Paper | Title | Other Keywords | Page |
---|---|---|---|
MOXBA1 | Progress on the ESS Project Construction | target, cryomodule, linac, klystron | 7 |
|
|||
The construction of the European Spallation Source (ESS) is advancing at a high pace with the support of many laboratories and institutions all over Europe. Prototyping and manufacturing for the accelerator are in full swing in more than 23 laboratories distributed over 12 European partner countries. The origin and goals of the ESS will be briefly outlined in this paper. The milestones achieved, both in Lund and at the partner labs will be described as well as the plans up to operations. | |||
![]() |
Slides MOXBA1 [76.192 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOXBA1 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPAB015 | Optimization of a Skew Parametric Resonance Ionization Cooling Channel Using Genetic Algorithm | resonance, optics, dipole, collider | 111 |
|
|||
Funding: This work is supported by Muons Inc. Skew Parametric-resonance Ionization Cooling (Skew PIC) is designed for the final 6D cooling of a high-luminosity muon collider. Tracking of muons in such a channel has been modeled in MADX and matter-dominated simulation tool G4beanline in previous studies. In this work, we developed an optimization code based on Genetic Algorithm (GA). We optimized the cooling channel and increased the acceptance of the channel by using the GA code. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPAB016 | Beam Diagnostic and Control Systems for AREAL 50 MeV Linac | electron, emittance, diagnostics, linac | 114 |
|
|||
Advanced Research Electron Accelerator Laboratory (AREAL) is an electron linear accelerator project with a laser driven RF gun that has been constructed at CANDLE Synchrotron Research Institute. After the completion of the first phase, which implies the operation of a 5 MeV gun section, the second phase of facility development (energy enhancement up to 50 MeV) is in progress. In the present paper the description of corresponding upgrades for diagnostic and control systems is given. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPAB063 | IFMIF EVEDA RFQ Local Control System: Power Tests | rfq, EPICS, hardware, cavity | 253 |
|
|||
In the IFMIF EVEDA project, normal conducting Radio Frequency Quadrupole (RFQ) is used to bunch and accelerate a 130 mA steady beam to 5 MeV. RFQ cavity is divided into three structures, named super-modules. Each super-module is divided into 6 modules for a total of 18 modules for the overall structure. The final three modules have to be tested at high power to test and validate the most critical RF components of RFQ cavity and, on the other hand, to test performances of the main ancillaries that will be used for IFMIF EVEDA project (vacuum manifold system, tuning system and control system). The choice of the last three modules is due to the fact that they will operate in the most demanding conditions in terms of power density (100 kW/m) and surface electric field (1.8*Ekp). The Experimental Physics and Industrial Control System (EPICS) environment [1] provides the framework for monitoring any equipment connected to it. This paper reports the usage of this framework to the RFQ power tests at Legnaro National Laboratories [2,3,4].
[1] http://www.aps.anl.gov/epics/ [2] http://www.lnl.infn.it/. [3] http://www.lnl.infn.it/~epics/joomla/ [4] M. Giacchini et al. LivEPICS: an EPICS Linux Live CD Nagios Equipped, TPPA32, ICALEPCS2007, Oak Ridge, USA |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB063 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPAB074 | Low Intensity Electron Beam Controlling and Monitoring | electron, detector, linac, experiment | 292 |
|
|||
To calibrating a cosmic-ray detector, a low beam current accelerator has been built to generate ultra low intensity electron beams at Institute of High Energy Physics (IHEP). The minimum beam charge obtained was estimated to be about one electron/pulse. Beam commissioning has been carried out. The key technologies for achieving such low intensity electron beams are to control the beam using 8 movable slits and to measure the intensity of the beam using 9 movable current monitors based on scintillator. In this paper, principal of operation, instrumentation and programming of the movable slits and movable current monitors are discussed. Some results of beam commissioning are also presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB074 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPAB089 | Development of a Digital Beam Signal Processor Test System Based on MATLAB and SCPI | EPICS, hardware, data-acquisition, software | 329 |
|
|||
The SXFEL (Soft X-ray Free Electron Laser) and DCLS (Dalian Coherence Light Source) have been under con-structions since 2015. To satisfy the huge demands of digital beam position monitor processor, we batch pro-duced over 200 sets of DBPM processor. This paper de-scribes a high automatic test platform based on MATLAB and SCPI, used for the device acceptance test and performance evaluation. The simulation beam sig-nals generated by the Agilent signal source MXG N5181A, connected to a 4-way power splitter. The network control system based on the architecture of the client and server mode, integrated instruments test commands and exper-imental data transferred via a Mercury router. Using EP-ICS LabCA realized the data acquisition channel access interface. The platform has been successfully used for the Dalian Coherent Light Source (DCLS) devices acceptance testing, the noise level, crosstalk between channels, ampli-tude frequency response and SNR test reports automatic generation under test. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB089 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPAB092 | Design and Performance of Digital BPM Processor for DCLS and SXFEL | FPGA, pick-up, cavity, electronics | 338 |
|
|||
Funding: Work supported by National Natural Science Foundation (No. 11305253, 11575282) A digital BPM processor has been developed in SINAP, which can be used on the signal processing of both stripline BPM and cavity BPM. The processor is a standalone system and providing 4 channels 120MS/s, 16 bits ADC and powerful Virtex-5 FPGA. The processor has been mas applied on Dalian Coherent Light Source and Shanghai X-ray FE. The processor specification and performance evaluations including lab and beam tests will be introduced. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB092 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPAB121 | Installation and Test of Pre-series Wire Scanners for the LHC Injector Upgrade Project at CERN | vacuum, laser, electronics, detector | 412 |
|
|||
A new generation of fast wire scanners is being developed for the LHC Injectors Upgrade (LIU) project at CERN. These will be essential tools for transverse profile measurement with the higher brightness LIU beams, and are planned for installation in 2019 in all three synchrotrons making up the LHC injector chain. An active period of development and test has resulted in prototype installations in the SPS and PSB rings. This paper will summarise the design and report on the results to-date. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB121 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPAB149 | Design of LCLS-II ATCA BPM System | linac, network, undulator, FEL | 477 |
|
|||
Funding: Work supported by U.S. Department of Energy under Contract Numbers DE-AC02-06CH11357 SLAC's LCLS-II is a next generation X-ray FEL that will use a CW 4 GeV superconducting linac with nominal bunch spacing of 1us will deliver both soft and hard x-ray FEL to users. In order to achieve the required performance, the SLAC Technical Innovation Directorate has developed a common hardware and firmware platform for beam instrumentation based on the ATCA crate format. We have designed a stripline and cavity BPM system based on this platform that is capable of measuring the beam position at full beam rate. The system will have a dynamic range between 1 pC to 300 pC. This paper will discuss the design of the BPM electronics, overall architecture and performance on LCLS-I. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB149 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPIK017 | Simultaneous Generation of Drive and Witness Beam for Collinear Wakefield Acceleration | wakefield, acceleration, emittance, quadrupole | 535 |
|
|||
Funding: This work is supported by Department of Energy, Office of High Energy Physics, under Contract No. DE-AC02-06CH11357. Generating the drive and witness bunch for collinear wakefield acceleration (CWFA) requires precise control of the longitudinal bunch shape for each bunch as well as the controlling their separation. The emittance exchange (EEX) beamline and a transverse mask can be used to achieve all of these requirements. First, this EEX-based method can independently control the longitudinal bunch shape of each bunches so that the drive bunch is shaped to generate a high transformer ratio while witness bunch is shaped to suppress its energy spread. Second, the timing jitter between the drive and witness bunch poses a serious limitation to the CWFA scheme but the EEX-based method eliminates this since both bunches are generated at the same time and share the exactly same beamline so there are no relative errors. In this paper, we confirm the feasibility of this EEX-based method for simultaneous generation with simulation for CWFA in a dielectric structure. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPIK041 | Commissioning of the Stripping Foil Units for the Upgrade of the PSB H− Injection System | injection, linac, electron, vacuum | 595 |
|
|||
The PSB will be extensively upgraded during the next long shutdown of the CERN accelerator complex, to double the brightness of the stored beams. The existing multi-turn injection will be replaced by a charge exchange system designed for the 160 MeV hydrogen ions provided by Linac4. Part of the injection equipment has been temporarily installed along the Linac4-to-PSB transfer line and tested with beam. This allowed to gain experience with the system, test the related diagnostics and benchmark calculations with measurements. An additional permanent stripping foil test stand is also installed right after the Linac and will be used to characterise new foils for possible future applications. The main outcomes, issues and applied or planned mitigations are presented for both installations. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPIK072 | Recent Upgrades of the Bunch Arrival Time Monitors at FLASH and European XFEL | laser, software, electronics, electron | 695 |
|
|||
In modern free electron laser facilities like FLASH and European XFEL a high resolution intra train bunch arrival time measurement is mandatory, providing a crucial information for the beam based feedback system. At FLASH and European XFEL a reliable arrival time detection with a resolution better than 0.1% is required for a broad range of bunch charges, from 1 nC down to 20 pC. The system developed is based on electro-optical sampling where an ultra-short pulsed laser is employed. Several bunch arrival time monitors (BAM) were developed and are since 2012 in operation at the FLASH facility. A major upgrade involved the development of new hardware and software based on the MTCA standard. Special operation mode at both facilities includes the possibility to subdivide the bunch train in up to three segments, each with different bunch energy and charge, causing variation of the time jitter within the bunch train itself. A further upgrade includes the measurement of the arrival time and application of delay correction for each of the three segments. In this poster, we describe the development, installation and commissioning of the hardware, firmware and software of the new system. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK072 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPIK091 | Development of Real-Time Charge Integrator for the Irradiation Dose Measurement | real-time, target, background, Ethernet | 739 |
|
|||
Funding: This work has been supported through KOMAC (KOREA of Multi-purpose Accelerator Complex) operation fund of KAERI by MSIP (Ministry of Science, ICT, and Future Planning). KOMAC (Korea of Multi-purpose Accelerator Complex, Gyeongju, Korea) has several kinds of facilities using proton beam or ion beam. The KOMAC has provided beam service to user group since 2013. For effective beam service, it is important that irradiation dose at a target should be supplied as much as user requires. To control the irradiation dose of target, a multi-channels charge integrator, Faraday cups, and a beam shutter are used. The amount of irradiation dose is calculated in real time by accumulative charge, which is represented to integration of induced current at each Faraday cup for the target. If the measurements reach to the set value (desired dose), the beam is automatically blocked by beam shutter. Thus, precise measurement of accumulative charge is required. For out purpose, two kinds of real-time charge integrators were implemented with different measuring ranges. In order to verify performance of the integrators, each device's linearity was evaluated after measuring accumulative charge corresponding to dc current. And their measurable range was determined. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK091 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPIK126 | Establishing a Project Management Office for the Large Scale Multi Project FAIR | project-management, site, interface, operation | 835 |
|
|||
The Facility for Antiproton and Ion Research (FAIR) is a large scale multi project comprising 10 subprojects in the field of accelerators (pLINAC, SIS100, SuperFRS, p-bar Separator, Collector Ring, High Energy Storage Ring), experiments (CBM, APPA, NUSTAR, PANDA) and civil construction. This contribution describes an integrated approach how a controlling type project management office (PMO) was established, meeting the overall requirements for project steering and specific requirements of the subprojects and international partners involved. Major responsibilities of the PMO are project planning, integrated reporting, cost and budget control, risk management, in-kind coordination & procurement, quality assurance & configuration management. Core processes, roles and responsibilities, methodology and interfaces internally and towards the project pillars are presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK126 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPIK128 | Integrated Project Planning as a Central Steering Tool for the Large Scale Multi Project FAIR | experiment, status, project-management, site | 842 |
|
|||
The Facility for Antiproton and Ion Research (FAIR) is a large scale multi project comprising 10 subprojects in the field of accelerators (pLINAC, SIS100, SuperFRS, p-bar, CR, HESR), experiments (CBM, APPA, NUSTAR, PANDA) and civil construction. This contribution describes the fundamental revamp of FAIR integrated project planning. Main objective is to preserve the advantages of a bottom-up planning topology with the actual and detailed level of information keeping the ~400 work package leader's central role as plan owners in their field of responsibility. Simultaneously different project phases (e.g. civil construction, procurement, installation, commissioning) need to be excluded from detailed plans while being re-integrated in the level-1 project master schedule. Additional cost profiles and resource assignment by name allow a progress tracking and flexible project steering. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK128 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA044 | Conditioning of the Power Couplers for the ESS Elliptical Cavity Prototypes | coupling, vacuum, cavity, pick-up | 957 |
|
|||
In the framework of the European Spallation Source (ESS), some power couplers have been designed and manufactured to supply, with RF power, the medium-beta (β=0.67) elliptical cavities of the cryomodule demonstrator. The power couplers work at 704.4 MHz and are tested up to 1.2 MW (repetition rate=14 Hz, RF pulse width close to 3.6 milliseconds). The CEA Saclay is in charge of the design, the manufacturing, the preparation and the conditioning of these power couplers. In this paper, after a general presentation of the power couplers used in the ESS LINAC and their characteristics, we give some détails about the manufacturing and then we describe the different steps of the preparation (cleaning), the assembly of the couplers on the coupling box in cleanroom, the baking of the couplers and the conditioning procedure. Finally, the experimental results obtained in travelling and standing waves on the first pairs of couplers will be shown. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA060 | Fabrication and Treatment of the ESS Medium Beta Prototype Cavities | cavity, operation, feedback, vacuum | 1003 |
|
|||
In view of the Medium Beta series cavities production at the industry for the European Spallation Source project, INFN Milano - LASA design prototypes have been fully produced at Ettore Zanon S.p.A. with our supervision. Based on our experience on the production of 1.3 GHz and 3.9 GHz E-XFEL series cavities, we set-up and applied an external quality control activity of the overall production of the prototype cavity, starting from the row materials to the ready to be tested cavity. In this paper, we report the strategy we have adopted on the overall production, mechanical and surface treatments, frequency measurement of subcomponents and cavities and the obtained results. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA060 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA076 | Measurement of Thin Film Coating on Superconductors | cryogenics, experiment, FPGA, photon | 1043 |
|
|||
Funding: This research is supported by following programs: Grant-in-Aid for Exploratory Research JSPS KAKENHI Grant Number 26600142 and Photon and Quantum Basic Research Coordinated Development Program from the MEXT. Multilayer thin film coating is a promising technology to enhance performance of superconducting cavities. Until recently, principal parameters to achieve the sufficient performance had not been known, such as the thickness of each layer. We proposed a method to deduce a set of the parameters to exhibit a good performances. In order to verify the scheme, we are trying to make some experiments on the subject at Kyoto. The sample preparation and the test setup for the measurement apparatus will be discussed. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA076 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA089 | The Cryomodule Test Stands for the European Spallation Source | cryomodule, cryogenics, klystron, cavity | 1064 |
