatures, from cryogenic (4K) to 220°C, in UHV and under radiation. Other examples can be mentioned within the ITER project: the In-Vessel Viewing System (IVVS) and the Electron Cyclotron Emission (ECE) diagnostic**. For these applications, a piezo motor is needed. The Piezo Actuator Drive (PAD) was demonstrated at high temperature, UHV and submitted to high magnetic fields.
* P. Bosland et al.; 'Mechanical study of the Saclay Piezo Tuner PTS (Piezo Tunning System)', CARE-Note-2005-004-SRF
** G. Taylor et al.; 'Status of the design of the ITER ECE diagnostic', EC18, 2015
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA042 Semi-Autonomous Device for Visual Inspection of Vacuum Beamlines of Particle Accelerators ion, synchrotron, diagnostics, heavy-ion 4528
 
  • N. Schweizer
    Technische Universität Darmstadt (TU Darmstadt, RMR), Darmstadt, Germany
  • I. Pongrac
    GSI, Darmstadt, Germany
 
  Due to the closed structure of ultra-high vacuum beamline systems, a visual inspection of the internal pipe is hardly feasible. For instance, when opening the accelerator vacuum system, an endoscope can be used to inspect the internals. However, this proves to be impractical in case of large, curved accelerator vacuum systems with complex geometries. It is more efficient to open the system only at one or two locations and to use a mobile semi-autonomous inspection device with optical imaging. A mobile robot is currently under development in our laboratory for the planned heavy ion synchrotron SIS100 at FAIR. A multitude of vacuum chamber types with different height levels as well as gaps must be traversed reliably by the robot. We present a modular wheel-based mobile robot prototype with joints between the modules which let the robot climb to different height levels by lifting the modules successively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA049 Introduction About Key Techniques of Critical Equipment in CSNS dipole, operation, target, alignment 4548
 
  • L. Kang, H.Y. He, L. Liu, X.J. Nie, A.X. Wang, G.Y. Wang, J.B. Yu, J.S. Zhang, D.H. Zhu
    IHEP, Beijing, People's Republic of China
  • J.X. Chen, C.J. Ning, Y.J. Yu
    CSNS, Guangdong Province, People's Republic of China
 
  Funding: National Natural Science Foundation of China (Grant Nos.11375217)
The China Spallation Neutron Source (CSNS) is the complex consists of a negative hydrogen linear accelerator, a rapid cycling proton synchrotron (RCS) accelerating the beam to 1.6 GeV energy, a solid target station, and instruments for spallation neutron applications. Some equipment which work in high radiation zone, such as beam dumps, collimators, proton beam window and so on, should contain the performance of long lifetime, high vacuum, and remote maintenance easily. This paper mainly introduce some key techniques in these equipment, firstly quick-release remote clamp and remote maintenance tool in collimators and proton beam window will be introduced, then some key brazing techniques in processing of these equipment will also be mentioned. Vibration online monitoring system and other key techniques will be showed finally.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA054 Research of the Chinese Spallation Neutron Source Stripper Foil neutron, injection, ion, proton 4562
 
  • J.X. Chen
    CSNS, Guangdong Province, People's Republic of China
  • L. Kang, J.B. Yu
    IHEP, Beijing, People's Republic of China
 
  Funding: This research was financially supported by the National Natural Science Foundation of China No.11375217.
In the injection process of spallation neutron source, the effect of the stripper foil is extremely critical, which is the key equipment to realize the conversion of negative hydrogen ions into proton injection. This paper mainly introduces the research of Chinese Spallation Neutron Source (CSNS) stripper foil. The CSNS stripper foil is a diamond-like carbon (DLC) foil with a thickness of 100 micrograms per square centimetre. This paper introduces the study of the thickness of the CSNS stripper foil, the installation method and the installation process in the tunnel site. Simultaneously, the influence of the gas flow rate of the vacuum chamber on the vibration of the foils is simulated. In the end of this paper, the research plan and follow-up of the experimental equipment of the stripper foil are introduced.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA059 Development of a New High Power RF Window for S-band Linac klystron, linac, cavity, high-voltage 4576
 
  • W.H. Hwang, J.Y. Choi, Y.D. Joo, S.H. Kim, B.-J. Lee
    PAL, Pohang, Kyungbuk, Republic of Korea
  • S.J. Roh
    Vitzrotech Co., Ltd., Ansan City, Kyunggi-Do, Republic of Korea
 
