Keyword: storage-ring
Paper Title Other Keywords Page
MOOCB1 Time-Resolved Energy Spread Studies at the ANKA Storage Ring timing, radiation, detector, synchrotron 53
 
  • B. Kehrer, E. Blomley, M. Brosi, E. Bründermann, A.-S. Müller, M.J. Nasse, M. Schedler, M. Schuh, M. Schwarz, P. Schönfeldt, N.J. Smale, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • N. Hiller
    PSI, Villigen PSI, Switzerland
  • P. Schütze
    DESY, Hamburg, Germany
 
  Funding: This work has been supported by the Initiative and Networking Fund the Helmholtz Association under contract number VH-NG-320 and the BMBF under contract numbers 05K13VKA and 05K16VKA.
Recently, a new setup for measuring the beam energy spread has been commissioned at the ANKA storage ring at the Karlsruhe Institute of Technology. This setup is based on a fast-gated intensified camera and detects the horizontal profiles of individual bunches in a multi-bunch environment on a single-turn base. As the radiation source point is located in a dispersive section of the storage ring, this allows time-resolved studies of the energy spread. These studies are of particular interest in the framework of short-bunch beam dynamics and the characterization of instabilities. The system is fully synchronized to other beam diagnostics devices allocated in various places along the storage ring, such as the single-shot electro-optical spectral decoding setup or the turn-by-turn terahertz detection systems. Here we discuss the results of the synchronous measurements with the various systems with special emphasis on the energy spread studies.
 
slides icon Slides MOOCB1 [6.514 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOOCB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOOCB3 Intensity Interferometer to Measure Bunch Length at SPEAR3 photon, detector, optics, electron 60
 
  • W.J. Corbett
    SLAC, Menlo Park, California, USA
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
 
  Electron bunch length in a storage ring is typically measured with streak cameras, electro-optic devices or non-linear cross-correlation techniques with a range of system complexity, signal-to-noise ratios and cost. Another straight-forward method is to construct an 'intensity interferometer' utilizing a coincidence detector to record simultaneous photon arrival events. In this configuration, visible SR light is passed through a narrow bandpass filter followed by a small pinhole to generate a stream of single-mode monochromatic wavepackets. As the interferometer delay is scanned across an electron bunch, two-photon events occurring within the longitudinal coherence time of the light cause a reduction in the measured coincidence rate. The resulting autocorrelation of the optical pulse duration reveals the electron bunch length, independent of synchrotron oscillation motion. In this paper we comment on the theory and report on preliminary measurements carried out at SPEAR3.  
slides icon Slides MOOCB3 [2.606 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOOCB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB032 Status of a Double Slit Interferometer for Transverse Beam Size Measurements at BESSY II diagnostics, synchrotron, radiation, operation 149
 
  • M. Koopmans, P. Goslawski, J.G. Hwang, M. Ries, M. Ruprecht, A. Schälicke
    HZB, Berlin, Germany
 
  Funding: Work supported by the German Bundesministerium für Bildung und Forschung, Land Berlin and grants of Helmholtz Association
The upgrade of the BESSY II storage ring to BESSY VSR* demands additional beam diagnostics for machine commissioning and development. Especially bunch resolved measurements are needed. Currently, transverse beam size measurements are done with X-ray pinhole monitor systems, which cannot provide bunch resolved information. Alternative methods to measure the transverse beam size using synchrotron radiation in the visible spectrum are interferometric techniques, which could also be upgraded to bunch resolved systems. For that purpose a double slit interferometer has been constructed. Commissioning of the system has started and experimental results are discussed and compared with the existing pinhole system.
* A. Jankowiak et al., eds., ''BESSY VSR - Technical Design Study'', Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany, June 2015.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB054 Development and Application of Rogowski Coils as Beam Position Monitors simulation, dipole, instrumentation, synchrotron 223
 
  • F. Trinkel, H. Soltner
    FZJ, Jülich, Germany
 
  We have developed segmented Rogowski coils as a beam position monitors at the storage ring COSY Jülich as an alternative to the conventional monitors installed there. These coils feature a torus with two or four segments, each densely covered with an insulating copper wire of 150μm in diameter. The bunched particle beam induces voltages in these segments, which are combined and analysed to yield information about beam displacements in the horizontal and the vertical plane. We highlight our theoretical understanding of position determination of these coils together with corresponding numerical simulations. The integration of such a beam position monitor with COSY and first results with it for a bunched deuteron beam are described. The ultimate goal of this development is a better control of the beam orbit for the very demanding requirements in a future ring dedicated to the measurement of Electric Dipole Moments (EDMs) of charged particles.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB055 Towards Near-Field Electro-Optical Bunch Profile Monitoring in a Multi-Bunch Environment electron, wakefield, laser, radiation 227
 
  • P. Schönfeldt, E. Blomley, E. Bründermann, M. Caselle, S. Funkner, N. Hiller, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, L. Rota, M. Schedler, M. Schuh, M. Weber
    KIT, Karlsruhe, Germany
 
  Funding: This work is funded by the BMBF contract numbers: 05K13VKA and 05K16VKA.
For electron accelerators, electro-optical methods in the near-field have been shown to be a powerful tool to detect longitudinal bunch profiles. In 2013, we demonstrated for the first time, electro-optical bunch profile measurements in a storage ring at the accelerator test facility and synchrotron light source ANKA at the Karlsruhe Institute of Technology (KIT). To study possible bunch-bunch interactions and its effects on the longitudinal dynamics, these measurements need to be performed in a multi-bunch environment. Up to now, due to long-ranging wake-fields the electro-optical monitoring was limited to single-bunch operation. Here, we present our new in-vacuum setup to overcome this limitation. First measurements show reduced wake-fields in particular around 2 ns, where the subsequent bunch can occur in a multi-bunch environment at ANKA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB056 4-Channel Single Shot and Turn-by-Turn Spectral Measurements of Bursting CSR detector, radiation, synchrotron, simulation 231
 
  • J.L. Steinmann, E. Blomley, M. Brosi, E. Bründermann, M. Caselle, B. Kehrer, A.-S. Müller, L. Rota, M. Schuh, P. Schönfeldt, M. Siegel, M. Weber
    KIT, Karlsruhe, Germany
 