|
|||
The European Spallation Source (ESS) is currently under construction in Lund, in southern Sweden. The superconducting section of the linear accelerator consists of three parts; 26 double-spoke cavities at 352.21 MHz gathered in 13 cryomodules, 36 medium beta elliptical cavities at 704.42 MHz gathered in 9 cryomodules and 84 high beta elliptical cavities also at 704.42 MHz gathered in 21 cryomodules. These cryomodules allow the acceleration of the beam from 90 MeV to 2.0 GeV. The cryomodules have to be tested in dedicated test facilities before installation in the ESS tunnel, the Test Stand 2 (TS2) in Lund and the FREIA Test Stand at Uppsala University, Sweden, which are dedicated to the tests of the medium and high beta elliptical cryomodules and the spoke cavity cryomodules, respectively, for the ESS linear accelerator. All cryomodules will go through their Site Acceptance Tests (SAT) on these dedicated test stands which will each consist of an RP bunker, a test stand cryoplant and RF power sources. Both test stands will allow the SAT of cryomodules with full cryogenic load at the final operating temperature and with full RF load on all cavities in parallel. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA089 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA094 | ESS Spoke Cavity Conditioning at FREIA | cavity, vacuum, software, feedback | 1074 |
|
|||
The first ESS double spoke cavity installed with RF power coupler was tested in the HNOSS cryostat at the FREIA Laboratory. Power coupler and cavity conditioning have been optimized in order to reach high efficiency and high availability by reducing the time and effort of the overall conditioning process. Meanwhile, an optimal procedure for ESS conditioning is studied. This paper presents the study result and experience of the RF conditioning procedure for the first ESS double spoke cavity. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA094 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA100 | Atomic Layer Deposition of Niobium Nitride from Different Precursors | plasma, niobium, experiment, simulation | 1094 |
|
|||
Advancements in technology have taken bulk niobium cavities close to their theoretical operational limits of 45 MV/m, pushing the research to explore novel materials, such as niobium based alloys . Theoretical studies suggest that a composite material composed of alternative superconductor / insulator multilayers would surpass the bulk niobium limits. Chemical vapour deposition (CVD) can deposit mi-crons thick Nb films in less than an hour, at the expense of precise thickness control. Atomic layer deposition (ALD), instead, even if considerably slower than CVD can be used in applications where the thickness of the deposited layers needs to be controlled with a resolution down to the nanometer. This article presents the preliminary results obtained by using plasma assisted ALD techniques to deposit NbN based compounds starting from chlorinated precursors and organic ones, and the design for a new deposition system currently being built at the Daresbury Laboratories. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA100 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA113 | RF Quality Control of SRF Cavities for LCLS-II Cryo-Modules | HOM, cavity, cryomodule, pick-up | 1108 |
|
|||
Funding: *Operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. DOE LCLS-II project is gearing up to build 36 cryo-modules of the 1.3 GHz TESLA style cavities. Half of those cryomodules are being built at Fermilab, while JLAB is carrying the production of the other half. In this paper, we present the process of quality controlling the RF performance of cavities until they are qualified for the final string assembly at Fermilab. The RF quality control process includes monitoring the frequency spectrum of each cavity and tuning/adjusting of the notch frequencies before testing at the Vertical Test Stand (VTS). Measured data during income QC is presented and in addition we show the notch frequencies before and after testing at the VTS. Moreover, we report some of the RF measurements taken while the cavity is cooled down to 2K temperature. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA113 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA121 | Frequency Tuner Development at Cornell for the RAON Half-Wave-Resonator | cavity, cryomodule, cryogenics, simulation | 1134 |
|
|||
The half-wave-resonators (HWR) for the RAON pro-ject require a slow frequency tuner that can provide at least 80 kHz tuning range. Cornell University is currently in the process of designing, prototyping, and testing this HWR tuner. In this paper, we present the tuner design, prototype fabrication, and first test results. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA121 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA131 | Status of the LCLS-II Accelerating Cavity Production | cavity, status, linac, target | 1164 |
|
|||
Funding: Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 with supplemental funding from the LCLS-II Project U.S. DOE Contract No. DE-AC02-76SF00515. Cavity serial production for the LCLS-II 4 GeV CM SRF linac has started. A quantity of 266 accelerating cavities has been ordered from two industrial vendors. Jefferson Laboratory leads the cavity procurement activities for the project and has successfully transferred the Nitrogen-Doping process to the industrial partners in the initial phase, which is now being applied for the production cavities. We report on the results from vendor qualification and the status of the cavity production for LCLS-II. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA131 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA132 | Production of Copper-Plated Beamline Bellows and Spools for LCLS-II | cryomodule, cavity, vacuum, simulation | 1167 |
|
|||
Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515 The SLAC National Accelerator Laboratory is currently constructing a major upgrade to its accelerator, the Linac Coherent Light Source II (LCLS-II). Several Department of Energy national laboratories, including the Thomas Jefferson National Accelerator Facility (JLab) and Fermi National Accelerator Laboratory (FNAL), are participating in this project. The 1.3-GHz cryomodules for this project consist of eight cavities separated by bellows (expansion joints) and spools (tube sections), which are copper plated for RF conduction. JLab is responsible for procurement of these bellows and spools, which are delivered to JLab and FNAL for assembly into cryomodules. Achieving accelerator-grade copper plating is always a challenge and requires careful specification of requirements and application of quality control processes. Due to the demanding technical requirements of this part, JLab implemented procurement strategies to make the process more efficient as well as provide process redundancy. This paper discusses the manufacturing challenges that were encountered and resolved, as well as the strategies that were employed to minimize the impact of any technical issues. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA132 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPVA143 | Trim Tuning of SPS-Series DQW Crab Cavity Prototypes | cavity, target, operation, simulation | 1187 |
|
|||
Funding: Work partially supported by US DOE via BSA LLC contract No.DE-AC02-98CH10886 and by the US LARP program. The final steps in the manufacturing of a superconducting RF cavity involve careful tuning before the final welds to match the target frequency as fabrication tolerances may introduce some frequency deviations. The target frequency is chosen based on analysis of the shifts induced by remaining processing steps including acid etching and cool down. The baseline fabrication of a DQW crab cavity for the High Luminosity LHC (HL-LHC) envisages a first tuning before the cavity subassemblies are welded together. To produce a very accurate final result, subassemblies are trimmed to frequency in the last machining steps, using a clamped cavity assembly for RF measurements. This paper will describe the trim tuning of one of the SPS prototype DQW crab cavities fabricated by Niowave. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA143 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB001 | Proof of Concept of CLIC Final Focus Quadrupoles Stabilization | simulation, quadrupole, collider, ground-motion | 1290 |
|
|||
The Compact LInear Collider (CLIC) [1] luminosity requires extremely low beam emittances. Therefore, high beam position stability is needed to provide cen-tral collisions of the opposing bunches. Since ground motion (GM) amplitudes are likely to be larger than the required tolerances, an Active Vibration Control (AVC) system is required to damp quadrupole motion to the desired value of 0.2 nm RMS at 4 Hz. This paper focuses on the vertical final focus quadrupoles (QD0, QF1) stabilization and demonstrates its feasibility. An AVC system to be installed under QD0 and QF1 has been developed and successfully tested at LAPP. Based on a dedicated homemade sensor with an ex-tremely low internal noise level of 0.05 nm at 4 Hz, it damps GM in the frequency range [3;70] Hz by up to 30 dB, leading to RMS values of approximately 0.25 nm at 4 Hz. Simulations based on GM measured in the Compact Muon Solenoid (CMS) experimental hall [2] show that with such a GM level, the specifications would only be achieved with a Passive Insulation (PI) system, which would filter ground motion starting at ~ 25 Hz | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB039 | Installation Management for the European XFEL Main Accelerator | Ethernet, cryogenics, status, electron | 1409 |
|
|||
By end of 2016, the main accelerator of the European XFEL was completed. To build this complex machine in a minimum of time, certain management methods were introduced in mid 2015, which accelerated the installation process substantially. In the following 64 weeks additional 84 % of the main accelerator were set up. This was possible due to an improved planning, the reinforcement of two teams as well as a permanent controlling and optimizing of the installation process. In this paper, the installation process from July 2015 to end 2016 and the measures which speeded up the workflow are described. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB042 | Current Status of IPM Linac Control System | EPICS, PLC, linac, electron | 1418 |
|
|||
This paper reports the progress of the control system for IPM 10 MeV accelerator. As an electron linac, it consists of beam injection acceleration tube, radio frequency production and transmission, target, diagnostics and control and safety. In support of this source, an EPICS-based integrated control system has been designed and being implemented from scratch to provide access to the critical control points and continues to grow to simplify operation of the system. In addition to a PLC-based machine protection component and IO interface, a CSS-based suite of control GUI monitors systems including Modulator and RF, Vacuum, Magnets, and electron gun. An overview of this system is presented in this article. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB084 | Beam Stability Modeling and Jitter Control for SXFEL Linac | linac, FEL, quadrupole, klystron | 1513 |
|
|||
FEL operations foresee stringent requirements for the stability of the global linac output parameters and this requirement is particularly stringent for the successful operation of an externally seeded FEL. In order to understand the sensitivity of these parameters to jitters of various error sources along the SXFEL linac, studies have been performed based on analytical methods and tracking code simulations. Using the tolerance budget as guidance, beam jitter control techniques are discussed on the view of the beam dynamics. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB084 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB092 | MYRRHA Control System Development | linac, proton, framework, target | 1527 |
|
|||
The approach to the MYRRHA Control System (CS) development will be described. The effort, time and resources needed to develop the control systems are often underestimated by a significant factor. This brings unnecessary setbacks to the projects. Understanding CS requirements at an early machine conception stage is paramount for adequate CS design. Awareness of sheer project size and interdisciplinary complexity is imperative for successful project execution. In the first part of the paper the MYRRHA roadmap, milestones, status and its future needs will be presented with an emphasis on the phased approach leading to the 100 MeV program. The second part of the paper will give the status of the MYRRHA CS development within this phased approach. Best practices for coherent integration will be discussed. The CS should provide a flexible framework for the integration of devices. Interfaces and services need to be defined early in the integration process, and the number of different interfaces and platforms should be kept to a minimum. The implications of the choice of technologies and of SW development processes on the overall reliability and availability have to be established. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB092 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB108 | Upgrade of BTS Control System for the Taiwan Light Source | EPICS, interface, operation, GUI | 1570 |
|
|||
The Taiwan Light Source (TLS) is a third generation of synchrotron light source, and it has been operated since 1993. The TLS control system is a proprietary design. It was performed minor upgrade several times to avoid obsolete of some system components and keep up-to-date during last two decades. The control system of BTS (Booster-to-Storage ring) transport line includes control interfaces of power supplies, screen monitors, vacuum and temperature. The cPCI (CompactPCI) based EPICS IOC (Input Output Controller) has been adopted for renewing TLS BTS control system to replace the existed VME based ILC (Intelligent Local Controller) to be as an easy-to-maintain control environment. Moreover, each TLS control console supports not only the existing control software interfaces, but also the newly developed EPICS graphical user interfaces. Upgraded TLS BTS control system had been successfully commissioning in February 2017. Compare new system with old system, new system provides more functionality, fast response, and highly reliability. The efforts are summarized at this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB108 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB136 | Coupling and Polarization Control in a mm-wave Undulator | undulator, polarization, coupling, electron | 1647 |
|
|||
Funding: This project was funded by U.S. Department of Energy under Contract No. DE-AC02-76SF00515, and the National Science Foundation under Contract No. PHY-1415437. To reduce the linac energy required for an FEL radiating at a given wavelength, and hence its size, a smaller undulator period with sufficient field strength is needed. Previous work from our group successfully demonstrated a microwave undulator at 11.424 GHz using a corrugated cylindrical waveguide operating in the HE11 mode. Scaling down the undulator period using this technology poses the challenge of confining and coupling the electromagnetic fields while maintaining overmoded features for power handling capability and electron beam wakefield mitigation. We have designed a mm-wave undulator cavity at 91.392 GHz*. This undulator requires approximately 1.4 MW for sub-microsecond pulses to generate an equivalent K value of 0.1. Transferring such amounts of power in mm-wave frequencies requires overmoded corrugated waveguides, and coupling through irises creates excessive pulsed heating. We have designed a novel mode launcher that allows coupling power from a highly overmoded corrugated waveguide to the undulator through the beam pipe. Additionally, this mode launcher can be used along with grating polarizers to control the polarization of the produced light. * F. Toufexis and S.G. Tantawi, A 1.75 mm Period RF-Driven Undulator, these proceedings. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB136 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK040 | Commissioning of the Fast Orbit Feedback System at the Australian Synchrotron | feedback, FPGA, synchrotron, insertion-device | 1770 |
|
|||
An FPGA based fast orbit feedback system developed at the Australian Synchrotron aims to improve the stability of the electron beam by reducing the impact of moving insertion devices and targeting orbit perturbations at the mains frequency (50 Hz, 100 Hz and 300 Hz). The feedback system uses a PI controller with harmonic suppressors in parallel to specifically target perturbations at the mains frequency and its harmonics. This report will present the results of the commissioning of the FOFB system demonstrating a reduction in the integrated RMS motion up to 300 Hz by 75% to 90%. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK040 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK045 | Closed Orbit Feedback for FAIR - Prototype Tests at SIS18 | software, feedback, closed-orbit, distributed | 1784 |
|
|||
A new steering software for cycle-to-cycle closed orbit as well as trajectory control is currently under development for FAIR's planned control system. It has been successfully tested with beam at the SIS18 in 2016. COAT (i.e., Controlling Orbits And Trajectories) has been realized as a distributed, Java-based application. It consists of a background daemon process that handles the actual beam-based feedback logic, and independent clients that provide visualization and various user-interaction capabilities. Built on top of the LSA settings management system, code-shared and also used at CERN, the system is kept generic. Furthermore, it is designed to support multiple accelerators, transfer lines and users in parallel. In particular, it can handle continuously changing optics and other in advance known changing beam parameters. The COAT computer program is part of a set of newly developed beam-based feedback tools* for FAIR. Preliminary results of our proof-of-concept prototype studies indicate, e.g., in view of the observed SIS18 machine reproducibility, that such a cycle-to-cycle feedback control scheme may be adequate also for the other FAIR accelerators and transfer lines.