  A prototype rf window was developed in collaboration with Pohang Accelerator Laboratory (PAL) and domestic companies. The PAL designed the S-band TE012 rf window and conducted the high power performance tests of single rf window to verify the operation characteristics for the application to the PLSII Linac. The test was performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and rf analyzing equipment. As the test results with SLED, no breakdown appeared up to 75 MW peak power with 4.5 micro-seconds rf pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLSII Linac confirms that the rf window well satisfies the criteria of PLS Linac operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA061 Study of the Cooling and Vacuum Systems of a Miniature 12 MeV Race-Track Microtron linac, simulation, ion, microtron 4582
 
  • Yu.A. Kubyshin, X. Escaler, A. Viladomiu
    UPC, Barcelona, Spain
  • V.I. Shvedunov
    SINP MSU, Moscow, Russia
 
  With the aim of optimization, numerical simulations of the cooling and vacuum systems of a compact 12 MeV race-track microtron (RTM) which is under construction at the Technical University of Catalonia have been carried out. The hydraulic and thermal performance of the cooling system for various flow rates has been studied using the Computational Fluid Dynamics (CFD) software. A CFD model, previously validated with experimental pressure loss results, has permitted to simulate the cooling fluid temperature, inner wall temperatures and heat trans-fer coefficients at different sections of the RTM accelerating structure. Conclusions concerning the current design and its possible optimization are discussed. Simulations of the RTM high vacuum conditions have been performed using the Monte-Carlo simulation package Molflow+. The pressure in the vacuum chamber, pumping tube conductance and maximum allowed throughput have been calculated. Also results of the vacuum chamber pumping out sessions are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA062 Fabrication and Tests of a RF Cavity for a Novel Compact Superconducting Cyclotron for Radioisotope Production cavity, cyclotron, simulation, pick-up 4585
 
  • D. Gavela, J. Calero, L. García-Tabarés, P. Gómez, D. López, D. Obradors-Campos, C. Oliver, J.M. Pérez Morales, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • B. Bravo, R. Fos, J.R. Ocampo, F. Pérez, A. Salom, P. Solans
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Funding: Work partially funded by CDTI and supported by the Spanish Ministry of Economy and Competitiveness, under project AMIT, within the subprogram CEN-20101014
The AMIT cyclotron will be a 8.5 MeV, 10 microAmp, CW, H accelerator for radioisotope production, including a superconducting, weak focusing, 4 T magnet, allowing for a low extraction radius and a compact design. The cavity is a 60 MHz, quarter wave resonator powered by a modular 8 kW solid state amplifier. The design of the cavity dealed with challenging requirements: high electric fields required by a high voltage (60 kV) on a small gap, a small aperture of the magnet leading to high capacitances and thermal losses and a requirement for a low overall size of the cavity. The fabrication process included high precision machining, soft soldering, laser welding and careful metrologies, which are described together with other technical and practical aspects. The low power tests showed a good agreement with the simulations. The conditioning of the cavity was performed with a 1.1 T magnetic field applied on the central region. It was successfully finished regarding to maximum voltage reached, power losses and temperatures. The cavity was also tested at high power with a constant hydrogen flow injected in the central region (as expected in the cyclotron) with success.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA068 General Design of ID Front Ends in the TPS photon, radiation, synchrotron, storage-ring 4601
 
  • C.K. Kuan, C.K. Chan, Y.T. Cheng, J. -Y. Chuang, Y.M. Hsiao, I.C. Sheng, C. Shueh, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source is a 3 GeV, 3rd generation synchrotron radiation source at the NSRRC. Phase-I commissioning includes seven Insertion Device (ID) Front Ends which are built to transmit intense synchro-tron radiation generated by In-vacuum Undulators and Elliptically Polarizing Undulators in the storage ring to the Photon Beamline. The total power and power distri-bution on Front End components is calculated and ana-lysed and Finite Element Analysis is used to verify the thermal performance under high heat loads while Monte-Carlo methods are utilized to simulate the vacuum pres-sure distribution. All apertures of the components are the same to simplify and standardize the design of the Front Ends. This paper describes main design considerations, especially the high heat load and vacuum pressure distri-bution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA077 Turn-Key Beamlines for the 15 - 30 MeV Medical Cyclotron at VECC target, cyclotron, diagnostics, beam-diagnostic 4631
 
  • C. Glarbo, M. Budde, F. Bødker, P.M. Hansen, M.N. Pedersen
    Danfysik A/S, Taastrup, Denmark
 