  The test facility and synchrotron radiation source ANKA at the Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany, can be operated in a short-bunch mode. Above a threshold current, the high charge density leads to microwave instabilities and the formation of sub-structures. These time-varying sub-structures on bunches of picosecond duration lead to the observation of bursting coherent synchrotron radiation (CSR) in the terahertz (THz) frequency range. The spectral information in this range contains valuable information about the bunch length, shape and sub-structures. We present recent measurements of a spectrometer setup that consists of 4 ultra-fast THz detectors, sensitive in different frequency bands, combined with the KAPTURE readout system developed at KIT for studies requiring high data throughput. This setup allows to record continuously the spectral information on a bunch-by-bunch and turn-by-turn basis. This contribution describes the potential of time-resolved spectral measurements of the short-bunch beam dynamics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB066 Development and Performance Test of the BPM System for the SPring-8 Upgrade radiation, simulation, electron, photon 265
 
  • H. Maesaka
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • H. Dewa, T. Fujita, M. Masaki
    JASRI, Hyogo, Japan
  • S. Takano
    Japan Synchrotron Radiation Research Institute (JASRI), RIKEN SPring-8 Center, Hyogo, Japan
 
  We are developing a stable and precise BPM system for the low-emittance upgrade of SPring-8. One of the essential requirements for the BPM is the long term stabilization of the photon beam by regulating the electron beam orbit. Both the single-pass resolution of 100 um rms for an injected beam charge of 100 pC and an accuracy of 100 um rms are also crucial for beam commissioning. Drift sources of the present BPM system have been investigated extensively, such as humidity-dependent drifts coming from the radiation damage of coaxial cables, and the results are fed back to the design of the new BPM system. We have optimized the design of the button BPM electrodes to reconcile reduction of trapped-mode heating and maximization of the signal intensity. Stringent machining tolerance is imposed on a BPM head to align the BPM electric center accurately. A few kinds of the BPM head prototypes were produced and the machining accuracy, RF characteristics etc. were confirmed to be sufficient. We have installed one of the prototypes in the present storage ring to test the performance of the new BPM system under development, and have been obtaining successful results satisfying the requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB080 The Development of Tune Measurement System Based on FPGA at HLSII Storage Ring FPGA, experiment, status, synchrotron 305
 
  • Q.M. Duan, Y.L. Yang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  A tune measurement system based on FPGA development board is developed at HLS II. The FPGA development board based on Zynq SOC, have ADC and DAC on board. The FPGA can provide two kinds of signal for exciting the beam: parametric frequency sweep signal and bandwidth limited white noise signal. The FFT algorithms and calculation of tune are running in the ARM CPU. In order to compare performance with the original system which is based on spectrum analyzer, we did experiments with new system based FPGA and original system respectively. The experiments on HLSII storage ring show that the tune measuring accuracy have reached 0.0006 / 0.0001 in horizontal and vertical direction based on sweep frequency of FPGA-based system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB084 Online Measurement of Electrode Gains for Stripline Beam Position Monitor in the HLS II Storage Ring quadrupole, site, radiation, operation 316
 
  • F.F. Wu, L. Lin, X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, J.G. Wang, J.H. Wei, Y.L. Yang, T.Y. Zhou, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Key Research and Development Program of China(No. 2016YFA0402000) and the National Science Foundation of China (11575181, 11605202)
Three axially symmetric stripline beam position monitors were installed in the HLS II storage ring and each stripline BPM was machined with button BPM together. Due to mechanical errors of stripline BPM, differences in electrode gains will lead to measurement error for beam position and mutual coupling between beam horizontal position and vertical position. So it is very important to calibrate electrode gains for axially symmetric BPM. A method was proposed to calibrate electrode gains of this kind of BPM. This method is suitable for all axially symmetric BPMs, whether stripline BPM or button BPM. The online calibrated gains were compared with offline calibrated gains and the results have shown that online and offline calibrated electrode gains were basically consistent.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB085 Introduction of Beam Position Monitor System in the HLS II Storage Ring closed-orbit, feedback, quadrupole, brilliance 319
 
  • F.F. Wu, L. Lin, X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, J.G. Wang, J.H. Wei, K. Xuan, Y.L. Yang, T.Y. Zhou, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Key Research and Development Program of China (No. 2016YFA0402000) Supported by the National Science Foundation of China (11575181, 11605202)
Beam position monitor(BPM) system for the HLS II storage ring were designed in the HLS II upgrade project. This system is composed of BPM, BPM processor embedded with IOC and OPI. Every component of BPM system is introduced in this paper. BPM processors have different modes of data, such as ADC data, turn-by-turn(TBT) data, fast acquirement(FA) data and slow acquirement(SA) data. Different modes of data are used to different applications. Two applications based on SA data of the BPM system, such as BBA for quadrupole magnet center measurement and beam closed orbit feedback, are described in detail. The result of BBA shows that most magnetic centers of quadrupole magnets are in the range of [-1 mm, 1 mm] with respect to BPM electric centers. The result of beam closed orbit feedback shows that beam orbit stability when the closed orbit feedback system is on is far better than that when the closed orbit feedback system is off.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB087 Study on Supports System of BPMs for HEPs simulation, site, factory, synchrotron 322
 
  • Z.Z. Wang, J.S. Cao, J. He, H.Z. Ma, Y.F. Sui, Z. Wang
    IHEP, People's Republic of China
 
  The High Energy Photon Source(HEPS), a third generation light source with the energy of 6 GeV, is under constructed at IHEP. It has an ultralow emittance (~50pm.rad) and small beam size, thus the requirement of BPM in precision and resolution is quite high. Independent supports with high degree of mechanical and thermal stability will be employed for some special BPMs, such as the BPMs near the insert devices. The supports should have high eigen-frequencies to minimize the amplification of vibration from the ground. Vibrations information of the ground around the supports also need be estimated, with which FEA (finite element analysis) had be utilized to simulate the performance of the supports. Measurements of vibrational stability of the prototype supports have be done and compared with the simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB091 Transverse Beam Instability Observation and Investigation Using Bunch by Bunch on-Line DAQ System experiment, feedback, vacuum, data-acquisition 335
 
  • N. Zhang, L.W. Lai, Y.B. Leng
    SSRF, Shanghai, People's Republic of China
 
  Funding: supported by National Natural Foundation of China (11375255 and 11375254)
Tank impedance of in-vacuum insertion device is one important source of beam transverse instability, which was expected to be suppressed by transverse feedback system (TFB). For the observation and study of transverse instability affected by insertion device and TFB, sets of an in-vacuum undulator narrow gap setting and TFB gain setting were operated in a beam-based experiment. A bunch-by-bunch (BYB) position on-line DAQ system was employed in the measurement to characterize frequencies of individual bunches. Bunch-train transverse oscillation amplitude variation were curved by harmonic analysis. In this paper, we will introduce the BTB ADQ system, and report on the measurement experiment and related data analysis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB093 Bunch Phase Measurement for Storage Ring simulation, injection, experiment, pick-up 341
 