*see separate contribution by R. J. Steinhagen et al. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK046 | Beam-Based Feedbacks for FAIR - Prototyping at the SIS18 | feedback, extraction, proton, injection | 1787 |
|
|||
The 'Facility for Anti-Proton and Ion Research' (FAIR) presently under construction, extends and supersedes GSI's existing infrastructure. Its core challenges include the precise control of highest proton and uranium ion beam intensities, the required extreme high vacuum conditions, machine protection and activation issues while providing a high degree of multi-user mode of operation with facility reconfiguration on time-scales of a few times per week. To optimise turn-around times and to establish a safe and reliable machine operation, a comprehensive suite of semi-automated measurement applications, as well as fully-automated beam-based feedbacks will be deployed, covering the control of orbit, Q/Q', spill structure, optics, and other machine parameters. These systems are based on the LSA settings management framework, code-shared with and also used at CERN. The concepts, software architecture and first prototype beam tests at the SIS18 in 2016 are presented. As an initial proof-of-concept, a cycle-to-cycle orbit* and macro-spill feedback, as well as a semi-automated magnetic quadrupole- and sextupole-centre measurement tool have been selected.
*results presented in separate contribution |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK046 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK047 | FAIR Control Centre (FCC) - Concepts and Interim Options for the Existing GSI Main Control Room | operation, experiment, proton, ion | 1791 |
|
|||
The 'Facility for Anti-Proton and Ion Research' (FAIR) which is presently under construction, extends and supersedes the existing GSI. Present operation still largely relies on laborious manual tuning based on analogue signals routed directly to the existing control room. The substantial scope increase from 3 to more than 8 FAIR accelerators requires more intricate and precise control across longer accelerator chains, while providing a high degree of multi-user operation, with facility reconfiguration required on time-scales of a few times per week. A new FAIR Control Centre (FCC) is being planned to accommodate the required larger accelerator crews as well as accelerator-based experiments. While targeting a single control room for up to ~35 people, emphasis is put on ergonomics, operational processes, and minimising unnecessary strain on personnel already during the design stage. This contribution presents digital control room concepts, console layout, and beam-production-chain paradigms aimed at achieving good operational performances and that influence the new FCC design. Prior to FCC completion, interim upgrade options of the existing control room are being investigated. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK047 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK048 | Longitudinal Beam Stabilization at FAIR by Means of a Derivative Estimation | simulation, synchrotron, experiment, dipole | 1795 |
|
|||
Funding: Supported by the GSI During acceleration in SIS18/SIS100 at GSI/FAIR longitudinal beam-oscillations are expected to occur. To reduce emittance blow-up, dedicated LLRF beam feedback systems are planned. To date longitudinal beam oscillations have been damped in machine experiments with a finite-impulse-response (FIR) filter controller with 3 filter taps[1]. An alternative approach implementing the FIR filter as a derivative estimator controller is simulated and tested. This approach shares the same controller topology and can therefore be easily integrated in the system. It exploits the fact that the sampling rate of the feedback hardware is considerably higher than the frequency of the beam oscillations. It is therefore capable of damping oscillations without overshoot within one oscillation period. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK049 | ChimeraTK - A Software Tool Kit for Control Applications | framework, hardware, software, EPICS | 1798 |
|
|||
The presentation provides an overview of the ChimeraTK framework. The project started from a demand for software libraries that provide convenient access to PCIE bus based cards on the MicroTCA.4 platform. Previously called MTCA4U, ChimeraTK is evolving towards a set of frameworks and tools that enable users to build up control applications, while abstracting away specifics of the underlying system. Initially, the focus of the project was the DeviceAccess C++ library and its bindings for Matlab and Python, along with a Qt based client that used DeviceAccess under the hood. However, ChimeraTK has expanded to include more tools like the ControlSystemAdapter, VirtualLab and ApplicationCore. The ControlSystemAdapter framework focuses on tools that enable application code to be written in a middle ware agnostic manner. VirtualLab focuses on facilitating testing of application code and providing functional mocks. The ApplicationCore library aims at unifying application interfaces to other tools in the toolkit and improving abstraction. We present an update on improvements to the project and discuss motivations and applications for these new set of tools introduced into the toolkit. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK049 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK050 | COSY Slow Orbit Feedback System | closed-orbit, EPICS, feedback, dipole | 1802 |
|
|||
The Cooler Synchrotron (COSY) at Forschungszentrum Jülich is currently carrying out the preparation for a direct measurement of the electric Dipole Moment (EDM) of the deuteron using an RF Wien filter*,**. In a magnetic storage ring with the spin vector aligned along the direction of motion, the EDM manifests in a buildup of the vertical spin component. Besides this signal, radial magnetic fields due to a distortion of the vertical closed orbit can produce a similar signal. This signal is a systematic limit of the proposed measurement procedure. Based on simulation studies***, a vertical closed orbit distortion with a RMS smaller than 0.1 mm is required to achieve a sensitivity of 10-19 e.cm or better. In order to accomplish this challenging goal, a slow orbit feedback system was proposed and recently commissioned at COSY. The design and commissioning results will be presented, and the future plan will also be discussed.
* A. Lehrach et. al, arXiv:1201.5773 [hep-ex]. ** W. M. Morse, Y. F. Orlov and Y. K. Semertzidis, PRSTAB 16, no.11, 114001 (2013). *** M. Rosenthal, Ph.D. thesis, RWTH Aachen University, 2016, available from http://collaborations.fz-juelich.de/ikp/jedi/publicfiles/theses/ThesisMRosenthal.pdf |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK060 | Human Factors in the Design of Control-Rooms for ESS | factory, operation, target, interface | 1830 |
|
|||
Funding: The Research Council of Norway [Forskningsrådet] Norway contributes in kind to the building of ESS. Part of this work concerns the human factors aspects of the control-rooms for the operators of the machine. IFE is applying international standards on human factors (e.g., ISO 11064) to the design of the main control-room (MCR) and a local control-room (LCR). The work is also intended to satisfy regulatory requirements. So far, for the MCR, we have completed a concept design. User requirements clarification involved interviews with stakeholders and visits to similar facilities. Concept design for the MCR was iterative and involved a user reference-group set up for the project. During several workshops, alternatives for layout and workstations were discussed and modeled using 3D graphics. The chosen concept design and 3D model were then checked against standards. The resulting design was approved by the user-group and now goes forward to detailed design and realization. We have also completed detailed design of the LCR so that it is available for commissioning before the MCR is built. IFE also contributes to the human-machine interface design in other projects, such as for alarm system design and a logbook software application. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK060 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK061 | Data Acquisition and Controls Integration of the AWAKE Experiment at CERN | experiment, proton, software, extraction | 1833 |
|
|||
The AWAKE experiment has been successfully installed in the CNGS facility at CERN, and is currently in its first stage of operation. The experiment seeks to demonstrate self-modulation of an SPS proton beam in a rubidium plasma, driving a wakefield of several gigavolt per meter. We describe the data acquisition and control system of the AWAKE experiment, its integration into the CERN control system and new control developments specifically required for AWAKE. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK061 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK063 | The Configurable Software Interlock System for HLS-II | software, operation, EPICS, vacuum | 1836 |
|
|||
The interlock system is an essential component for an accelerator facility. A configurable software interlock system(SIS) is designed for Hefei Light Source II (HLS-II), which complements the hardware interlock system to ensure equipment and operators' safety. The system is developed using Python under the EPICS framework with the method of separating the configuration file from the interlock program. The interlock logic is completely determined by the configuration file and its nested tree structure is easy to expand. The test results indicate that the new software interlock system is reliable, flexible and convenient to operate. This paper will describe the design and the construction of HLS-II SIS. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK063 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK069 | PXIe Embedded Control Station Based the Electric Breakdown Data Acquisition and RF Conditioning System for C-Band Accelerating Structures Using for Shanghai Soft X-Ray Free Electron Laser (SXFEL) | hardware, FPGA, vacuum, laser | 1855 |
|
|||
Funding: Shanghai Institute of Applied Physics, The Chinese Academy of Science., National Development and Reform Commission, the People's Republic of China., National Natural Science Foundation of China. Shanghai Soft X-Ray Free Electron Laser (SXFEL) adopts C-band structure to accelerate the electron to 1.5-GeV. Due to high gradient operation, the electric breakdown and structure conditioning problems need to be perfectly resolved. For this purpose, we develop an automatic conditioning control and electric breakdown data acquisition system. The control based on a PXI Express (PXIe) embedded frame and the LabView-FPGA technique. The prototype system design, the software programming and hardware test will be introduced. The experiment setup and test results for a low-level signal will be shown. ' Corresponding author: liyingmin@sinap.ac.cn |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK069 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK070 | Main Control System of the Linear Accelerator for the HUST THz-FEL | gun, operation, beam-diagnostic, diagnostics | 1858 |
|
|||
A free-electron laser terahertz radiation source(THz-FEL) with a table-top scale is constructed in Huazhong University of Science & Technology. The whole facility is under joint-debugging currently, and main measured parameters have already matched with design targets. This paper describes the main control system of the Linac-based injector, especially auto-matching and auto-commissioning modules. The former occurs at the begin of daily operation, which contains one key pre-heating and searching the best electric parameters and RF parameters automatically based on last operation status. The later applies in beam commissioning for both Linac and transport line combining with beam diagnostic system, which could save operation time and improve commissioning efficiency. Moreover, real-time monitoring and controlling for water-cooling and vacuum states are inserted in the main control system to protect the accelerator. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK070 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK071 | The Novel Implementation of the Orbit Correction Algorithm for Solaris Storage Ring | TANGO, storage-ring, synchrotron, radiation | 1861 |
|
|||
The storage ring which is located in the National Synchrotron Radiation Center SOLARIS works under the TANGO control system. So far the correction of an electron beam orbit has been performed with an algorithm implemented in the Matlab Middle Layer (MML). To ensure consistency of the correction process with the entire control system, a new implementation of this algorithm has been developed. The algorithm of orbit correction based on SVD has been implemented as a TANGO Device, which is one of the fundamental blocks used in the Tango control system. The entire code has been written in the Python. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK071 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK080 | Accelerator Personnel Safety Systems for European Spallation Source | radiation, PLC, proton, linac | 1884 |
|
|||
The European Spallation Source (ESS) is a collabora-tion of 17 European countries to build the world's most powerful neutron source for research. ESS is under con-struction since 2014 and it will produce first neutrons in 2019. The linear proton accelerator is composed of nor-mal conducting sections plus the superconducting linac. When operational, such facilities include various hazards, such as ionizing radiation, high voltage and oxygen defi-ciency. The accelerator Personal Safety System (PSS) limits exposure to them and ensures personnel safety in the accelerator tunnel. It will be developed in accordance with IEC 61508 standard (Functional Safety of Electri-cal/Electronic/Programmable Electronic Safety-related Systems), which has become a good practice in similar facilities to develop safety related systems. This paper gives an overview of the accelerator PSS and its subsys-tems. The progress of the accelerator PSS design and the selected software and hardware technologies will also be described. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK080 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK084 | The EPICS Based Control System at the FREIA Laboratory | EPICS, PLC, interface, radiation | 1890 |
|
|||
FREIA (Facility for REsearch and Instrumentation for Accelerator development) Laboratory at Uppsala University, Sweden, is a new facility, inaugurated 2013. Initially FREIA is testing and developing superconducting accelerating cavities and high power RF sources in collaboration with the European Spallation Source (ESS). Later projects include testing of superconducting cavities and magnets for the high luminosity LHC. The high level control, alarm system and archiving is implemented in EPICS. Presently this includes a helium liquefaction plant, a horizontal test cryostat, two high power RF amplifiers, a low level RF system, environment monitoring and safety systems. Some attention will be given to integration of commercially acquired systems as well as the safety system, interlocks and radiation monitoring. The implementation of the EPICS environment follows closely that of ESS and thus can provide a test bench for developments at ESS. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK084 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK088 | Development of a New System for Detailed LHC Filling Diagnostics and Statistics | injection, diagnostics, framework, software | 1905 |
|
|||
In the CERN accelerator complex the Super Proton Synchrotron (SPS) is used as injector of the Large Hadron Collider (LHC). Statistics on the injection and beam availability in 2015 showed that too much time is spent at injection. Reducing this time could improve LHC availability and luminosity over the year. Currently, useful data to diagnose the problems is sparse and shown in different applications. Operators time is wasted in debugging and checking for the source of the problem before trying another injection. A new Software application for diagnostics of the LHC Filling is under development which collects data from multiple inputs of the CERN Control System and concentrates them in one central view. The inputs are processed and matched with a set of rules (or assertions) that need to be fulfilled for an injection to be successful. Whenever a problem occurs, the operator can check the Filling Diagnostic for hints on what is the source of the problem during the injection. Filling Diagnostic also produces statistics of the LHC injections and the causes of failed injections, this will allow significantly better analysis of the LHC performance for next year. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK088 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK096 | Data-Driven Controller Design for High Precision Pulsed Power Converters for Bumper Magnets of the PS Booster | flattop, framework, booster, survey | 1928 |
|
|||
A new data-driven approach using the frequency response function of a system is proposed for designing robust digital controllers for the injection bumper magnet (BSW) power supplies of the PS Booster. The powering of the BSW requires high precision 3.4 kA to 6.7 kA trapezoidal current pulses with 2 ms flat-top and 5 ms ramp-up and ramp-down time. The tracking error must remain within ± 50 parts-per-million (ppm) during the flat-top of the trapezoidal reference, and ± 500 ppm during the ramp-down. The BSW is powered with a four quadrant switch-mode power converter and the current through the magnet is controlled in closed-loop form with a 2-degree-of-freedom controller at a sampling rate of 10 kHz. A convex optimization algorithm is performed for obtaining the controller parameters. The effectiveness of the method is illustrated by designing the controller for a full-scale prototype of the BSW system at CERN, which is in the framework of the LHC Injector Upgrade (LIU) project. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK096 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK101 | Development and Construction of Safety and Control Systems for the TPS Front End Interlock | vacuum, photon, status, radiation | 1947 |
|
|||