  Turn-key beamlines built by Danfysik are to be installed in 2017 at the medical cyclotron facility VECC in Kolkata, India. The beamlines will transport a 500 μA beam of 15 - 30 MeV protons to the target stations where they're used for the production of radioisotopes/radio-pharmaceuticals, and in research and development. A raster scanning system is used to generate an even dose distribution in a square or circular pattern. The beamline components, collimators, diagnostics, and helium cooled HAVAR separation foils protecting the beamlines and cyclotron from possible contamination from the targets are designed for the up to 15 kW beam power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA084 Evaluation of Collective Effects in Iranian Light Source Facility (ILSF) Storage Ring impedance, storage-ring, emittance, scattering 4650
 
  • E. Ahmadi, S. Ahmadiannamin, J. Rahighi
    ILSF, Tehran, Iran
  • S.M. Jazayeri
    IUST, Narmac, Tehran, Iran
 
  In this paper, we present the calculations of various collective effects in the storage ring of ILSF, a synchrotron light source under design in Iran. The ILSF storage ring is based on 5-BA lattice structure and emittance of 270 pm-rad which is optimized to provide high brightness and flux photons for the users. Because of design features, small radius vacuum pipe and small momentum compaction factor of lattice, it is expected that instabilities emerging from collective effects will affect significantly the beam quality and make it is challenging to reach maximum designed beam current. We will address the results of beam quality degradation and threshold calculations for different singlebunch and multibunch instabilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA088 DESIGN AND CONSTRUCTION OF BRAZED SIDE COUPLED CAVITY OF MEDICAL ACCELERATOR coupling, simulation, cavity, electron 4664
 
  • S. Ahmadiannamin, Kh.S. Sarhadi
    ILSF, Tehran, Iran
  • F. Abbasi, M. Mohseni Kejani
    Shahid Beheshti University, Tehran, Iran
  • M. Bahrami, M. Lamehi
    IPM, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
 
  Two types of standing wave RF cavities are used routinely in construction of medical linear accelerators. These two types are Side coupled and on-axis coupled standing wave cavities. This selection is based on higher shunt impedance and compactness in comparison to travelling wave RF cavities. In this paper, we present the simulation, construction and measurement results of brazed section of 3 GHz side coupled RF cavity. It is the first successful experience of its kind in Iran. The obtained experiences can be used effectively for construction of side coupled thermionic RF guns and RF cavities of medical or industrial linacs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA126 Monte Carlo Simulation of Electron Beam Irradiation System for Natural Rubber Vulcanization electron, simulation, linac, target 4747
 
  • K. Kosaentor
    IST, Chiang Mai, Thailand
  • E. Kongmon, S. Rimjaem, J. Saisut, C. Thongbai
    Chiang Mai University, Chiang Mai, Thailand
 
  This paper presents the results of Monte Carlo simulation of electron beam irradiation system for natural rubber vulcanization, which is underway at Chiang Mai University in Thailand. The accelerator system can produce electron beams with adjustable energy and current in the ranges of 0.5-4 MeV and 10-100 mA, respectively. The electron beam exits from vacuum environment in the accelerator to the atmospheric air through a titanium (Ti) window. The electron dose absorption in Ti window and air was calculated by using the program GEANT4. The simulation results show that 50 μm Ti foil causes the energy loss of 1 and 18% for the beam of 4.0 and 0.5 MeV, respectively. The air gap between vacuum window and rubber surface is adjustable from 180 mm to 540 mm. The total beam energy loss of around 8-17% and 1-3% from the initial energies of 0.5 and 4 MeV, respectively. The proper depth of the natural rubber for the vulcanization process is 0.13 to 1.68 cm with the surface dose of 5.32 kGy for 0.5 MeV electron beam and 3.34 kGy for 4.0 MeV electron beam at the pulse repetition rate of 200 Hz. Accordingly, the treatment time of around 10-15 second per irradiated point is required.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA128 Preliminary Test Setup of the Metu Defocusing Beam Line, an Irradiation Test Facility in Turkey proton, detector, quadrupole, target 4750
 
  • A. Gencer, S. Akçelik, A. Avaroğlu, M.S. Aydın, G. Kılıçerkan Başlar, B. Bodur, B.M. Demirköz, U. Kılıç, E. Özipek, I. Sahin, R. Uzel, D. Veske, M. Yigitoglu
    Middle East Technical University, Ankara, Turkey
  • I. Efthymiopoulos, A. Milanese
    CERN, Geneva, Switzerland
 