  • Y.M. Zhou, Y.B. Leng, N. Zhang
    SSRF, Shanghai, People's Republic of China
  • H.J. Chen
    SINAP, Shanghai, People's Republic of China
 
  A bunch-by-bunch phase measurement system has been studied to improve the accuracy of phase measurement. Longitudinal phase information will be retrieved from beam signals picked up from the button electrodes. The signals from four electrodes in the BPM are summed by using a 4-way power driver, by which the effect of the transverse beam offset on the phase measurement can be eliminated. Four samples with fixed time interval (typical 100ps) for each bunch, which are taken by a 500MHz waveform recorder with a four channels signal splitting and delaying network, will be used to calculate bunch phase. In this paper, we present the layout of the system and primary experimental results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB094 A Fast Beam Size Diagnostic System Using High-Speed Photomultiplier Array at SSRF diagnostics, pick-up, detector, synchrotron 345
 
  • H.J. Chen, N. Zhang
    SSRF, Shanghai, People's Republic of China
  • J. Chen, B. Gao, L.W. Lai, Y.B. Leng
    SINAP, Shanghai, People's Republic of China
 
  A fast beam size diagnostic system is developing at SSRF (Shanghai Synchrotron Radiation Facility) storage ring for turn-by-turn and bunch-by-bunch beam trans-verse oscillation study and fast transverse feedback sys-tem improvement. The system is based on visible synchrotron radiation diagnostic, detected by a Hamamatsu H10515B 16-channel photomultiplier array with 0.6ns rise time. A telescope imaging system is also developing for optical front-end process, with simulation optical path calibra-tion and high-resolution CCD camera reference. A fast pick-up board and amplifiers are designed for analogue signal optimization. The data acquisition and analyse solution is Tektronix oscilloscope with 6GHz analogue bandwidth and 25GS/s sampling rate or four synchronized ADQ14 digitizers with 700MHz analogue bandwidth and 1GS/s sampling rate. By now, we have finished the detector selection, sys-tem setup, data acquisition design and system response testing. The telescope imaging testing and 16-channels data acquisition based on synchronized ADQ14s are under development. A new photomultiplier array with less response time is in plan for strictly bunch-by-bunch diagnostic.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB102 Fast Orbit Response Matrix Measurements at ALBA linear-dynamics, optics, non-linear-dynamics, data-acquisition 365
 
  • Z. Martí, G. Benedetti, M. Carlà, J. Fraxanet, U. Iriso, J. Moldes, A. Olmos, R. Petrocelli
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  At ALBA the standard orbit response matrix measurement with DC corrector magnet (CM) modulation is being upgraded with an AC excitation of the correctors combined with the synchronized beam position monitor (BPM) acquisition data rate at 10 kHz. Several types of excitation waveforms (sinusoidal vs square types) and frequencies have been tested and compared to optimize the measurement precision and repeatability. The data acquisition time of the ALBA response matrix (88 horizontal and 88 vertical correctors) with the new AC method takes 1 minute to complete instead of 7 minutes of the standard technique.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB118 Cherenkov Diffraction Radiation From Long Dielectric Material: An Intense Source of Photons in the NIR-THz Range photon, radiation, electron, target 400
 
  • T. Lefèvre, M. Bergamaschi, O.R. Jones, R. Kieffer, S. Mazzoni
    CERN, Geneva, Switzerland
  • M.G. Billing, J.V. Conway, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • L.M. Bobb
    DLS, Oxfordshire, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
 
  This paper presents the design on the Cornell Electron Storage Ring (CESR) of an experimental set-up to meas-ure incoherent Diffraction Cherenkov Radiation (DChR) produced in a 2 cm long SiO2 radiator by a 2.1 GeV elec-tron beam. The electron beam is circulating at a distance of few mm from the edge of the radiator and the DChR photon output power is expected to be significantly higher than the diffraction radiation power emitted from a metal-lic slit of similar aperture. The radiator design and the detection set-up are presented in detail together with sim-ulations describing the expected properties of the emitted DChR in terms of light intensity and spectral bandwidth. Finally, potential applications of DChR are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB124 A Fast Gain Calibration Algorithm for Beam Position Monitoring at Taiwan Photon Source pick-up, electron, operation, target 419
 
  • J.Y. Chen, C.H. Chen, M.-S. Chiu, P.C. Chiu, P.J. Chou, S. Fann, K.H. Hu, C.S. Huang, C.-C. Kuo, T.Y. Lee, C.C. Liang, Y.-C. Liu, G.-H. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  A stable, reliable and well-calibrated beam position monitor (BPM) system is essential for the operation of accelerators. At newly constructed Taiwan Photon Source (TPS), it not only helps us to determine the accelerator parameters, such as Twiss parameters and tune, but also to avoid the damage on accelerator instruments caused by high-energy particle beams or radiation. In this study, we demonstrate a new BPM calibration scheme at TPS storage ring. To excite the electron beams inside accelerator beam pipe by one horizontal or vertical corrector magnet, we measure the response of analog-to-digital converter (ADC) of each BPM pick-up electrodes with different lateral positions and beam currents. Depending on the measured ADC responses, we calibrated the beam position monitor system. Simultaneously, because of limited preparation time after every long shutdown, we are looking for a fast algorithm to ensure the measurement could be done easily and finished as quickly as possible.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB127 A New Method for Emittance Reconstruction Using a Scraper in a Dispersive Region of a Low Energy Storage Ring emittance, simulation, antiproton, closed-orbit 429
 
  • J.R. Hunt, J. Resta-López, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C. Carli
    CERN, Geneva, Switzerland
  • J.R. Hunt, J. Resta-López, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Science and Technology Funding Council, UK CERN
Beam scraping is a standard method for beam emittance measurements at low energies and will be applied at the Extra Low ENergy Antimatter (ELENA) ring. However, in ELENA, as in many other low energy storage rings, the scraper is located in a position of finite dispersion which poses a unique challenge when reconstructing the emittance from beam intensity data. A new algorithm for ELENA and other machines that use a scraper in a dispersive region has been developed. It combines data obtained by scraping the beam from opposite sides with information on the storage ring lattice. In this contribution, the new algorithm is presented, tested using simulations and compared with alternate methods for emittance reconstruction.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB133 Optimisation of Electrical and Instrumentation Design for the Diamond Light Source DDBA Upgrade dipole, instrumentation, insertion-device, insertion 448
 