The Taiwan photon source (TPS) at NSRRC (National Taiwan Photon Source) is a 3rd generation, 3 GeV storage ring with designed current of 500 mA. In phase-I, six insertion device beamlines have been available to users after the safety interlock systems were commissioned and reviewed. National Instrument (NI) compact RIO 9030 is used for the front end interlock control system, and both scan and FPGA modes are activated in a hybrid mode to enhance the safety reliability. The personnel and machine protection system as well as EPICS communications of the TPS control system are presented in this paper as well. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK101 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK102 | Introduction of Operating Procedures at TPS | operation, injection, electron, vacuum | 1951 |
|
|||
The Taiwan Photon Source (TPS) is the latest generation of 3 GeV synchrotron light source which subsystem includes magnet, power supply, vacuum, RF system, insertion device, control system, etc. The operating procedures and checking items are complex. To speed up the machine start-up and shut-down procedures, check the system's status, and prevent misoperation, we summarize the procedures for routine operation and develop the integrated control interface, which concentrates most machine information and control functions into a single window. This interface clearly indicates the machine status and improves operational efficiency. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK102 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK103 | Development of Automatic Turn-on Systems for TPS Machine | operation, injection, linac, booster | 1954 |
|
|||
The Taiwan Photon Source (TPS) has been successfully commissioned and has reached now stable operation. Now, the machine must be turned off routinely for week-ly maintenance. While following standard machine turn-on procedures for now, we have developed an automatic turn-on program to accelerate operation, for automatic system status checks and to prevent human errors. The turn-on program process flow includes: turn-on of the LTB (linac to booster transport line), the BTS (booster to storage ring transport line), the SR (storage ring), the BR (booster ring) power supplies and BR&SR pulsers as well as degaussing magnets, turning on the BR&SR RF sys-tems, activating the linac electron source, opening all insertion device (ID) gaps to their parking positions, set-ting all ID phases to zero, controlling all front ends (FEs) and loading the desired machine lattice. Individual pro-cedures can be executed alone depending on the desired practical situation. Experience so far shows, that it takes about 30 minutes to proceed from tunnel safety search to the injection ready state of the light source, including a 20 minute period for magnet degaussing. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK103 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK107 | Upgrade of the Existing PID Controller and Oxygen Detection Alarm System for SRF Modules Operating in the Taiwan Light Source | SRF, electronics, status, operation | 1968 |
|
|||
A Cornell-type superconducting RF cavity module was installed in the Taiwan Light Source (TLS) in 2004. New control electronics for the existing SRF modules have been designed, based on the original designs. In addition to the functions for operation, this SRF electronics system in the TLS also provides protection for the SRF modules and cryogenic system. This paper presents the SRF electronics modifications, which will enhance machine protection and make it easy to adjust and optimize operational parameters. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK107 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK113 | Performance of the Fast Orbit Feedback System with the Double-Double Bend Achromat Installed in Diamond Light Source | storage-ring, feedback, sextupole, vacuum | 1989 |
|
|||
At Diamond Light Source, the Double-Double Bend Achromat (DDBA) lattice upgrade involved the conversion of one cell of the storage ring from a double bend achromat (DBA) structure to a double-DBA (DDBA). The new cell includes corrector magnets that are different in design to the DBA corrector magnets. The DDBA vacuum chamber cross section is also different from the DBA cells and includes both stainless steel and copper sections over which corrector magnets are fitted. The performance of the Fast Orbit Feedback (FOFB) used for electron beam stabilisation with the DDBA cell installed is presented in this paper. Firstly the different corrector magnet dynamic responses are characterised and secondly the closed loop performance of the FOFB is measured and analysed for the upgraded lattice. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK113 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK115 | Control System Developments for the Diamond Light Source DDBA Upgrade | feedback, storage-ring, vacuum, software | 1996 |
|
|||
Upgrading one Double Bend Achromat cell to a Double Double Bend Achromat (DDBA) cell in the Diamond Light Source storage ring* necessitated a broad range of changes to the overall control system. These changes covered developments to the interface layer of the controls system to incorporate changes to the underlying instrumentation, associated development of user interface, changes to real-time feedback and feed-forward processes and to the online accelerator model. Given the pressures to minimise the shutdown length, the control system developments were optimised for time effective installation and commissioning. This paper outlines the control system developments for DDBA, the management process and lessons learnt from this process.
* R.P. Walker et al., The Double-Double Bend Achromat (DDBA) Lattice Modification for the Diamond Storage Ring, Proc. IPAC 2014, MOPRO103, (2014) |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK115 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK116 | Injection Bucket Jitter Compensation Using Phase Lock System at Fermilab Booster | booster, injection, extraction, proton | 1999 |
|
|||
Phase synchronization between Booster extraction and Recycler injection has been done with the phase lock loop at Booster extraction. The phase Lock Loop control rf phase by changing radial position at extraction and it causes ± one bucket error, not phase error at Recycler injection. By switching a mode of operation for the phase lock loop by measuring the extraction gap position, the jitter was eliminated. The beam loss at the Recycler injection was reduced by 20%. Beam studies and the phase lock system will be discussed in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK116 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK119 | Control of Intra-Bunch Vertical Instabilities at the SPS - Measurements and Technology Demonstration | feedback, injection, kicker, optics | 2005 |
|
|||
Funding: Work supported by the U.S. Department of Energy under contract # DOE-AC02-76SF00515, the US LHC Accelerator Research Program ( LARP), the FP7 High Luminosity LHC Project and the US-Japan Cooperative Program in High Energy Physics We present recent measurements demonstrating control of unstable beam motion in single bunch and bunch train configurations at the SPS. The work is motivated by anticipated intensity increases from the LIU and HL-LHC upgrade programs, and has included the development of a GHz bandwidth reconfigurable 4 GS/S signal processor with wideband kickers and associated amplifiers. The system was operated at 3.2GS/s with 16 samples across a 5 ns RF bucket (4.2 ns bunch at injection). The experimental results confirm damping of intra-bunch instabilities in both Q20 and Q26 optics configurations for intensities of 2x1011 P/bunch. Instabilities with growth times of 200 turns are well-controlled from injection, consistent with the achievable gains for the 2 installed stripline kickers with 1 kW broadband power. Measurements from multiple studies in single-bunch and bunch train configurations show achieved damping rates, control of multiple intra-bunch modes, behavior of the system at injection and final damped noise floor. We present an analysis method to study the relative phase of slice motion during a transient to discriminate between TMCI and other types of Head-Tail instabilities. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK119 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA052 | The SARAF-LINAC Project 2017 Status | linac, cryomodule, diagnostics, status | 2194 |
|
|||
SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the superconducting linac (SARAF-LINAC Project). This paper presents to the accelerator community the status at March 2017 of the SARAF-LINAC Project. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA052 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA153 | Accelerator-Based Education Activities at JINR | vacuum, electron, linac, radiation | 2455 |
|
|||
Professional practice is essential to train an engineer. However, many activities are impossible to run at high school, especially if they require sophisticated equipment such as accelerators. A series of practical engineering courses is being set up at the Joint Institute for Nuclear Research to overcome these difficulties while educating students from the JINR Member States. A dedicated 'training' beamline of the Linac-200 electron accelerator is being constructed to practice the beam management and diagnostics, including the operation of standard beamline elements such as a bending dipole, quadrupoles, a sextupole and steerers. Various types of particle detectors can be used in the beam area as well in order to study the passage of electrons and photons through matter and to learn about the detector operation and properties. The practice at the beam will be accompanied by a series of hands-on trainings on radiation protection, vacuum and RF technology, electronics and metrology. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA153 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAB018 | Engineering Collaboration Experience at the European XFEL | project-management, database, distributed, monitoring | 2604 |
|
|||
The construction of the European XFEL involved a huge internationally distributed and inter-disciplinary engineering effort. This paper discusses examples for good engineering practices which have been successfully developed and applied in the construction of the European XFEL. It addresses appropriate combination of de-/central activities in design collaboration and integration; the use of manufacturing bills of materials for coordinating and tracking contributions, as well as for clarifying responsibilities; the right amount of reviews for keeping activities in synch; some specific needs of and measures for in-kind collaboration; and general methods, tools and practices and spirit for efficient communication and collaboration. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAB035 | Elettra Status Present Upgrades and Plans | undulator, operation, photon, storage-ring | 2657 |
|
|||
The operational status of the Italian 2.4/2.0 GeV third generation light source Elettra is presented together with an account of some present upgrades and plans for the near future. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAB064 | Upgrade Project on Top-Off Operation for Hefei Light Source | operation, injection, radiation, storage-ring | 2719 |
|
|||
Hefei Light Source has successfully finished a major upgrade project and has been officially opened to users since January 2015. The upgrade project mainly includes increasing the linac injector energy from 200 MeV to 800 MeV which is the same as the ring energy, changing the ring lattice structure from TBA to DBA in order to provide more straight sections for insertion devices while keeping the circumference unchanged, and lowering the beam emittance to obtain higher photon brightness. Before the upgrade project, decay mode is the only choice for the operation of Hefei Light Source. This is because the injected beam from the linac injector needs to be ramped up to 800 MeV after injection. At prensent we have the conditions to operate Hefei Light Source with top-off mode since the linac can perform full-energy and bunch-by-bunch injection. The main challenge for the top-off operation is to control the radiation dose for personal and equipment safety, and to maintain high stability and reliability of the injector. In this paper, we report our work on the top-off operation project for Hefei Light Source. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB064 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAB091 | Progress on Transparent Realignment of the Diamond Storage Ring | alignment, storage-ring, monitoring, survey | 2790 |
|
|||
The mechanical alignment of Diamond Storage Ring is achieved by means of a 5-axis motion system under remote control via the EPICS toolkit from the Diamond Control Room. We have completed the first phase of the realignment program meant to improve the mechanical alignment of the machine by carefully moving the magnet girders with a virtually zero impact on the associated beamlines, hence the name Transparent Realignment (TR). During this phase we have equipped and realigned 3 out of 24 cells, involving two beamlines. We have also tested and perfected the technique to execute a move with live beam and total remote control of the realignment process. The program has entered a second phase entailing the commissioning of 6 more cells. Details of tests on the machine are reported. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB091 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAB094 | Diamond: Ten Years of Operation | operation, cavity, vacuum, storage-ring | 2797 |
|
|||
In January 2017 Diamond Light Source reached ten years of operation, providing beam to beam lines and users. At the start of operations there was an initial suite of 7 beam lines, phase 1. We are now in the later part of a phase 3 beam line upgrade bringing the total number of beam lines up to 29+ which is close to maximum capacity. The 3GeV storage ring has had a number of modifications and improvements across the last 10 years culminating in the recent (Autumn 2016) addition of a major local lattice modification, DDBA , reported elsewhere at this conference. This review paper will look at machine improvements operationally and machine developments that improved overall performance. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB094 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAB121 | Database for NSLS-II Accelerator Operation | database, interface, operation, software | 2854 |
|
|||
Funding: DOE Contract No: DE-SC0012704 NSLS-II is employing a database and corresponding user interfaces which are used for the accelerator data sharing and management. The database include operation related information such as beam optics parameters, magnet measurement data, survey data and operation summary. To improve the usability, other functionalities are also being added. However, due to the limited scope, the general expectation of the overall facility cannot not be met and, in order to solve the issue, we are in the process of adopting Component Database (ComponentDB) developed at Advanced Photon Source (APS). This paper shows the current status of the process. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB121 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA016 | Dielectric Laser Accelerator Investigation, Setup Substrate Manufacturing and Investigation of Effects of Laser Induced Electromigration RF Cavity Breakdown Influences | laser, electron, acceleration, vacuum | 3286 |
|
|||
Funding: I thank Stockholm Uppsala centre for FEL research for funding. Dielectric laser acceleration (DLA) where the high electric fields in lasers are used to accelerate electrons next to nanofabricated dielectric structures has recently been proven in proof of concept studies. In this paper I describe investigations setup and substrate manufacturing. Additionally we describe using the setup for evaluating RF structure breakdown due to laser induced electromigration occurences. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA035 | The PSB Operational Scenario with Longitudinal Painting Injection in the Post-LIU Era | injection, target, linac, simulation | 3331 |
|
|||
Longitudinal painting has been presented as an elegant technique to fill the longitudinal phase space at injection to the CERN PSB once it is connected with the new Linac4. Painting brings several advantages related to a more controlled longitudinal filamentation, lower peak line density and beating reduction, resulting in a smaller space-charge tune spread. This could be an advantage especially for high intensity beams (> 6·1012 protons per bunch) to limit losses on the transverse acceptance of the machine. This paper presents an overview on the possible advantages of the technique for operational and test beams, taking care of the hardware limitations and possible failure scenarios. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA050 | Developments for the Injection Kicker Vacuum System of the HESR at FAIR | vacuum, injection, kicker, ion | 3369 |
|
|||
The Research Center Jülich has taken the leadership of a consortium being responsible for the design and manufacturing of the High-Energy Storage Ring (HESR) going to be part of FAIR. The HESR is designed both for antiprotons and for heavy ion experiments. The injection kicker system of the HESR is located directly behind the septum and consists of two pumping crosses for pumps and measurement devices as well as two vacuum tanks housing the four ferrite magnets which will be operated with 40 kV, 4kA. As well as the magnets, the adjustments frames and the electrical feedthroughs will be installed inside the tanks. Due to the large surface of the magnets the injection kicker system will be very sensitive with regard to the achievable vacuum quality that is expected to be in the order of 10-11 mbar or better. Thus the vacuum system is designed to heat up to 250°C. In order to investigate the achievable end pressure and to develop the heating system a test facility was constructed. The actual vacuum layout of the injection kicker system as well as the experimental test results will be presented and in similar the layout of the control system of the test facility will be described. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA057 | High-Stability Magnet Power Supplies for SuperKEKB | feedback, power-supply, operation, wiggler | 3391 |
