Keyword: radio-frequency
Paper Title Other Keywords Page
MOOCA2 First Results From New Single-Cell Nb3Sn Cavities Coated at Cornell University cavity, niobium, factory, SRF 40
 
  • D.L. Hall, J.J. Kaufman, M. Liepe, R.D. Porter, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cavities coated with Nb3Sn at Cornell University demonstrate quality factors of >1010 at 4.2 K, outperforming equivalent niobium cavities by a factor of >30 at these bath temperatures. These quality factors have been maintained up to fields of 17-18 MV/m without significant Q-slope. Recently, new single-cell cavities have been added to the Cornell Nb3Sn programme in an effort to improve statistics and allow further exploration of the available parameter space. In this paper we report on the first results of these new cavities, as well as the latest performance from other cavities already in use on the programme. Furthermore, continuing work to optimise the coating procedure is reported on, and the latest understanding of the ideal coating profile is discussed.  
slides icon Slides MOOCA2 [10.366 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOOCA2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA050 Setup of a Spatially Resolving Vector Magnetometry System for the Investigation of Flux Trapping in Superconducting Cavities cavity, SRF, niobium, experiment 975
 
  • B. Schmitz, K.Alomari. Alomari, J. Knobloch, O. Kugeler, J.M. Köszegi, Y. Tamashevich
    HZB, Berlin, Germany
 
  Flux trapping is the major contribution to the residual resistance of superconducting cavities. In order to gain a better understanding of the mechanisms involved and aiming at an eventual minimization of trapped flux, a measurement setup based on AMR sensors was devised that allows for monitoring the magnetic field vector at various positions near the cavity surface. First results of the efforts are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA057 Structural Investigations of Nitrogen-Doped Niobium for Superconducting RF Cavities niobium, SRF, vacuum, cavity 996
 
  • M. Major, L. Alff, M. Arnold, J. Conrad, S. Flege, R. Grewe, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    IKP, Mainz, Germany
 
  Funding: Work supported by BMBF through 05H15RDRBA.
Niobium is the standard material for superconducting RF (SRF) cavities. Superconducting materials with higher critical temperature or higher critical magnetic field allow cavities to work at higher operating temperatures or higher accelerating fields, respectively. Enhancing the surface properties of the superconducting material in the range of the penetration depth is also beneficial. One direction of search for new materials with better properties is the modification of bulk niobium by nitrogen doping. In the Nb-N phase diagram the cubic delta-phase of NbN has the highest critical temperature (16 K). Already slight nitrogen doping of the alpha-Nb phase results in higher quality factors.* Nb samples will be N-doped at the refurbished UHV furnace at IKP Darmstadt. The first results on the structural investigations of the processed Nb samples at the Materials Research Department of TU Darmstadt are presented.
* Grassellino et al., Proc. SRF2015, MOBA06, 48.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA062 Test, Diagnostics and Computed Tomographic Inspection of a Large Grain 3.9 GHz Prototype Cavity cavity, niobium, SRF, diagnostics 1011
 
  • M. Bertucci, A. Bignami, A. Bosotti, J.F. Chen, C.G. Maiano, P. Michelato, L. Monaco, R. Paparella, P. Pierini, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • G. Ciovati, G.R. Myneni
    JLab, Newport News, Virginia, USA
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  A large grain 3.9 GHz prototype cavity made of RRR = 105 ±10 has been tested at LASA. The cavity suffered of quench at moderate levels of accelerating field, for all nine fundamental pass-band modes. Several diagnostic techniques have been employed to determine the quench positions, which occur close to significant grain-boundary steps, visible from the external cavity surface. The cavity has been scanned with a high resolution X-ray tomographic machine, confirming the existence of remarkable topographic features on the inner RF surface at the suspected quench positions. A strategy for a future surface treatment for recover the cavity performances is here presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA116 Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour Diffusion cavity, accelerating-gradient, monitoring, niobium 1119
 
  • D.L. Hall, M. Liepe, J.T. Maniscalco, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • P. Cueva, D. Liarte, D.A. Muller, J.P. Sethna
    Cornell University, Ithaca, New York, USA
 