  • A. Thomson, C.A. Abraham, M.T. Heron, S.C. Lay, G. Rehm, A.J. Rose, H.S. Shiers
    DLS, Oxfordshire, United Kingdom
 
  In planning the upgrade of one cell of the Diamond Storage Ring, the DDBA upgrade, it was evident that the electrical installation and commissioning would contribute a significant component of the overall installation time. Given the pressures to minimise the shutdown length, the electrical and instrumentation design was optimised for time effective installation and commissioning. This paper outlines the electrical and instrumentation design for DDBA; explores the installation time determining issues and how these were addressed; and reports on the lessons learnt from the actual installation and commissioning process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB133  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB140 Phase-Space Analysis Using Tomography for the Muon g-2 Experiment at Fermilab experiment, proton, target, quadrupole 462
 
  • D. Stratakis
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
In the next decade the Fermilab Muon Campus will host two world class experiments dedicated to the search for signals of new physics. The Muon g-2 experiment will determine with unprecedented precision the anomalous magnetic moment of the muon. The Mu2e experiment will improve by four orders of magnitude the sensitivity on the search for the as-yet unobserved Charged Lepton Flavor Violation process of a neutrinoless conversion of a muon to an electron. Maintaining and preserving a high density of particles in phase-space is an important requirement for both experiments. This paper presents a new experimental method for mapping the transverse phase space of a particle beam based on tomographic principles. We simulate our technique using the tracking code GEANT4, to ascertain accuracy of the reconstruction. Then we apply the technique to a series of proof-of-principle simulation tests to study injection, transport and extraction of muon and proton beams for the Fermilab g-2 and Mu2e Experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB151 Techniques for Transparent Lattice Measurement and Correction lattice, feedback, operation, betatron 483
 
  • W.X. Cheng, K. Ha, Y. Li
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract No: DE-SC0012704
NSLS-II storage ring started top off operation since Oct 2015. It has been noticed during the user operation that machine lattice was affected by insertion devices (ID). The storage ring coupling, emittance and lifetime vary when ID gap changes. Lattice characterization was typically carried out with dedicated machine study time with low storage current. Due to collective effect, the lattice at high operation current is different. To characterize the machine lattice during normal user operation with little disturbance, a small portion of beam (~1%) filled in the ion gap can be excited by the bunch by bunch feedback system near betatron frequency. Recent development on BPM electronics enables the gate function to detect partial beam motion in the ring. With the gated BPM turn by turn data from excited bunches, storage ring lattice can be measured and corrected with the well-developed tools. We present in the paper preliminary test results with these tools to characterize the lattice and how it improves the machine performance during user operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB151  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB152 Precise Synchronous Phase Measurements synchrotron, synchrotron-radiation, radiation, impedance 487
 
  • W.X. Cheng, B. Bacha, K. Ha, O. Singh
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE contract No: DE-SC0012704
Precise measurements of storage ring synchronous phase helps to understand the machine impedance and improve the high current performance. We present different methods tested at NSLS-II, including the streak camera measurement, relative phase measurement from a high sampling frequency oscilloscope by comparing the beam signal and reference signal. Both streak camera and scope method have high precision to measure the synchronous phase (<1ps). Other methods to measure the synchronous phase include the I-Q detection from BPM electronics, FPM scope have been tested as well. We have used these systems to study the synchronous phase shift at different beam current, RF voltages and ID gaps. Recent results will be presented and discussed in the paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB152  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB155 Characterization of the Longitudinal Acceptance in a Storage Ring with RF Pinger cavity, synchrotron, dynamic-aperture, damping 497
 
  • G.M. Wang, B. Holub, Y. Li, J. Rose, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  In modern generation light sources, it is desired to have SR performance at high beam current, low horizontal emittance with small coupling, resulting in intense Touschek scattering, which is the dominant limitation of beam lifetime. Touschek scattering strongly depends on momentum aperture. Understanding momentum aperture is extremely important. NSLS II storage ring RF system has the digital ramp control function, enabling rapid change of the cavity phase and amplitude. This makes the possibility to ping the beam in longitudinal phase space and directly measure the longitudinal acceptance, in contrast with traditional indirect way to understand it from other aspect of parameters. In this paper, we present the tool, longitudinal pinger, its application to characterize NSLS II longitudinal acceptance and localize the momentum aperture limit with SR BPMs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB155  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK031 COSY Extraction Line Characterization and Modeling quadrupole, extraction, optics, proton 567
 
  • B. Lorentz, M. Bai, Y. Dutheil, R. Tölle, C. Weidemann
    FZJ, Jülich, Germany
 
  COSY is a versatile racetrack-type synchrotron accelerating protons and deuterons in a range of rigidity between 1 T m and 11 T m. Circulating beam can be slowly extracted on a third order resonance and channeled towards different users. New users of the COSY beam have presented new challenges with specific requests, most notably in term of beam shape. This in turn drove a strong interest to develop and improve characterization and modeling methods in the COSY extraction beam line. In this contribution we will present the different beam characterization methods used and their limitations. We will then discuss the modeling of the line and the importance of an accurate and reliable model of the extraction line. Some of the latest beam measurements are presented and compared to modeled results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK054 Towards the Low Emittance CANDLE Storage Ring emittance, lattice, wiggler, synchrotron 641
 
  • A. Sargsyan, G.A. Amatuni, V. Sahakyan, V.M. Tsakanov, G.S. Zanyan
    CANDLE SRI, Yerevan, Armenia
 
  Stimulated by the recent approaches and developments in low emittance lattice design and magnet technology a continuous process of CANDLE storage ring lattice improvement has been launched aiming to keep the project competitive in the field. The main goal of the upgrade program is to bring the beam emittances down to sub-nm level, having the condition of cost and performance efficiency. This paper summarizes the results obtained in the above-mentioned direction. The main design characteristics and linear/nonlinear beam dynamics aspects of the obtained new lattices are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK063 Non-Linear Kickers Using Eddy Current Screens and Application to the ESRF injection, kicker, sextupole, flattop 670
 
  • S.M. White, M. Dubrulle, L. Farvacque, P. Henrissat, G. Le Bec, E. Plouviez, P. Raimondi, C. Richard
    ESRF, Grenoble, France
 