|
|||
For the SuperKEKB, over 2,000 of magnet power supplies were recycled and around 300 of power supplies were newly fabricated. The newly fabricated power supplies include high performance power supplies: the main bending/wiggler magnet power supplies and the power supplies for final-focus superconducting magnets installed around an interaction point. High power tests were performed and the results are reported. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA057 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA065 | High Precision Magnet Powering for the SESAME Storage Ring | power-supply, dipole, quadrupole, timing | 3418 |
|
|||
SESAME is the first synchrotron light source for the Middle East and is expected to start its operation mid-2017. It is composed of a 22 MeV Microtron, a 0.8 GeV booster synchrotron and a 2.5 GeV storage ring. The storage ring magnets and power supplies were designed, produced and validated under the framework of a collaboration between SESAME and CERN, supported by the European Commission. The power supply control strategy for the SESAME main ring follows the same model used in the LHC, where the power supplies are voltage sources bought from industry, to which a specially designed control unit and current sensors are added to implement a high precision current source. This strategy provides modularity, ease of maintenance, better control over performance and flexibility for the machine. Machine flexibility is further enhanced by individually powering the quadrupole magnets. In this paper, the powering strategy, design and validation of the magnet power supplies are described. Some of the challenges faced during those phases are discussed. Finally, performance results are presented, showing stability of the dipole power supply at nominal current of about 10 parts per million. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA065 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA068 | Design and Development of Accelerator Magnet Power Supply Based on SiC-MOSFET | power-supply, interface, experiment, operation | 3429 |
|
|||
SiC is a new type of semiconducting material with rapid development after the first generation and the second generation of semiconductor materials represented by silicon and gallium arsenide. SiC-MOSFET has a high frequency, high breakdown voltage, high temperature, radiation and many other points, suitable for future use in the accelerator magnet power supply. In this paper, the development and operation of a SiC-MOSFET-based accelerator magnet power supply are described in detail. The experiment results show that the performance of this power supply is superior to that of the same specification using Si-MOSFET. The power supply adopts one-way AC power supply, and the output stage adopts the full bridge circuit topology. The power device adopts C2M0040120D SiC-MOSFET, the working frequency is 30 kHz, the output current is ± 20A, the output voltage is ± 20V, and power is 400W. The Digital Power Supply Control Module (DPSCM) is used to realize high-precision digital closed-loop control, which supports on-line debugging and PC control. Power supply can be used to correct the magnet power, with high efficiency, high stability, and fast response and so on. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA068 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA075 | Labview-Based Software for Electron Gun Controller | software, electron, LabView, gun | 3439 |
|
|||
Funding: Supported by the National Science Foundation of China (No: 21327901) Instrument control can improve measurement level of automation. In the actual control of the accelerator electron gun, we need to obtain a voltage with different amplitudes for the filament. Boost and voltage regulator modules should be used in the 220V AC input conditions. In order to adjust the filament voltage and stabilize the filament current more convenient, we developed a control software based on LabVIEW. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA075 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA077 | Design of the Control System of Pulsed Power Supplies for WHMM Injection Bump Magnets | injection, FPGA, synchrotron, ion | 3442 |
|
|||
The injection bump system of the synchrotron of the Wuwei Heavy-ion Medical Machine(WHMM) consists of four horizontal bump magnets to merge the injection beam with the circulating beam. In order to control the injection beam with sufficient accuracy, the bump mag-nets need four pulsed power supplies with high speed, precision, reliability. The power supplies, whose IBGT (Insulated Gate Bipolar Transistor) are working in the linear area, are required to output the maximum current of 2900A. Furthermore, the current pulse is activated by synchronous triggering events, the current pulse frequen-cy is required about 30Hz, and that the pulse current falling edge should be less than 60us. In this paper, a control system for the pulsed power supplies was described in details. The commissioning results showed that the control system owned high reliability and flexible and that beam could be injected effectively into the synchrotron of the WHMM. In addition, one on-line current pulse waveform is shown in the result section. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA077 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA084 | Performance of the PAL-XFEL High Precision Magnet Power Supplies | operation, power-supply, status, site | 3452 |
|
|||
In the PAL-XFEL, 632 magnet power supplies (MPS) have been operated since 2016. High current unipolar MPSs(>100A) were configured buck mode with single power stack or two. The corrector MPSs for low current were the H-bridge type for bipolar current driving. The nine different types of MPS were installed for beam dy-namics in the PAL-XFEL machine. All MPSs had been tested and confirmed their performances before installa-tion. We described here the status of the MPS operation after installation on 2016. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA084 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA089 | Magnetic Measurement System for the NICA Quadrupole Magnets | quadrupole, booster, superconducting-magnet, collider | 3464 |
|
|||
NICA is a new accelerator collider Nuclear Research (JINR) in Dubna. More than 250 superconducting magnets need for the NICA booster and collider. These magnets will be assembled and tested at the new test facility in the Laboratory of High Energy Physics JINR. A method of measuring the quality of the magnetic field in the aperture of the quadrupole magnet for the booster synchrotron is described. Commissioning of equipment for magnetic measurements in the aperture of the doublet of quadrupole lenses is described. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA089 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA106 | A Consolidation Roadmap for the CERN Power Converters | hardware, operation, software, experiment | 3514 |
|
|||
At CERN the Electrical Power Converter group is re-sponsible for the design and exploitation of more than 5000 power systems throughout the accelerator complex, powering predominantly magnet circuits, in addition to RF and electro-static systems. Currently, a variety of systems are in operation, in some cases these are over 30 years old. Furthermore, the group must maintain operationally a total of six hardware platforms, each with dedicated software. In light of this, a consolidation roadmap has been determined to rejuvenate the power converter complex and to reduce the total number of control platforms. This paper presents a summary of the CERN power converter equipment to be consolidated, and the roadmap to achieve consolidation. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA106 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA116 | HL-LHC Inner Triplet Powering and Control Strategy | quadrupole, simulation, luminosity, hadron | 3544 |
|
|||
In order to achieve the target 3000 fb-1 integrated field for the HL-LHC (High Luminosity ' Large Hadron Collider) at ATLAS and CMS, new large aperture quadrupoles are required for the final focusing triplet magnets before the interaction points. These low-' magnets, based on the Nb3Sn technology, deliver a peak field of 11.4 T. They consist of two outer quadrupoles, Q1 and Q3 and a central one divided into two identical magnets, Q2a and Q2b. To optimize the powering and the beam dynamics of these triplets, the quadrupoles will be powered in series by a single high-current two quadrants (2-Q) converter [18 kA, ±10 V]. Three 4-Q trim power converters are added over Q1 [±2 kA, ±10 V], Q2a [±0.12 kA, ±10 V] and Q3 [±2 kA, ±10 V] to account for possible transfer function difference between the quadrupoles. This paper presents the powering scheme of the four mentioned coupled circuits. A digital control strategy, using four standard LHC digital controllers, to decouple the four systems and to achieve a high precision control is proposed and discussed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA116 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA130 | Simulation the Iterative Learing Control Applied to the TPS Booster Ring Quadruple Magnet Power Supply | booster, power-supply, simulation, feedback | 3574 |
|
|||
In the newly built TPS (Taiwan Photon Source), the AC power supplies of the Booster ring are required to operate in DC and AC mode with accuracy. Especially in AC mode, during the booster ramping process, the current ramping profiles of the Quadruple Magnets have to track that of the Dipole AC power supply with precise phase and amplitude to maximize the beam energy boost efficiency. At the present time, analog controllers are used for all the booster supplies and the tracking waveforms are generated externally in an EPICS control unit, converted to analog signals with precision Digital-to-Analog Converters (DACs) and then distributed to all the booster power supplies with differential signal pairs. In this paper, here we propose a hybrid iterative learning control algorithm combined with discrete PID feedback controller with the objective to eliminate the signal integrity problem inherent in analogue signals, so that boosting the beam energy might become more reliable. The proposed digital controller algorithm for the TPS booster ring magnet power supply and quadruple magnet load has been simulated with success. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA130 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA131 | Single-Inductor Bipolar Outputs Power Converters | power-supply, impedance, electronics, operation | 3577 |
|
|||
In the circuit design for electronic products, bipolar power supply is often required. A non-isolated dual polarity power supply design is using two inductors to achieve this function. The number of inductors on the circuit would increase both the cost of products and space requirement. So the use of a single inductor bipolar power converter design can effectively reduce the cost and space to enhance product competitiveness. In this paper, the principle of a new single-inductor bipolar power converter will be described and tested to prove the feasibility of this design. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA131 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA150 | New Controller for High Voltage Converter Modulator at Spallation Neutron Source | LabView, interface, timing, high-voltage | 3621 |
|
|||
Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. We have developed a new control system for the high voltage converter modulator at the Spallation Neutron Source to replace the original control system designed by Los Alamos National Laboratory which is approaching obsolescence. The new controller, based on national instruments PXI/FlexRIO FPGA hardware, offers enhancements over the original system such as modular construction, flexibility and non-proprietary software. The new controller also provides new capabilities like modulator pulse flattening, waveform capture & first fault detection. This paper will discuss the design of the system, including the human machine interface, based on lessons learned at the Spallation Neutron Source and other projects. It will also discuss performance and other issues related to operation in an accelerator facility which requires high availability. To date half of the high voltage converter modulators have been upgraded with the new controller with the remainder scheduled for completion by mid-2017. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA150 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THOAA1 | Development of a DLLRF Using Commercial uTCA Platform | cavity, LLRF, FPGA, synchrotron | 3631 |
|
|||
The Digital LLRF of ALBA has been implemented using commercial cPCI boards with Virtex-4 FPGA, fast ADCs and fast DACs. The firmware of the FPGA is based on IQ demodulation technique and the main feed-back loops adjust the phase and amplitude of the cavity voltage and also the resonance frequency of the cavity. But the evolution of the market is moving towards uTCA technology and due to the interest of this technology by several labs, we have developed at ALBA a DLLRF using a HW platform based on uTCA commercial boards and Virtex-6 FPGA. The paper will present the development done and will compare it with respect the cPCI one. | |||
![]() |
Slides THOAA1 [1.381 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THOAA1 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THYA1 | New Scenarios of Microbunching Instability Control in Electron Linacs and Free Electron Lasers | FEL, electron, laser, linac | 3642 |
|
|||
Laser-heater systems are essential tools to control and optimize high-gain free-electron lasers (FELs) working in the x-ray wavelength range. Indeed, these systems induce a controllable increase of the energy spread of the electron bunch. The heating suppresses longitudinal microbunching instability which otherwise would limit the FEL performance. We demonstrate that, through the action of the microbunching instability, a long-wavelength modulation of the electron beam induced by the laser heater at low energy can persist until the beam entrance into the undulators. This coherent longitudinal modulation is exploited to control the FEL spectral properties, in particular, multicolor extreme-ultraviolet FEL pulses can be generated through a frequency mixing of the modulations produced by the laser heater and the seed laser in the electron beam. We present an experimental demonstration of this novel configuration carried out at the FERMI FEL.
*E. Roussel et al., Phys. Rev. Lett. 115, 214801 (2015) |
|||
![]() |
Slides THYA1 [14.837 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THYA1 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB011 | Optimization of Multicell Microwave Cavities Using YACS | cavity, dipole, multipole, software | 3708 |
|
|||
Funding: Work supported by the BMBF under contract no. 05K13PEB. YACS is a 2.5D finite element method solver capable of solving for the full 3D eigenfrequency spectra of resonant axisymmetric structures while reducing the computational problem to a 2D rotation plane. The most recent revision of the code introduced arbitrary order basis functions and curved meshes, for both triangular and quadrilateral unstructured meshes. This led to significant increases in convergence rates. However, due to the utilization of curved meshes and the complex coordinate transformations that are involved, spurious modes were introduced when solving the axisymmetric problem. Although workarounds do exist that circumvent these issues by lowering the likelihood and frequency of spurious modes, linear triangular meshes with higher order basis functions were chosen due to their simplicity and spurious free solutions. In order to support the usage of spline cavities as an alternative parameterization to the well known elliptical cavities, parameter space scans were carried out for non-reentrant spline cavities. In addition a new optimization strategy is presented that exploits the arbitrary polynomial order of Bézier curves by utilizing the degree elevation technique. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB062 | Preliminary Simulations on Chirpless Bunch Compression using Double-EEX Beamline | quadrupole, emittance, simulation, dipole | 3862 |
|
|||
Funding: This work is supported by Department of Energy, Office of High Energy Physics, under Contract No. DE-AC02-06CH11357. An emittance exchange (EEX) beamline can be used to compress an electron bunch via its transverse-to-longitudinal exchange mechanism. We are investigating this as an alternative to the normal magnetic chicane bunch compressor. The chicane method requires a longitudinal chirp before the chicane (since it relies on the path length difference of different energies) which results in an unwanted chirp after the compressor. Alternatively, the EEX method uses quadrupole magnets to compress the bunch. In this paper, we present preliminary simulations in preparation for a demonstration of chirp-less bunch compression using an EEX beamline at the Argonne Wakefield Accelerator facility. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB062 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB095 | Detuning Compensation in SC Cavities Using Kalman Filters | cavity, FPGA, operation, coupling | 3938 |
|
|||
For CW driven superconducting cavities operating at small bandwidth, like in ERL or FEL light sources, it is mandatory to precisely control any source of detuning. Therefore, a Kalman [1] filter based approach was developed and implemented as FPGA firmware to act as the core part of a detuning compensation algorithm. It relies on a fit by a second order model to a measured transfer function of cavity's forced oscillations with damping, caused by piezo drives and data about observed current phase with some adjustable confidence rate. The initial data for this core is taken from field detection firmware on mTCA.4's SIS8300-L2 digitizer, transferred by low latency links to a carrier board equipped by piezo drive controller where the DSP processing by the Kalman algorithm performed. The processing is characterized by a 550 kHz rate in pipeline mode and occupies almost all DSP resources of the Spartan 6 FPGA chip. The experimental results of detuning compensating technique applied to a SC photoinjector cavity are presented in this contribution.