  Funding: Turkish Ministry of Development
METU-Defocusing Beam Line (METU-DBL) Project has been started in August 2015 and aims to construct a beam line at Turkish Atomic Energy Authority Sarayköy Nuclear Education and Research Center Proton Accelerator Facility to perform Single Event Effect (SEE) tests for the first time in Turkey. The METU-DBL is 8m-long and has quadrupole magnets to enlarge the beam size and collimators to reduce the flux. When complete the METU-DBL will provide a beam that is suitable according to ESA ESCC No. 25100 Single Event Effects Test Method and Guidelines standard. The METU-DBL beam size is 15.40cm x 21.55cm and the flux will be variable between 105 p/cm2/s and 1010 p/cm2/s. The METU-DBL will serve space, particle, nuclear and medical physics communities starting from 2018 with performing irradiation tests. A preliminary test setup is being constructed towards first tests in March 2017. The beam size will be 6cm x 8cm and the flux will be 1.4x109 p/cm2/s for preliminary test setup. The METU-DBL project construction status for the preliminary test setup is presented in this poster.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA146 Robust Linac Platform for Wide Replacement of Radioactive Sources linac, impedance, simulation, coupling 4805
 
  • A.V. Smirnov, M.A. Harrison, A.Y. Murokh, A.Yu. Smirnov
    RadiaBeam Systems, Santa Monica, California, USA
  • R.B. Agustsson, S. Boucher, T.J. Campese, J.J. Hartzell, K.J. Hoyt
    RadiaBeam, Santa Monica, California, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
 
  Funding: This work was supported by the U.S. Department of Energy (awards No. DE-SC-FOA-0011370).
To improve public security and prevent the diversion of radioactive material for Radiation Dispersion Devices, development of an inexpensive, portable, easy-to-manufacture linac system is very important. Tubular structure with parallel pairs of rods crossed at 90 degrees suggests as high as 36% inter-cell coupling due to inherent compensation along with still substantial shunt impedance. Simultaneously it offers simplified brazing process and may dramatically simplify tuning of the entire structure. A novel design of a multi-cell, single-section, X-band structure for replacement of Ir192 source is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA146  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA147 KlyLac Conceptual Design for Borehole Logging linac, klystron, cavity, electron 4808
 
  • A.V. Smirnov, S. Boucher, M.A. Harrison, A.Y. Murokh
    RadiaBeam Systems, Santa Monica, California, USA
  • R.B. Agustsson, D. Chao, J.J. Hartzell, K.J. Hoyt, A.Yu. Smirnov
    RadiaBeam, Santa Monica, California, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
 
  Funding: This work was supported by the U.S. Department of Energy (award No. DE-SC0015721).
Linac-based system for borehole logging exploits KlyLac approach combing klystron and linac sharing the same electron beam, vacuum volume, and RF net-work. The conceptual design tailors delivering 3.5-4 MeV electrons within 3.5 inch borehole at ambient temperatures 150 degrees C to replace 137Cs, >1 Ci source used in borehole logging. The linac part is based on a very robust, high group velocity, cm-wave, standing wave accelerating structure. The design concept features i) self-oscillation analog feedback that automatically provides modal stability; ii) ferrite-free isolation of the klystron; and iii) long accelerating section with large (0.3%) frequency separation between adjacent modes; and iv) low-voltage klystron.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA147  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA148 Inexpensive Brazeless RF Accelerator gun, operation, cathode, electron 4812
 
  • S.P. Antipov, C.-J. Jing, R.A. Kostin, S.V. Kuzikov, J.Q. Qiu
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • A.A. Vikharev
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: DOE SBIR
A simple, inexpensive way to manufacture a standard radio frequency (RF) driven particle accelerator is presented. The simplification comes from two innovations: utilization of LCLS gun - type RF design to avoid an expensive brazing process and copper plating of stainless steel that further reduces manufacturing cost. This is realized by a special structure design where accelerating structure cells are made out of copper plated stainless steel with knife edges and structure irises - copper disks acts also as gaskets for vacuum and RF seal. Besides the reduced cost, brazeless assembly allows integration of effective cooling and magnet optics elements into accelerator cells.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA148  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXAB1 Accelerator Vacuum Technology Challenges for Next-Generation Synchrotron-Light Sources photon, impedance, storage-ring, lattice 4830
 
  • P. He
    IHEP, Beijing, People's Republic of China
 
  The development trend of future next-generation synchrotron light source storage rings is a compact lattice combined with small magnet apertures. This leads to important engineering challenges for the design and performance of a vacuum system because of lack of space, conductance limitation and high precision and stability positioning requirements. The speaker will review some possible solutions including the use of distributed pumping (NEG coating), distributed absorber (good thermal conducting material vacuum chamber wall), and distributed cooling (different water cooling channel design at the location where the synchrotron radiation hits the wall). In situ baking for NEG activation and precise installation will also be covered.  
slides icon Slides FRXAB1 [3.627 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-FRXAB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)