  The ESRF storage ring injection and accumulation is performed using standard 4-kickers bump and septum magnet. Sextupoles are located within the injection bump leading to significant bump non-closure during the ramp-up and ramp-down and optics distorsion for both stored and injected beam. Introducing non-linearities in the kickers allows for compensation of the perturbation from these sextupoles. We report on the feasibility of adding eddy current screens to a standard kicker magnet design to generate a non-linear field and its recent application to mitigate the injection perturbations at the ESRF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK065 Status of the Development of a BE-Model-Based Program for Orbit Correction at the Electron Storage Ring DELTA closed-orbit, hardware, operation, synchrotron 673
 
  • S. Koetter, B. Riemann, T. Weis
    DELTA, Dortmund, Germany
 
  A new program for orbit correction is currently being developed at the electron storage ring DELTA. Based upon the standard approach of utilizing the linear response of a closed orbit to dipole-field-strength variations, proposed features include a live-updated orbit-response-matrix model and the integration of the Closed-Orbit-Bilinear-Exponential-Analysis algorithm (COBEA) to clean measured orbit-response matrices from noise. This work focuses on the current status of development of the aforementioned program. After an assessment of the situation at DELTA, first measurements are shown along with numerical convergence studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK066 COBEA - Optical Parameters From Response Matrices without Knowledge of Magnet Strengths optics, lattice, closed-orbit, betatron 676
 
  • B. Riemann, S. Khan, S. Koetter, T. Weis
    DELTA, Dortmund, Germany
 
  This paper presents some results of Closed-Orbit Bilinear-Exponential Analysis (COBEA), an algorithm designed to decompose (coupled) response matrices into betatron tunes and other optical parameters at beam position monitor and corrector positions. The only additional information strictly required by the algorithm is the ordering of monitors and correctors along the storage ring beam path. The presented method is largely lattice-independent, as no magnet strengths or dimensions are needed, and converges in a reasonable time interval due to usage of gradient-based optimization. After describing key features of the algorithm, a set of COBEA results is compared to LOCO results for the storage rings of MLS and BESSY II. The paper is concluded by a brief discussion of further applications, limits and further development of the COBEA algorithm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK067 Figure-8 Storage Ring - Ion Beam Injection into a Closed, Magnetic System injection, detector, experiment, ion 680
 
  • H. Niebuhr, A. Ates, M. Droba, O. Meusel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  To store high current low-energetic ion beams of up to 10 A, a superconducting storage ring (F8SR) based on solenoidal and toroidal magnetic guiding fields is investigated at Frankfurt University. Besides simulations, a scaled down experimental setup with normalconducting magnets was built. Investigations of beam injection into closed, magnetic guiding fields are in progress. Therefore, a new kind of injection system consisting of a solenoidal injection coil and a special vacuum vessel was constructed. It is used to inject a hydrogen beam from the side between two toroidal magnets. In parallel operation, a second hydrogen beam is transported through both magnets to represent the circulating beam. The current status of the experimental setup and first experimental results will be shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK079 The Off-Axis Injection Lattice Design of HEPS Storage Ring injection, lattice, dynamic-aperture, multipole 716
 
  • Y.M. Peng, D. Ji, Y. Jiao, S.K. Tian, J.Q. Wang, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The dynamic aperture size determines the injection scheme to a large extent. The aim of storage ring design of HEPS is to achieve ultralow emittances on both transverse planes. This will bring very strong lattice nonlinearities. The present nominal design is a hybrid 7BA design with effective dynamic aperture of about 3 mm both in horizontal and vertical plane. Due to the restriction of dynamic aperture of this lattice, on-axis injection is the only choice . But, on-axis injection will bring a very big challenge for injector or injection kicker, if it is feasible to obtain a large dynamic aperture, off-axis injection is a favoured choice. In this paper, we will show the preliminary study of the lattice design with a sufficient dynamic aperture for pulsed multipole injection..  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK080 Research of the Electro-Gravitational Induction by Using COD Signals in Charged Particle Storage Rings induction, positron, electron, feedback 719
 
  • D. Dong
    IHEP, Beijing, People's Republic of China
  • J.Y. Dong
    Binghamton University, State University of New York, Binghamton, New York, USA
 
  Funding: The project was supported by the National Natural Science Foundation of China under Grant No. 11575215, partly.
Form the beam instability in the charged particle storage ring; researchers have known that one kinds of long term beam instability, the period of 12 hours, comes from the gravity changes, the change of acceleration of gravity g, delta g caused by the moon and sun moving relative to the earth, so called the terrestrial tidal forces. Phenomenology, we would say that the gravity changes caused by the moon and sun moving at the storage ring have caused the beam energy changes in the storage ring. If it is true, then it may be the electro-gravitational induction (EGI). In this paper, we will discuss the possibility of EGI, and estimate the maximum value of the gravity coefficient of the induced electromotive force by using the existing beam data from the storage rings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK085 Linear Optics Calibration at the HLS-II Storage Ring Using Model Independent Analysis optics, lattice, experiment, operation 727
 
  • G. Liu, L. Wang, F.F. Wu, K. Xuan
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Linear optics are the main lattice parameters characterizing the linear properties of storage rings. Especially for beta function and phase advance, they are the basic lattice functions which must be accurately calibrated to ensure high quality operation of the machine. Model Independent Analysis (MIA), which adopts mathematical statistical methods to extract the effective lattice information of storage rings by directly analyzing the turn-by-turn beam-position-monitor (BPM) measurements, has been applied at HLS-II to calibrate the linear optics model of the storage ring. The measurements of the turn-by-turn BPM data with all of the 32 BPMs are reported in this paper. The calibration results of the beta function using MIA are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK087 Development of a Tune Knob for the HLS-II Storage Ring quadrupole, lattice, sextupole, simulation 730
 
  • S.W. Wang, J.Y. Li, W.B. Wu, W. Xu, K. Xuan, X. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  A tune knob is a useful tool for lattice setup and machine studies in a storage ring. It is used to adjust the transverse tunes with a small impact on the beam dynamics. A global tune knob is designed for the Hefei Light Source (HLS). In the tune knob, the quadrupoles are grouped into four families and are symmetrically adjusted. Methodical Accelerator Design-X (MAD-X) is used to calculate the coefficients of the tune knob and the Accelerator Toolbox (AT) is used to double check the accuracy of the tune knob. The chromaticity is corrected by the sextupoles in the storage ring. This paper reports preliminary simulation results of the tune knob for HLS. The beta function deviations are also studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK090 Beta Function Measurement in the SOLARIS Storage Ring quadrupole, lattice, optics, sextupole 736
 
  • A. Kisiel, M.B. Jaglarz, M.P. Kopeć, S. Piela, M.J. Stankiewicz, A.I. Wawrzyniak
    Solaris, Kraków, Poland
 