Kalman, R. E. (1960): A New Approach to Linear Filtering and Prediction Problems, Transaction of the ASME, Journal of Basic Engineering, Pages 35-45. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB095 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB098 | Test Setup for Automated Barrier Bucket Signal Generation | cavity, operation, synchrotron, antiproton | 3948 |
|
|||
Funding: Work supported by the German Federal Ministry of Education and Research (BMBF) under the project 05P15RDRBA. For sophisticated beam manipulation several ring accelerators at FAIR and GSI like the main synchrotron SIS100 and the ESR will be equipped with barrier bucket systems. Hence, the associated LLRF has to be applicable to different RF systems, with respect to the cavity layout and the power amplifier used, as well as to variable repetition rates and amplitudes. Since already the first barrier bucket pulse of a long sequence has to meet certain minimum demands, an open-loop control on the basis of calibration data is foreseen. Closed-loop control is required to improve the signal quality during a sequence of pulses and to adapt to changing conditions like temperature drifts. A test setup was realized that allows controlling the signal generator, reading out the oscilloscope as well as processing the collected data. Frequency and time domain methods can be implemented to approach the dynamics of the RF system successively and under operating conditions, i.e. generating single sine pulses. The setup and first results from measurements are presented as a step towards automated acquisition of calibration data and iterative improvement of the same. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB098 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB099 | Challenges of a Stable ERL Operation Concerning the Digital RF Control System of the S-DALINAC | operation, HOM, beam-loading, linac | 3951 |
|
|||
Funding: Supported by the DFG through RTG 2128. The superconducting recirculating electron linear accelerator S-DALINAC is the central large-scale research device of the institute for nuclear physics at the TU Darmstadt in Germany. In 2015/2016 the S-DALINAC received an upgrade to three recirculations. The new beam line enables in addition to higher maximum energies the possibility to operate the S-DALINAC as an Energy Recovery Linac (ERL). Therefore the current rf control system encounters new requirements for ERL operation. Since 2010 a digital rf control system is successfully used for the control of the superconducting cavities. This system was not built and optimized for the control of an ERL. This contribution is discussing the expected challenges of an ERL operation regarding the existing digital rf control system. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB099 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB100 | On the Impact of Empty Buckets on the Ferrite Cavity Control Loop Dynamics in High Intensity Hadron Synchrotrons | cavity, resonance, beam-loading, simulation | 3954 |
|
|||
Funding: Supported by the Helmholtz Graduate School for Hadron and Ion Research Due to technical reasons two of ten buckets have to stay empty in the planned SIS100 synchrotron at the GSI Helmholtzzentrum für Schwerionenforschung. The planned low level RF control systems consist of linear P and PI type controllers. These are responsible to maintain a desired phase and amplitude of the gap voltage. In addition the cavity is controlled to follow a prescribed resonance frequency ramp. In SIS100 the acceleration will be performed by ferrite cavities with comparatively small quality factors. Therefore, effects resulting from transient beam loading have to be expected. Influences due to empty buckets are analysed in the frequency domain and particle tracking simulations are carried out to estimate the effect on the overall system with particular consideration of emittance growth and particle loss. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB100 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB103 | On-Line RF Amplitude and Phase Calibration | cavity, operation, LLRF, beam-loading | 3957 |
|
|||
The accelerating RF field has crucial importance on the beam properties. It is not only used just to accelerate particles but also to shape the bunches at bunch compressors. It is really important to control and measure the field as seen by the beam while usually only indirect (not using the beam) field measurements are available*. Since they are affected by many contributions the measurements must be always calibrated to the beam. Usually this calibration is performed at special operating conditions that prevents normal operation of the accelerator. During normal operation the calibrations is assumed to not drift which is certainly not perfectly true and introduce some control errors. The paper shows how to extract the RF-beam calibration from RF signals during normal operating condition (when RF feed-back, beam loading compensation, learning feed-forward etc. are active). All the algorithms and computations were performed on signals recorded at FLASH accelerator but the main idea is general and can be used at other locations as well. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB103 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB105 | Design and Operation of the Integrated 1.3 GHz Optical Reference Module with Femtosecond Precision | laser, detector, operation, FEL | 3963 |
|
|||
In modern Free-Electron Lasers like FLASH or the European XFEL, the short and long-term stability of RF reference signals gains in importance. The requirements are driven by the demand for short FEL pulses and low-jitter FEL operation. In previous publications, a novel, integrated Mach-Zehnder Interferometer based scheme for a phase detector between the optical and the electrical domain was presented and evaluated. This Laser-to-RF phase detector is the key component of the integrated 1.3 GHz Optical Reference Module (REFM-OPT) for FLASH and the European XFEL. The REFM-OPT will phase-stabilize 1.3 GHz RF reference signals to the pulsed optical synchronization systems in these accelerators. Design choices in the final hardware configuration are presented together with measurement results and a performance evaluation from the first operation period in the European XFEL. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB105 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB106 | Experience with Single Cavity and Piezo Controls for Short, Long Pulse and CW Operation | cavity, feedback, operation, experiment | 3966 |
|
|||
We present a compact RF control system for SCRF single cavities based on MicroTCA.4 equipped with specialized advanced mezzanine cards (AMCs) and rear transition modules (RTMs). To sense the RF signals from the cavity and to drive the high power source, a DRTM-DWC8VM1 module is used equipped with 8 analog field detectors and one RF vector modulator. Fast cavity frequency tuning is achieved by piezo-actuators attached to the cavity and a RTM piezo-driver module (DRTM-PZT4). Data processing of the RF signals and the real-time control algorithms are implemented on a Virtex-6 FPGA and a Spartan FPGAs within two AMCs (SIS8300-L2V2 and DAMC-FMC20). The compact single cavity control system was tested at Cryo Module Test Bench (CMTB) at DESY. Software and firmware were developed to support all possible modes, the short pulse (SP), the long pulse (LP) and CW operation mode with duty cycles ranging from 1 % to 100%. The SP mode used a high power multi-beam klystron at low QL ~3·106. For the LP mode (up to 50% duty cycle) and the CW mode a 120 kW IOT tube was used at QL up to 1.5·107. Within this paper we present the achieved performance and report on the operation experience on such system. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB106 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB111 | Sub-Femtosecond Jitter Ultra High Performance Oscillators for Accelerator Timing | coupling, cavity, electron, impedance | 3979 |
|
|||
Extremely stable RF-Sources are at the heart of Electron Beam Accelerators and impact beam quality and beam energy. Jitter requirements on those sources are very tight and linked to the quest of ever decreasing (XFEL) laser pulse length, currently in the tens of femtoseconds. For the Pohang Accelerator Laboratory in Pohang/Korea, a 2.856GHz phase-lockable oscillator with a jitter performance of 0.8fS (10kHz..10MHz) was developed and deployed, together with a master oscillator that supplies rubidium-stabilized 476MHz for synchronization. In terms of phase noise, these 2.856GHz oscillators exhibit -125dBc/Hz@1kHz, -145dBc/Hz@10kHz and -165dBc/Hz@100kHz offset, while reaching a noise floor of -180dBc/Hz. Using the same technology of a dielectric resonator oscillator, a 3.9GHz source was developed for the European XFEL at DESY/Hamburg, achieving 0.3fS (10kHz/10MHz). Phase noise is down to -125dBc/Hz@1kHz, -155dBc/Hz@10kHz and -175dBc/Hz@100kHz offset, with a noise floor of -180dBc/Hz. The strategy of designing ultra low phase-noise sources with dielectric resonators is outlined, and challenges and limitations within the oscillator design, but also measurement technology are presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB111 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB114 | Operation of LLRF Control Systems in SuperKEKB Phase-1 Commissioning | LLRF, cavity, simulation, operation | 3986 |
|
|||
First beam commissioning of SuperKEKB (Phase-1), which had started in February 2016 and continued until the end of June, has been successfully accomplished. Target beam current for Phase-1 needed for sufficient vacuum scrubbing was achieved in both 7-GeV electron and 4-GeV positron rings. This presentation summarize the operation results related to low level RF (LLRF) control issues during the Phase-1 commissioning, including the system tuning, the coupled bunch instability and the bunch gap transient effect. RF system of SuperKEKB consists of about thirty klystron stations in both rings. Newly developed LLRF control system, which is composed of recent digital technique, is applied to the nine stations among the thirty for Phase-1. The RF reference signal distribution system has been also upgraded for SuperKEKB. These new systems worked well without serious problem and they contributed to smooth progress of the commissioning. The old existing systems, which had been used in the KEKB operation, were still reused for the most stations, and they also worked as soundly as performed in the KEKB operation. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB114 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB116 | Evaluation of Digital LLRF Control System Performance at STF in KEK | cavity, LLRF, klystron, cryomodule | 3992 |
|
|||
The Superconducting RF Test Facility (STF) at the High Energy Accelerator Research Organization (KEK) was built for research and development of the International Linear Collider (ILC). Several digital low-level radio frequency (LLRF) control systems were developed at the STF. The purposes of these developments are to construct a minimal configuration of the ILC LLRF system and achieve the amplitude and phase stability of the accelerating field in the superconducting accelerator. Evaluations of digital LLRF control systems were conducted during the conditioning of eight superconducting cavities performed between October and November 2016. The digital LLRF control system configured for ILC was demonstrated and the performance fulfilled the required stability criteria of the accelerating field in the ILC. These evaluations are reported in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB116 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB117 | Development of a New LLRF System Based on MicroTCA.4 for the SPring-8 Storage Ring | cavity, klystron, LLRF, storage-ring | 3996 |
|
|||
SPring-8 is a 3rd generation synchrotron radiation facility, which has been operated since 1997. The analog-circuit-based rf modules now in use at the storage ring are obsolete and hard to be maintained. The renewal of them with modern digital ones is underway and the developed LLRF system will be used for the operation of SPring-8-II. We built an amplitude and phase stabilizing system with commercial MicroTCA.4 modules. A motor driver controlled through EtherCAT was newly adapted to the cavity tuner. The system was implemented to the high power rf test stand which consists of a 1 MW klystron, a circulator, and a 508.58 MHz cavity. The rf power was successfully regulated to keep the cavity voltage with an amplitude deviation of less than 0.1% and a phase stability of less than 0.1 degree in rms. We are also developing new MTCA.4 modules: a digitizer AMC having sampling rate of 370 MHz and 16bit resolution, and a signal conditioning RTM. These modules are used for under-sampling rf detection achieving simple composition and more robustness to the ambient parameter changes. We will start installation of the digital system to one of four rf stations in the storage ring in summer 2017. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB117 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB122 | Open XAL Development for Xi'an Proton Application Facility | database, simulation, proton, synchrotron | 4010 |
|
|||
Beam commission tools for Xi'an Proton Application Facility (XiPAF) will be developed based on Open XAL. In this paper, we present preparations made for adopting Open XAL in XiPAF, including a newly designed database schema based on MySQL, modifying db2xal application based on database schema to create optics file automatically. We also add time-dependent nodes in XiPAF's online model to meet the need of energy ramping in synchrotron. A set of high-level applications as well as a new virtual accelerator is under development. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB122 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB123 | Low Level RF Control System Architecture OF IR-FEL | LLRF, electron, klystron, FEL | 4014 |
|
|||
Infrared free electron laser (IR-FEL) is one type of laser driven by accelerator and generated by undulator. It is built by National Synchrotron Radiation Laboratory (NSRL). Compared to synchrotron radiation light source, it have much higher demand of beam quality. Low level RF control system (LLRF) need to reach higher controlled accuracy corresponded to the demand. Accelerating structure which contains one pre-buncher, one buncher and two accelerating tube can accelerate beam to 60MeV. Frequency distribution system use direct digital synthesizer technology to generate 5 signal of different frequency. LLRF system detect 8 channels signal, one for control loop, and the others for monitor and interlock. The hardware contain MTCA.4 architecture which is advanced in global; RF board for downconverter and IQ modulation output; DSP board for sampling, controller and transmission. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB123 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB124 | DSP Frame and Algorithm of LLRF of IR-FEL | feedback, LLRF, FEL, target | 4017 |
|
|||
Infrared Free Electron Laser (IR-FEL) use linear accelerator to accelerate electron to relative speed and then generate simulated radiation of infrared wavelength by periodic magnetic field of undulator. The amplitude and phase of microwave field need to be controlled precisely by low level RF control system (LLRF) to meet the high quality demand of electron from undulator. This paper mainly introduce the digital signal processing frame and feedback algorithm. Four times frequency sampling can realize IQ demodulation precisely and reduce DC offset, amplitude sampling error is less than 0.075% and phase sampling error is less than 0.1°. Pipeline CORDIC can calculate amplitude and phase by parallel processing and shift operation. Phase calculating accuracy reach 0.0005° when iteration count is 18. FIR filter is used to improve frequency selected performance. Feedback loop use digital PI controller to adjust system output. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB124 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB129 | Contribution to the ESS LLRF System by Polish Electronic Group | LLRF, resonance, cavity, FPGA | 4026 |
|
|||
Funding: Described work will be done as a part of polish in-kind contribution, granted by the Polish Ministry of Science and Higher Education in the decision number DIR/WK/2016/03. Development of the LLRF system at ESS is coordinated by the Lund University, but part of it, LLRF systems for M-Beta and H-Beta sections, will be delivered within in-kind contribution from Poland. This document will describe the scope of work, work plan, and technical details of the selected components of the M-Beta and H-Beta LLRF systems sections. Described contribution will be made by the Polish Electronic Group (PEG), a consortium of three scientific units. LLRF system for ESS will be made of both, commercially available components and components designed specially for this project, and those last ones will be presented and described here. Except the technical details, the organizational aspects, such as schedule, project management or quality control, will be presented as well. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB129 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB131 | Test of the Feedback and Feedforward Control Loop for Digital LLRF System of 1 MeV/n RFQ | LLRF, rfq, FPGA, feedback | 4028 |
|
|||