  The superconductor Nb3Sn is known to have a superheating field, Hsh, of approximately 400 mT. This critical field represents the ultimate achievable gradient in a superconducting cavity, and is equivalent to an accelerating gradient of 90 MV/m in an ILC single-cell cavity for this value of Hsh. However, the currently best performing Nb3Sn single-cell cavities remain limited to accelerating gradients of 17-18 MV/m, translating to a peak surface magnetic field of approx. 70 mT. In this paper, we consider theoretical models of candidate quench mechanisms, and compare them to experimental data from surface analysis and cavity tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK064 Eigenvalue Calculations Based on the Finite Element Method With Physically Motivated Field Smoothing Using the Kirchhoff Integral cavity, electromagnetic-fields, simulation, extraction 3074
 
  • W. Ackermann, H. De Gersem, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  In current linear particle accelerators, the actual acceleration of the charged particles is realized with the help of the electric field strength within driven radio frequency resonators. The characterization and optimization of the applied resonating structures can be reliably performed based on numerical simulation techniques. Efficient numerical methods have been introduced in the last decades to determine the electromagnetic fields while special care has been put in the correct description of the geometry and the material distribution of the structures. Although the resonators are operated in a driven setup, one of the advantageous numerical strategies here is given by an eigendecomposition of the fields which is realized by the application of accurate eigenmode calculations together with suitable postprocessing steps. In particular, the extraction of representative field maps used for particle tracking for example requires an accurate numerical modeling of the field at any position inside the structure. In order to avoid numerically motivated discontinuities of the fields a proper smoothing algorithm based on the vector equivalents of the Kirchhoff integral is proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK086 Wave Propagation in a Fractal Wave Guide 3128
 
  • V.G. Ziemann, A.K. Bhattacharyya, M. Holz, J. Ögren
    Uppsala University, Uppsala, Sweden
 
  We analyze the propagation of electro-magnetic waves in a wave guide that has the shape of Koch's snowflake, a well-known fractal.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA145 Analysis of Mean Free Path and Field Dependent Surface Resistance cavity, niobium, SRF, electron 3609
 
  • J.T. Maniscalco, F. Furuta, D.L. Hall, P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF-PHY 1416318
Work from Cornell in 2016 built on recent theoretical research in the field of SRF to link the electron mean free path to the field-dependent BCS surface resistance. This research relates the magnitude of the ‘‘anti-Q-slope'', the puzzling reduction of surface resistance with increasing RF field intensity observed in certain cavities, to the doping level of nitrogen-doped niobium, quantified by the mean free path: shorter mean free paths correspond directly with stronger anti-Q-slopes. The theoretical connection comes through the overheating of the quasiparticles, which more effectively transfer their energy to the lattice at short mean free paths. In this report, we present an update of this analysis, investigating recent test results of low-temperature-doped single-cell and nine-cell cavities. We also study the theoretical implications for cavities at frequencies higher and lower than the often-studied 1.3~GHz.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK108 Bead Pull Measurements of the FETS RFQ at RAL rfq, cavity, quadrupole, site 4349
 
  • W. Promdee, T.R. Edgecock
    IIAA, Huddersfield, United Kingdom
  • G.E. Boorman
    Royal Holloway, University of London, Surrey, United Kingdom
  • G.E. Boorman
    JAI, Egham, Surrey, United Kingdom
  • T.R. Edgecock, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  A Radio Frequency Quadrupole (RFQ) is a part of the Front End Test Stand (FETS) at the Rutherford Appleton Laboratory (RAL), Didcot, UK. The aim of the FETS project is to produce a 60 mA H beam at 3 MeV. The RFQ is a four-vane type with 4 modules, each of 1 m length, and is designed to accelerate the beam from 65 keV to 3 MeV at 324 MHz. A bead pull system has been designed to measure the field along the RFQ. This will be used in conjunction with 64 tuners to produce a uniform field. In order to optimise the tuning procedure, a model of the RFQ has been creat-ed in COMSOL Multiphysics. This study shows the results from the bead pull measurements and the tuning studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)