  One of the most essential lattice function used for transverse beam dynamics studies of the storage rings is a beta function. It characterizes the linear properties of magnets layout and allows to optimize the compatibility of the model and the machine by reducing the beta-beating. Moreover, the calculation of other parameters like transverse beam emittance, dynamic aperture, energy spread and others, requires knowledge of the quantity of beta function along the ring. Various methods of measurement of this function used in Solaris will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK104 Top-Up Injection With Anti-Septum septum, injection, kicker, simulation 774
 
  • C.H. Gough, M. Aiba
    PSI, Villigen PSI, Switzerland
 
  We present a novel improvement for injection into the very restricted machine aperture of future light source synchrotrons. A conventional injection scheme is based on a septum to deflect the injected bunch plus a fast pulsed three or four kicker bump to bring the stored beam close to the septum wall. With the novel improvement, the bump kickers are fitted with a thin wall longitudinal metal plate which screens the injected bunch from deflection without changing the stored beam bump behaviour. This metal screen then forms the final septum, but inverted in function of the conventional approach, hence the name anti-septum. The approach does not remove the need for the main septum magnet, but for modest cost it permits the injected bunch to be brought closer to the stored beam. Application of the anti-septum to the SLS-2 project and simulation results on a prototype are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK105 Preliminary Study of Injection Transients in TPS Storage Ring septum, injection, vacuum, kicker 777
 
  • C.H. Chen, B.Y. Chen, J.Y. Chen, M.-S. Chiu, S. Fann, C.S. Huang, C.-C. Kuo, T.Y. Lee, C.C. Liang, Y.-C. Liu, G.-H. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  An optimized injection efficiency is related to a perfect match between the pulsed magnetic fields in the storage ring and transfer line extraction in the TPS. However, misalignment errors, hardware output errors and leakage fields are unavoidable. We study the influence of injection transients on the stored TPS beam and discuss solutions to compensate these. Related simulations and measurements will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK107 Injection Efficiency Simulation in the Electron Storage Ring of X-Ray Generator NESTOR injection, electron, alignment, simulation 784
 
  • A.Y. Zelinsky, P. Gladkikh, A.A. Kalamayko
    NSC/KIPT, Kharkov, Ukraine
 
  In the paper the results of the beam dynamics and injection efficiency simulation in the storage ring of the X-ray generator NESTOR are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK110 Update on Bmad Simulations From Target to Storage Ring for the New Muon G-2 Experiment at Fermilab proton, polarization, experiment, target 791
 
  • M. Korostelev, I.R. Bailey, A.T. Herrod, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • A.T. Herrod, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • D. Stratakis
    Fermilab, Batavia, Illinois, USA
  • V. Tishchenko
    BNL, Upton, Long Island, New York, USA
 
  The new muon g-2 experiment at Fermilab (E989) aims to measure the anomalous magnetic moment of the muon to an uncertainty of 140 ppb. The existing accelerator facility at Fermilab is being adapted to the requirements of the g-2 experiment and the baseline lattice design is now established. This paper presents the results of beam simulations and spin tracking carried out using the Bmad software package for the g-2 beam transport system, including a variant which bypasses the delivery ring as proposed for the beam commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK119 Beam Dynamics in g-2 Storage Ring resonance, experiment, quadrupole, dipole 817
 
  • W. Wu, B. Quinn
    UMiss, University, Mississippi, USA
 
  The muon anomalous magnetic moment has played an important role in constraining physics beyond the Standard Model. The Fermilab Muon g-2 Experiment has a goal to measure it to unprecedented precision: 0.14 ppm. To achieve this goal, we must understand the beam dynamics systematic effects in the muon storage ring. We will present the muon beam dynamics and discuss two specific topics here: the beam resonance which is related to the muon loss and the fast rotation analysis to determine the muon momentum distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA031 Low Energy Compact Storage Ring Design for Compton Gamma-Ray Light Source electron, emittance, laser, scattering 921
 
  • Z. Pan, J.M. Byrd, C. Sun
    LBNL, Berkeley, USA
  • H. Hao, Y.K. Wu
    FEL/Duke University, Durham, North Carolina, USA
  • W.-H. Huang, C.-X. Tang
    TUB, Beijing, People's Republic of China
 
  Gamma-ray sources with high flux and spectral densities are highly demanded by many nuclear experiments. We design a low energy compact storage ring to produce gamma-ray with energy in the range of 4-20 MeV based on Compton backscattering technique. The storage ring energy is 500-800 MeV with the circumference of about 59 m and natural emittance of about 3 nmrad at 500 MeV. In this paper, we present the storage ring lattice design and propose two collision configurations for Compton gamma-ray generation. Intrabeam scattering has been investigated which can increase emittance from 3 nmrad to 6 nmrad horizontally for 500 MeV ring. We also discuss how Compton scattering affects longitudinal and transverse beam dynamics by tracking macro particles using our parallel simulation code. Based on this study, we can further optimize our storage ring lattice design for the higher gamma-ray flux production.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXA1 Towards Diffraction Limited Storage Ring Based Light Sources emittance, lattice, undulator, electron 1203
 
  • L. Liu, H. Westfahl Jr.
    LNLS, Campinas, Brazil
 
  Experimental x-ray techniques that benefit from the great increase in brightness and coherent flux provided by the fourth generation of synchrotron light sources, based on recent advances in accelerator design and technology, are widely expanding nowadays. The basic ingredient to higher brightness is a further reduction of the electron beam emittance in storage rings dedicated to light sources. However, to fully explore the potential of these new sources, it is necessary to optimize other variables as well, such as the proper matching of electrons and photons phase-space and the possibility of using new kinds of insertion devices. Equally important is to try new ways to improve the integration between the light source capabilities and the experiment needs. In this work, recent progress of low emittance rings will be reviewed and the efforts to improve transverse coherent flux and source-to-beamline integration at the Brazilian Sirius project will be described.  
slides icon Slides TUXA1 [11.984 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUXA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB018 Initial Data From an Electron Cloud Detector in a Quadrupole Magnet at CesrTA electron, quadrupole, detector, positron 1352
 