Funding: This work has been supported through KOMAC (Korea of Multi-purpose Accelerator Complex) operation fund of KAERI by MSIP (Ministry of Science, ICT and Future Planning) KOMAC (Korea Multi-purpose Accelerator Complex) has a plan to develop the multipurpose ion irradiation system. This system includes the ion source, LEBT, RFQ and MEBT systems to transport ion particles to the target. In particular, the RFQ (Radio Frequency Quadrupole) system should receive 200 MHz RF within 1 % amplitude error stability. To supply stable 200 MHz RF signal to the RFQ cavity, the LLRF (Low-Level Radio Frequency) system should be controlled through a control system which implemented using commercial digital board. This 1 MeV/n RFQ LLRF system has a concept to minimize the number of the analog components for minimizing the control error. For this, the FPGA (Field Programmable Gate Array) in the digital board will control the frequency of the output sinusoidal signal. In addition, this LLRF system applied the direct sampling, Non-IQ sampling, direct RF generation and fast IQ set update rate algorithm. In this presentation, the LLRF PI control and feed-forward control logic test using 200 MHz dummy cavity will be described. LLRF, direct sampling, Non-IQ, RFQ, control loop, feedback, feedforward |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB131 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB136 | Kameleon - a Behavior-Rich, Non-Memoryless and Time-Aware Generic Simulator | status, EPICS, power-supply, simulation | 4040 |
|
|||
At ESS, thousands of devices will be used to control both the machine and end-station instruments. To enable ongoing development when access to these devices is not possible (for whatever the reason), Kameleon was implemented. It is a behavior-rich, non-memoryless and time-aware generic simulator that handles clients through a TCP/IP connection. An instance of this client is an EPICS IOC or a Tango Device Server. Kameleon consumes a user-defined file that describes the commands received from a client and, optionally, the reaction to these through statuses sent back to the client. Key features are: 1) Ubiquitous (runs in disparate platforms such as Windows and Linux). 2) Behavior-rich (predefined behaviors as well as user-defined). 3) Non-memoryless (the state of the simulation can be preserved between events and/or elapsed time). 4) Time-aware (statuses can be sent to the client either event-based or time-based). 5) Flexible (commands and statuses are described in a simple user-defined file - nothing is hard-coded in Kameleon). Kameleon will be used in a myriad of scenarios at ESS such as development of EPICS devices support, IOCs, OPI screens, testing of IOCs and alarm workflows. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB136 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB137 | New Approach in Developing Open XAL Applications | interface, GUI, software, framework | 4043 |
|
|||
Open XAL project is a pure-Java open source development environment used for creating accelerator physics applications, scripts and services. Working with Open XAL requires developing a Java application with a prominent graphical user interface, allowing the final user to interact with the accelerator model, and to graphically view the results such interaction produced. Nevertheless the Open XAL support for specialized components (handling plotting, EPICS connection) and for a document-view application framework, relieving the developer of the burden related with this programming aspects, a lot of boilerplate code has still to be created, making the developer spending more time in UI than in accelerator physics code. In this paper a new approach in developing Open XAL applications is explained. Here the developer is relieved of the UI-related common code code by using software tools, allowing him to visually design the flow of data and events between the various elements of the applications (widgets and models), and automatically generate the application code, where code generation can be customized to use one of the available plugged programming languages (Java, Python, JS, …). | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB137 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB140 | MAX IV Online Linac Model | linac, TANGO, GUI, simulation | 4047 |
|
|||
An online linac model has been developed at MAX IV in order to enable a calculation of the properties of the linac beam based on the actual settings of the magnetic elements. The model is based on the Elegant simulation code and uses the design linac lattice file. A set of Matlab scripts fetch the actual settings of all elements via the Tango control system, pass these values on to Elegant and run the simulation. The model includes an optimization option for yielding desired beta- and alpha-function values at various points along the linac by calculating optimal settings for chosen elements. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB140 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB141 | Control and Operation of a Wideband RF System in CERN's PS Booster | HLRF, LLRF, operation, booster | 4050 |
|
|||
A prototype wideband High-Level RF (HLRF) sys-tem based on Finemet metal alloy has been installed in CERN's PS Booster (PSB) Ring 4 in 2012, within the frame of the LHC Injectors Upgrade (LIU) project. A digital Low-Level RF (LLRF) system was used to control the HLRF system to ascertain the capabilities of the combined system, especially under heavy beam loading. The testing campaign was satisfactory and in 2015 the CERN management decided to replace all ferrite-based systems with Finemet ones for the PS Booster restart in 2020. This paper describes the LLRF features implemented for operating the wideband HLRF system and the main beam results obtained. Hints on the LLRF evolution in view of the PSB HLRF renovation are also given. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB141 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB148 | DIGITAL LOW LEVEL RF CONTROL SYSTEM FOR THE TAIWAN PHOTON SOURCE | cavity, FPGA, feedback, booster | 4077 |
|
|||
The Taiwan Photon Source (TPS) is a 3 GeV, 500 mA, 499.65 MHz, 3rd generation synchrotron light source at NSRRC. To achieve the requirements of system flexibil-ity, fault diagnosis, precise control and high noise reduc-tion, a digital low level RF (DLLRF) control system based on Field Programmable Gate Array (FPGA) was developed. The communication interface is based on Raspberry Pi. The feedback loop performance of the control system was tested on the booster of the Taiwan Photon Source (TPS) with 950 kV gap voltage. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB148 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB150 | Input Output Controller of Digital Low Level RF System in NSRRC | EPICS, LLRF, operation, FPGA | 4083 |
|
|||
Low Level Radio Frequency (LLRF) systems operating at NSRRC are based on analog technology and are used both at the Taiwan Light Source and the Taiwan Photon Source. In order to have better RF field stability, a new digital LLRF system based on Field Programmable Gate Array (FPGA) was developed. A card-sized single-board computer is used as the input/output controller of the digital LLRF system and its design and implementation with EPICS applications are reported here. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB150 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB153 | An Online Multi-Objective Optimisation Package | injection, kicker, storage-ring, timing | 4092 |
|
|||
The overall performance of an electron storage ring is critically dependant on a large number of variables. It can be characterised in many ways, such as by lifetime, injection efficiency, beam stability and so on. It is frequently the case however that improving one parameter comes at the cost of harming another. Equally, given the large number of variables involved in optimising the ring performance, the true, global optimum solution may be difficult to identify using simple parameter scans. In order to address this problem, a flexible optimisation tool has been developed. This tool is capable of optimising several parameters at once and can cope with an arbitrary number of variables (individually or in families). The tool is designed to be robust to measurement noise, and has been applied to a number of different optimisation problems. This paper presents an overview of the package, as well as the results of the first tests. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB153 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB154 | Mechanical Design of Compact Vertical and Horizontal Linear Nanopositioning Flexure Stages With Centimeter-Level Travel Range for X-Ray Beamline Instrumentation | laser, photon, instrumentation, synchrotron | 4096 |
|
|||
Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Nanopositioning techniques present an important capability to support the state-of-the-art x-ray instrumentation research for the APS operations and upgrade project. To overcome the performance limitations of precision ball-bearing-based or roller-bearing-based linear stage systems, compact vertical and horizontal linear nanopositioning flexure stages have been designed and developed at the APS with centimeter-level travel range and nanometer-level resolution for x-ray beamline instrumentation. Using improved deformation compensated linear guiding mechanisms [*,**], the APS T8-55 vertical linear flexure stage and T8-56 horizontal linear flexure stage are initially designed as a pair of sample scanning stages for a hard x-ray scanning microscope at the APS sector 2. Due to their unique repeatable nanopositioning performance over the centimeter-level travel range, these stages are also suitable for many photon beam lines optics with repeatable and stable nanopositioning requirements. The mechanical design and finite element analyses of the APS T8-55 and T8-56 flexural stages, as well as its initial mechanical test results with laser interferometer are described in this paper. * D. Shu, W. Liu, S. Kearney, J. Anton, B. Lai, J. Maser, C. Roehrig, and J. Z. Tischler, Proceedings of MEDSI-2016, Sept. 11-16, 2016, Barcelona, Spain. ** U.S. Patent granted No. 8,957, 567, D. Shu, S. Kearney, and C. Preissner, 2015. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB154 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK001 | Copper Accelerating Structure Fabrication With Controled Cu-Ag Joining Conditions | vacuum, experiment, data-analysis, distributed | 4104 |
|
|||
The paper is devoted to the development of technological processes of copper accelerating structures fabrication from oxygen-free copper. The experimental set-up for vacuum brazing of long accelerating structures with optimal Cu-Ag joining conditions is described. The experimental results of precise machining and subsequent vacuum brazing of Ag-Cu eutectic are presented | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK005 | RF Conditionning of the Spiral 2 CW RFQ | rfq, cavity, LLRF, pick-up | 4114 |
|
|||
The SPIRAL2 RFQ is designed to accelerate light and heavy ions with A/Q from 1 to 3 at 0.73 MeV/A. The nominal beam intensities are up to 5 mA CW for both proton and deuteron beams and up to 1 mA CW for heavier ions. The four-vane cavity is made with 5 1-meter long sections mechanically assembled, it works at 88 MHz and is powered up to 180 kW CW to achieve the nominal vane voltage of 113.7 kV for A/Q = 3 ions. This paper describes the RF conditioning of the RFQ at GANIL with the setting of its RF systems and cooling system used to tune the cavity resonance frequency. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK005 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK007 | Production of Low Cost, High Field Quality Halbach Magnets | quadrupole, multipole, dipole, simulation | 4118 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A shimming method has been developed at BNL that can improve the integrated field linearity of Halbach magnets to roughly 1 unit (1 part in 104) at r=10mm. Two sets of magnets have been produced: six quadrupoles of strength 23.62T/m and six combined-function (asymmetrical) Halbach magnets of 19.12T/m with a central field of 0.377T. These were assembled using a 3D printed plastic mould inside an aluminium tube for strength. A shim holder, which is also 3D printed, is fitted within the magnet bore and holds iron wires of particular masses that cancel the multipole errors measured using a rotating coil on the unshimmed magnet. A single iteration of shimming reduces error multipoles by a factor of 4 on average. This assembly and shimming method results in a high field quality magnet at low cost, without stringent tolerance requirements or machining work. Applications of these magnets include compact FFAG beamlines such as FFAG proton therapy gantries, or any bending channel requiring a ~4x momentum acceptance. The design and shimming method can also be generalised to produce custom nonlinear fields, such as those for scaling FFAGs. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK007 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK030 | THE RF CAVITY FOR THE SESAME FACILITY | cavity, storage-ring, vacuum, pick-up | 4158 |
|
|||
SESAME is a 2.5 GeV Synchrotron Light Source under commissioning in Allan (Jordan). It will be the first inter-national research centre in the Middle East [1]. It is a cooperative venture with support provided by several international organizations and scientific laboratories. Elettra-Sincrotrone Trieste (Italy) is among them. In the framework of the collaboration agreement among SESAME (Jordan), INFN (Italy) and Elettra-Sincrotrone Trieste, four 500 MHz normal conducting (NC) copper cavities have been built and commissioned at Elettra and then successfully installed in the SESAME storage ring. The cavities properties, their fabrication process, their characterization at low and high RF power is presented here. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK041 | The RF System of the SESAME Storage Ring | cavity, storage-ring, LLRF, operation | 4187 |
|
|||
SESAME the Synchrotron Radiation Light Source in Allan (Jordan) consists of a 22 MeV Microtron, an 800 MeV Booster Synchrotron (originally from BESSY I, Berlin, Germany) and a 2.5 GeV Storage Ring (new de-sign). The RF system consists of four 500 MHz ELET-TRA cavities powered by four 80 kW Solid State Ampli-fiers whereas the first amplifier is produced by SOLEIL and the other three are produced by SIGMA-PHI. The RF plant is controlled by the digital Low Level Electronics from DIMTEL. The system has been installed end of 2016. This report describes the setup of the facility and the results of the commissioning. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK048 | Design of Rapid Tuning System for a Ferrite-Loaded Cavity with Heavy Beam Loading | cavity, beam-loading, feedback, LLRF | 4203 |
|
|||
A high power, broadband and rapid frequency sweeping RF system was developed to satisfy the demand of China Spallation Neutron source (CSNS)/ Rapid Cycling Synchrotron (RCS). The cavity tuning is the key issue which has great impact on the performance of the whole RF system. In order to satisfy the requirement of cavity dynamic tuning caused by the nonlinear characteristics of the ferrite material, some new technologies were developed and applied. In this paper, the overall design of the tuning system will be introduced. The ensuing discussion will be focused on the choice of different types bias current supplies, the control algorithm of LLRF system and the beam loading compensation issues. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK065 | Reliability Anlysis of 20kw Solid-State Amplifiers for Ciads | simulation, power-supply, target | 4245 |
|
|||
CIADS will apply the solid-state amplifier. 20KW solid-state amplifiers are the basis of RF systems. This talk model 20KW solid-state amplifiers with reliability block diagram(RBD). Through simulation, we find that the reliability function relative to redundancy approximates logarithm, but cost is linear growth. There is an optimal solution between redundancy and cost. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK065 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK080 | Magnetic Performance of the New ALBA Magnetic Measurements Bench for Closed Structures | cyclotron, dipole, undulator, simulation | 4269 |
|
|||
ALBA has designed and built a new magnetic measurement bench for closed structures, presented elsewhere. This bench has been fully built in-house and has been magnetically characterized at ALBA, showing excellent performance in terms of repeatability and accuracy. In the case of homogeneous fields, the accuracy reaches 10 microTesla, and in the case of undulators characterization, the accuracy of period determination reach 0.5 microns and the field accuracy is 60 microTesla. After this characterization, the bench has been moved to CIEMAT premises, and has been used to magnetically characterize the superconducting magnet of the AMIT cyclotron. In this paper we present the results of magnetic characterization of the bench as well as the first results of cyclotron measurements. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK080 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK090 | 352 MHz Tetrode RF Stations for Superconducting Spoke Cavities | site, linac, power-supply, operation | 4296 |
|
|||
Two 352 MHz tetrode based RF stations for pulsed operation have been developed at the FREIA Laboratory, Uppsala University to validate the design and performance as RF source for the Spoke cavities in the first superconductive stage of the European Spallation Source(ESS) linear accelerator. The stations use dual TH595 tetrodes rated at 210 kW peak-power to provide a total power of 400 kW with a maximum pulse duration of 3.5 ms at 14 Hz repetition rate. Each tetrode is fed by a 10 kW solid state amplifier and the station is monitored by an internal control system with complete remote access. Extensive measurements have been performed on the RF performance, the power supplies as well as on the interlock systems. To conform to the specifications, special attention must be given for the response time of the tetrode power-supplies to acquire good quality RF output pulses. For the interlock system any shut-down condition due to tube malfunctioning or other sources must switch off the station in a controlled manner with minimal damage to any internal circuitry or to the tube itself whilst at the same time provide a fast discharge and cut-off of all relevant power supplies. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK090 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK095 | High Power X-Band Generation Using Multiple Klystrons and Pulse Compression | klystron, vacuum, detector, network | 4311 |