  • J.P. Sikora, S.T. Barrett, M.G. Billing, J.A. Crittenden, K.A. Jones, Y. Li, T.I. O'Connell
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, PHY-1002467 and the US Department of Energy DE-FC02-08ER41538, DE-SC0006505
In September 2016, we installed a detector in a quadrupole magnet that measures the electron cloud density using two independent techniques. Stripline electrodes collect cloud electrons which pass through holes in the beam-pipe wall. The array of small holes shields the striplines from the beam-induced electromagnetic pulse. The beam-pipe chamber has also been designed so that microwave measurements of the electron cloud density can be performed. The resonant microwaves are confined to be within the 56 cm length of the quadrupole. The detector is placed in a newly installed quadrupole that is adjacent to an existing lattice quadrupole of the same polarity. Since they are powered independently, their relative strengths can be varied with stored beam – allowing electron cloud measurements to be made as a function of gradient. This paper presents the first data obtained with this detector with trains of positron bunches at 5.3 GeV. The detector is installed in the Cornell Electron Storage Ring and is part of the test accelerator program for the study of electron cloud build-up using electron and positron beams from 2 to 5 GeV.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB036 Training and Characterization of 1.5m Long Conduction Cooled Superconducting Undulator Coils with 20 mm Period Length undulator, synchrotron, radiation, vacuum 1399
 
  • A.W. Grau, S. Casalbuoni, N. Glamann, T. Holubek, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
  • C. Boffo, T.A. Gerhard, M. Turenne, W. Walter
    Babcock Noell GmbH, Wuerzburg, Germany
 
  The Institute for Beam Physics and Technology (IBPT) of the Karlsruhe Institute of Technology (KIT), and the company Babcock Noell GmbH (BNG) are running an R&D program on superconducting undulators (SCUs). The collaboration is working on a SCU with 20 mm period length (SCU20) for ANKA, the test facility and synchrotron radiation source, run by the IBPT. The 1.5 m long undulator coils have been tested in a conduction-cooled environment. This contribution describes the training, the stability and the thermal behavior of the coils.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB037 An Optimized Lattice for a Very Large Acceptance Compact Storage Ring lattice, laser, electron, sextupole 1402
 
  • A.I. Papash, E. Bründermann, A.-S. Müller
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Combining a circular storage ring and a laser wakefield accelerator (LWFA) might be the basis for future compact light sources and advancing user facilities to different commercial applications. Meanwhile the post-LWFA beam is not directly suitable for storage and accumulation in conventional storage rings. New generation rings with adapted features are required. Different geometries and ring lattices of very large-acceptance compact storage ring operating between 50 to 500 MeV energy range were studied. The main objective was to create a model suitable to store the post-LWFA beam with a wide momentum spread (2% to3%) and ultra-short electron bunches of fs range. The DBA-FDF lattice with relaxed settings, split elements and optimized parameters allows to open the dynamic aperture up to 20 mm while dispersion is limited and sextupole strength is high. The proposed machine model could be a basis for further, more detailed design studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB062 Single Dipole Kicker Injection Into the Sesame Storage Ring injection, kicker, dipole, septum 1463
 
  • K. Manukyan, I.A. Abid, M. Attal, M. Ebbeni, E. Huttel
    SESAME, Allan, Jordan
 
  SESAME (Synchrotron Radiation Light Source in Allan, Jordan) consists of an 800 MeV injector (original from BESSY I, Berlin, Germany) and a 2.5 GeV storage ring. Extraction out of the Booster is done by means of a bumper, a delay-line kicker, and a direct driven in-vacuum septum. This paper will present the injection procedure into the storage ring. Simulations of the injection process are compared to the results obtained during commissioning  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB063 High Energy Transport Line Design for the HEPS Project injection, booster, extraction, quadrupole 1466
 
  • Y.Y. Guo, Z. Duan, Y. Jiao, Y.M. Peng, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS), a kilometer-scale storage ring light source with the energy of 6GeV is to be built in China. For the injection scheme of the stor-age ring, on-axis injection is the baseline scheme. To simultaneously accommodate on-axis accumulation and swap-out injection schemes, we designed two high energy transport lines. In this paper we will report the detailed design of these two transport lines, including the layout and lattice design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB065 The Progress of HEPS Booster Design booster, lattice, injection, emittance 1472
 
  • Y.M. Peng, Z. Duan, Y.Y. Guo, D. Ji, Y. Jiao, S.K. Tian, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS), a kilometre-scale, ultralow-emittance storage ring light source, is to be built in Beijing, China. For HEPS, a full energy booster synchrotron operating at a frequency of 2Hz is considered. In this paper, we will report the progress of the lattice design and physics studies on HEPS booster, containing the injection consideration, ramping process, error studies, and so on.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB067 Studies of Beam Lifetime at HEPS scattering, lattice, electron, photon 1478
 
  • S.K. Tian, Y. Jiao, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The electron storage ring's beam lifetime is determined by scattering of the electrons at the nucleus and the shell of the atoms of the residual gas (gas lifetime) and the scattering of electrons within a bunch (Touschek lifetime).Beam lifetime studies have been performed at the 6 GeV electron storage ring HEPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB099 Status of MAX IV Linac Beam Commissioning and Performance linac, gun, injection, sextupole 1547
 
  • S. Thorin, J. Andersson, M. Brandin, F. Curbis, L. Isaksson, M. Kotur, D. Kumbaro, F. Lindau, E. Mansten, D. Olsson, R. Svärd, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
  • J. Björklund Svensson
    Lund University, Division of Atomic Physics, Lund, Sweden
 
  The MAX IV linac is used both for full energy injection into two storage rings at 3 GeV and 1.5 GeV, and as a high brightness driver for a Short Pulse Facility (SPF). The linac has also been designed to handle the high demands of an FEL injector. The linac is now routinely injecting into the two storage rings, and commissioning work is focused towards delivering high brightness pulses to the SPF. In this paper we present results from characterisation of the linac in ring injection mode, as well as results from measurements of key parameters for the SPF such as bunch length and emittance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB109 Study on Injection with Pulsed Multipole Magnet for SPS Storage Ring injection, multipole, kicker, operation 1573
 
  • T. Pulampong, P. Klysubun, P. Sudmuang, P. Sunwong
    SLRI, Nakhon Ratchasima, Thailand
 
  Pulsed multipole magnet (PM) has zero magnetic field at the centre, therefore it introduces no perturbation to the stored beam. It has been demonstrated that this injection scheme is able to minimise the oscillation of the stored beam, and thus make it suitable for top-up operation. To investigate the suitability of employing this injection method at Siam Photon Source, PM was modelled and optimised for best performance using particle tracking based method. This work presents injection optimisation process with PM considering various constraints such as position of injected beam, injection conditions, and effects of installed IDs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB116 Insertion Devices at Diamond Light Source: A Retrospective Plus Future Developments wiggler, undulator, insertion-device, insertion 1592
 