|
|||
CERN has constructed and is operating a new X-band test stand containing two pairs of 12 GHz, 6 MW klystrons. By power combination through hybrid couplers and the use of pulse compressors, up to 45 MW of peak power can be sent to any of 4 test slots at pulse repetition rates up to 400 Hz. The test stand is dedicated to RF conditioning and testing of high gradient accelerating structures for the CLIC study and also future X-band FELs. Operations have been ongoing for a few months, with initial operation dedicated to control algorithm development. Significant progress has been made in understanding the unique challenges of high power RF combination and phase switching using RF hybrids. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK095 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPIK122 | Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators | injection, power-supply, SRF, operation | 4386 |
|
|||
Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron trans-mitters excited by a resonant (injection-locking) phase-modulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the wide-range power control required for superconducting accelerators was developed and verified with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADS-class accelerator projects. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK122 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA029 | Study of Single Bunch Instabilities with Transverse Feedback at Diamond | feedback, operation, storage-ring, coupling | 4489 |
|
|||
Single bunch instability studies have been carried out at Diamond with and without the transverse multi-bunch feedback (TMBF) system. Single bunch instability thresholds were measured for zero, positive and negative chromaticity values by increasing the current till the instability onset. The bunch-by-bunch feedback system was then used to suppress the motion of the bunch centroid and the new thresholds were measured in all chromaticity regimes. The feedback loop phase of the TMBF was changed from resistive to reactive as well as intermediate to find the optimal feedback settings that maximize the single bunch instability thresholds. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA048 | Design and Progress on Mechanical & Alignment System for HEPS-TF | alignment, sextupole, quadrupole, emittance | 4544 |
|
|||
HEPS is a new generation synchrotron facility with a stringent requirement of very low emmittance. The key technology difficulties are supposed be overcome during the HEPS-TF stage. There are two projects in progress for mechanical and alignment system. One is the development of precision auto-tuning magnet girder, to meet the requirement of beam based alignment in tunnel, the other is the study on vibrating-wire alignment technique to improve alignment accuracy of magnets on a girder. This paper will describe the design and progress of both projects. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA050 | Latest Progress of Magnet Girder Prototypes for HEPS-TF | alignment, photon, target, interface | 4551 |
|
|||
The magnet girder technology is one of the key tech-nologies which should be overcome in the stage of HEPS-TF (Test Facility of High Energy Photon Source). The girder should be beam-based aligned, and must has high adjusting precision and high stability as well. For these issues, two girder systems are designed and developed. This paper will describe the latest progress of the girder prototypes, including structure design updates, control system progress, and processing and assembling of Girder I prototype. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA053 | Design of the Girder Control System for HEPS-TF | hardware, photon, interface, status | 4560 |
|
|||
To make the alignment become easier, the HEPS-TF (High Energy Photon Source-Test Facility) magnet girder, which is different from the conventional one, is designed to achieve the goal of adjusting the girder's position and orientation online. The control system is one of the key sub-part. This Paper will describe the control system design, especially on the hardware configuration, software programming as well as user interface design. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA053 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA055 | The Preliminary Performance of the Timing and Synchronization System at Tsinghua University | LLRF, laser, timing, monitoring | 4565 |
|
|||
A precise timing and synchronization system is developed in Tsinghua University(THU). The whole system scheme includes fiber-based CW carrier phase reference distribution system (PRDS) for delivering stabilized RF phase reference to multiple receiver clients, Low Level RF (LLRF) control system to stabilized the accelerating mi-crowave field and laser-RF synchronization system for high precise synchronization of optical and RF signals. The system test and the demonstration experiment of each subsystem are carried on to evaluate the system and the phase error jitter resources are analysed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA055 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA057 | The Primary Control Network of HLS II | network, laser, synchrotron, linac | 4573 |
|
|||
To meet the accuracy requirement of alignment and installation of HLS', the high accuracy control network is necessary. The high accuracy primary control network will provides reliable reference to the local control network. After optimization design that using Monte-Carlo method, according to the structure characteristic of HLS', the primary control network is measured by several different instruments, such as: Laser tracker, Total station and plummet. The accuracy of actual primary control network meets the design requirements, it provides strong foundation for subsequent project. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA057 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA060 | Technical Overview of Inter-Undulator Support System for PAL XFEL | undulator, cavity, quadrupole, feedback | 4579 |
|
|||
Pohang Accelerator Laboratory (PAL) has been developing a SASE X-ray Free Electron Laser based on 10 GeV linear accelerator. The inter-Undulator (IU) support system was developed to be used in the intersections of the Undulator Systems. The IU supports consist of phase shifter, quadrupole magnet with mover, beam loss monitor, cavity BPM with mover, two corrector magnets and vacuum components. The adjusting mechanism of IU Support has manual alignment system to be easily adjusting the component. The mover of quadruple magnet and cavity BPM with submicron repeatability has auto-adjusting systems with stepping motor. The mover main specifications include compact dimensions and a ±1.5 mm stroke in the vertical and horizontal direction. Linear motion guide based on 5-phase stepping motors have been chosen. This paper describes the design of the stages used for precise movement and results of mechanical measurements including reproducibility will be reported. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA060 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA066 | TPS LINAC Temperature Monitoring System | linac, PLC, monitoring, EPICS | 4595 |
|
|||
TPS Linac has been providing with electron beams which conform to the specifications to the requirement since 2014. Firstly electrons are extracted from electron gun (e-gun), and they are accelerated and gained energy from 90 keV to 150 MeV in three linear accelerating sections. Then electron beams are successfully injected to the booster ring via Linac to Booster (LTB) transport line. Providing a stable and reliable operating system is next priority objective and so a temperature monitoring system is established. This temperature monitoring system is used to monitor the temperatures for each Linac sub-system and its surrounding environment. By using this temperature monitoring system, it helps to understand the relation between beam energy and working temperature for each sub-system, when Linac is under normal operation. This report will detail the temperature monitoring components, including thermalcouples, PLC thermal modules, PLC programming and graphic user interface (GUI). By integrating with EPICS, this monitoring system is becoming a complete solution for ensuring any possible influence due to thermal effects. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA066 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA070 | Cooling and Thermo Stabilization System of 100MeV/100kW Electron Linear Accelerator of Neutron Source Driver | electron, operation, neutron, klystron | 4607 |
|
|||
Cooling system and temperature control technology elements of the linear electron accelerator of 100 MeV/100kW is a complex technological system composed of three subsystems: the cooling klystron gallery equipment (30 C ± 1), cooling of the accelerator tunnel equipment (30 C ± 1) and the cooling and temperature control accelerating sections and waveguide (40 ° C ± 0,2). The block diagram of cooling and temperature control of the linear electron accelerator of 100 MeV/100 kW, describes the basic principles to formulate requirements to the cooling systems. It describes the status of the installation, commissioning and testing of the cooling and temperature control of the accelerator - driver subcritical neutron source KIPT. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA070 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA082 | Multi-Energy Trial Operation of the HIT Medical Synchrotron: Accelerator Model and Data Supply | ion, synchrotron, extraction, acceleration | 4644 |
|
|||
At the Heidelberg ion beam therapy center (HIT) cancer patients are treated with the raster-scanning dose delivery method of heavy ion pencil beams. The beams are provided by a synchrotron which allows for a variation of the ion penetration depth by changing the ion beam energy for each synchrotron cycle. In order to change the beam energy within one synchrotron cycle the accelerator model and data supply model within the control system have been extended extensively. In this first data supply model beam re-acceleration or deceleration between two arbitrary extraction energies is defined. The model defines an additional transition phase, i.e. current/set value patterns between extraction and the re-acceleration yet giving the possibility of setting the beam properties suitable for further acceleration/deceleration. This includes the dipoles, correctors, quadrupoles, sextupoles, KO-Exciter (spill break), and RF. This allowed for the survey and optimisation of the beam properties including possible beam losses of the re-accelerated, transversally blown up beam for arbitrary energy levels. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA082 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA093 | Open XAL Status Report 2017 | GUI, software, site, interface | 4676 |
|
|||
The Open XAL accelerator physics software platform is being developed through an international collaboration among several facilities since 2010 The goal of the collaboration is to establish Open XAL as a multi-purpose software platform supporting a broad range of tool and application development in accelerator physics (Open XAL also ships with a suite of general purpose accelerator applications). This paper discusses progress in beam dynamics simulation, interaction with control system and software organization. We present the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA093 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA104 | Design of New Spectrum Data Acquisition System | timing, interface, framework, data-acquisition | 4707 |
|
|||
Funding: Project supported by the National Basic Research Program of China, the National Key Scientific Instrument and Equipment Development Projects, China (2014YQ120351). To solve the problem of spectrum acquisition in LIBS (Laser-Induced Breakdown Spectroscopy), a real-time data acquisition system was designed based on PSoC (Programmable System-On-Chip). First, the linear array CCD with electronic shutter function TCD1304DG has been used as detector .And then, the AD7621, a 16-bit analog-to-digital converter, was used to convert signal from the AFE (Analog Front End). After that, a high-integrated, low-power PSoC5LP was used as core controller, it works to complete the driver and data communication, including CCD , ADC, FIFO, the USB interface, etc. At last, a WIFI module has been added to the system for the convenience of users as well as follow-up research. The result through board-level testing indicates that the system in the spectrum acquisition is stable and accurate, and the indicators meet the LIBS project requirements. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA104 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA125 | Status of Commissioning of Gantry 3 at the PSI PROSCAN Facility | coupling, operation, interface, proton | 4744 |
|
|||
Paul Scherrer Institute currently extends its PROSCAN facility with a third gantry treatment room - Gantry 3, which is realized in a research collaboration with Varian Medical Systems. The main research goals at the PROSCAN facility include further development of precise spot scanning and optimized beam delivery with low dead-time for treatment of moving targets. Consequently Gantry 3 is designed to feature advanced pencil beam scanning technology with a large scan field size of 30x40cm, integrated cone beam CT functionality and will in the future allow fast energy layer switching. The main challenge in realizing Gantry 3 is the integration of the Varian Gantry into the existing PROSCAN control system environment, allowing seamless beam operation. Installation of the additional treatment room has started in summer 2015 followed by the integration and technical commissioning phases of the Gantry in 2016, all during full operation of the existing treatment areas at our facility. We report about the special challenges and achieved performance results during commissioning of the Varian Gantry system in combination with the PSI PROSCAN facility. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA125 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA152 | Performance of ATCA LLRF System at LCLS | LLRF, klystron, hardware, booster | 4817 |
|
|||
Funding: Work supported by Department of Energy contract DE-AC02-76SF00515. The low level RF control for the SLAC LINAC is being upgraded to provide improved performance and maintainability. The new LLRF system is based on the SLAC ATCA common platform hardware. RF control is achieved through a high performance FPGA based DDS/DDC system. The signal processing is designed to be phase insensitive, allowing the use of modest performance on-board digitizer clock and LO. The prototype LLRF control system was installed and used to operate RF station 28-2 in LCLS-I. Design details and prototype performance results will be presented. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA152 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA154 | LLRF Hardware Testbench | LLRF, cavity, hardware, cryomodule | 4821 |
|
|||
With continual advances and the development of new technologies, such as superconducting cavities, particle accelerators have become more complex. New accelerator designs have more demanding stability requirements for the cavity RF fields, up to 0.01% in amplitude and 0.01' in phase for hundreds of cavities in Continuous Wave (CW) operation. Compensating for disturbances from mechanical resonances, microphonics, natural couplings and unwanted channel crosstalk is a challenge for the Low Level Radio Frequency (LLRF) control systems. For the upgrade to the Linac Coherent Light Source (LCLS-II) at SLAC, a high performance LLRF control system is being designed and developed to drive the Solid State Amplifiers (SSA) and control the cavity fields within specifications. The different components of the LLRF hardware have been designed, constructed and tested separately. Here, we describe a test environment, still under development, for integration, characterization and qualification of the LLRF system with all the LLRF hardware integrated in a single prototype rack. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA154 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRYBA1 | From Niels Bohr to Quantum Computing | operation, coupling, electron, factory | 4852 |
|
|||
The development and use of accelerators for research has been closely linked to an era of modern physics which of course includes quantum mechanics. Niels Bohr was one of the foreground figures in the development of quantum mechanics and the IPAC community would like to recognise his contributions to this field in 2017, when IPAC takes place in Copenhagen, where he was active. Quantum computing is a subject of enormous potential and interest, and we would like to hear about the historical links to Niels Bohr and the so called Copenhagen School of Quantum Mechanics, and what we realistically can expect from this development. | |||
![]() |
Slides FRYBA1 [2.490 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-FRYBA1 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||