  • Z. Patel, A. George, S. Milward, E.C.M. Rial, A.J. Rose, R.P. Walker, J.H. Williams
    DLS, Oxfordshire, United Kingdom
 
  2017 marks the tenth year of Diamond operation, during which time all insertion device straights have been filled. Diamond Light Source is a third generation, 3 GeV facility that boasts 29 installed insertion devices. Most room temperature devices have been designed, manufactured and measured in-house, and progress has been made in structure design and control systems to ensure new devices continue to meet stringent requirements placed upon them. The ‘completion' of the storage ring is not, however, the end of activity for the ID group at Diamond, as beamlines map out potential upgrade paths to Cryogenic Permanent Magnet Undulators (CPMUs) and SuperConducting Undulators (SCUs). This paper traces the progress of ID design at Diamond, and maps out future projects such as the upgrade to CPMUs and the challenges of designing a fixed-gap mini-wiggler to replace a sextupole in the main storage ring lattice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB140 Analysis and Correction of in-Vacuum Undulator Misalignment Effects in a Storage Ring Synchrotron Radiation Source undulator, electron, alignment, radiation 1663
 
  • O.V. Chubar, T.A. Caswell, Y. Chen-Wiegart, A. Fluerasu, Y. Hidaka, D.A. Hidas, C.A. Kitegi, M.S. Rakitin, T. Tanabe, J. Thieme, L. Wiegart, G. Williams
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work was partially supported by US DOE SBIR grants DE-SC0006284 and DE-SC0011237.
In-vacuum undulators (IVU) are currently very extensively used at different light source facilities, and in particular in medium-energy storage rings, for the production of high-brightness and high-flux hard X-rays. The relatively small (~5 mm or less) vertical magnetic gaps used in these planar undulators make them, however, rather sensitive to the accuracy of alignment of magnet arrays with respect to electron orbit in the vertical plane. Based on results of commissioning of a number of IVUs at hard X-ray beamlines of NSLS-II, their eventual misalignment with respect to the electron orbit was found to be among frequent reasons of spectral underperformance of the beamlines. We will present results of simulations of different IVU misalignment effects on magnetic fields seen by electron beam and on the emitted undulator radiation spectra. The simulations show e.g. that an impact of angular misalignment of an IVU on the radiation spectrum can be minimized if the IVU elevation is selected to make the electron orbit to pass through the IVU magnetic center. Experimental results of spectrum-based alignment of IVUs at hard X-ray beamlines will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK036 Use of Laser Wakefield Accelerators as Injectors for Compact Storage Rings laser, electron, injection, emittance 1760
 
  • K.A. Dewhurst, H.L. Owen
    UMAN, Manchester, United Kingdom
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work is funded by the STFC (Science and Technology Facilities Council).
Compact storage rings require a compact acceleration solution. We propose the use of a laser wakefield accelerator (LWFA) as an injector for compact electron storage rings to produce synchrotron radiation. In particular, we study the injection of 0.7 GeV and 3 GeV electrons into the DIAMOND storage ring and consider implications for future storage ring design. Whilst laser-based acceleration is well-known as a driver for future electron-positron colliders and future free-electron lasers, here we propose it is also advantageous to provide electrons for 3rd-generation storage rings. The electron beams produced by LWFAs have a naturally very small emittance around 1 nm and moderate energy spread of a few percent. Combining these beam parameters with the compact size of a LWFA makes them highly favourable compared to traditional linac or booster synchrotron injector chains.chains.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK041 Cleaning of Parasitic Bunches for Time Structured Filling of the ESRF Storage Ring During Top Up Operation extraction, booster, kicker, electron 1774
 
  • E. Plouviez, L. Farvacque, J.M. Koch, T.P. Perron, B. Roche, K.B. Scheidt, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  In order to generate time structured synchrotron radiation the 6GeV ESRF storage ring can be operated with 16 buckets filled with 15nC separated by 16 gaps of 61 nearly perfectly empty buckets. The contrast required by some users between the population of the main and empty buckets is 1011. In order to obtain these empty buckets some RF knock out (cleaning) of the parasitic bunches is needed. Until now this cleaning was performed on the beam stored in the storage ring. Recently we have started to deliver this 16 bunches filling in a so called top up mode, drastically increasing the rate of the storage ring refills. In this top up mode it is very penalizing to perform the cleaning in the storage ring so we are now performing it in the booster synchrotron which accelerates the 200MeV beam coming from the linac up to 6GeV. We describe the set up used to perform the cleaning in the booster and all the measurement and experiments performed in order to correctly understand the origin of the unwanted electrons populating buckets of the gaps separating the 16 main bunches.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK064 Application of Smoothing Analysis in the Alignment and Installation Process of Particle Accelerator alignment, software, closed-orbit, Windows 1839
 
  • W. Wang, X.Y. He, L. Lin, F.F. Wu, Q. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  With the development of technology and theory of particle accelerator, the new particle accelerators will be built in the near future. Comparing with the running accelerators, higher efficiency and accuracy of installation and alignment are required. It is necessary for all the storage ring magnets to be placed with a high relative accuracy to meet the stringent demands of accelerator physics. Smoothing analysis is a practical method considering both relative accuracy and work efficiency. This article mainly introduces the principle and application of smoothing analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK065 A Software for Smoothing Magnet Track in Particle Accelerator* software, interface, alignment, network 1842
 
  • Q. Zhang, X.Y. He, G. Liu, W. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  This article describes a software for smoothing magnet track in particle accelerator. This paper introduces the development process of the software from the aspects of interface design, algorithm analysis, parameter meaning and so on. Magnet track smoothing means that under the conditions of meeting absolute accuracy, if the relative position error of the adjacent magnet is too large, it will cause the loss of beam, we call the track curve is not smooth enough. Smooth analysis can find these magnet components, the curve is smooth after a reasonable ad-justment. The software is based on the least square method. The software is tested by using the data of HLS storage ring, the results meet the needs of the work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK066 Beam Loss Simulation and Radiation Shielding for Top-Off Operation of Hefei Light Source electron, shielding, injection, simulation 1845
 
  • X. Zhou, J.Y. Li, J.G. Wang, S.W. Wang, W.B. Wu, W. Xu, K. Xuan, Q.B. Zeng
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The Hefei Light Source (HLS) is undergoing a series of upgrades to prepare for the top-off operation. To ensure radiation safety in the experimental hall under abnormal beam loss, simulations under various system errors in the HLS storage ring are performed to get in-depth understanding of the induced radiation nature. To make the radiation shielding more effective, a beam scraper is used to decrease the aperture opening of the vacuum chamber, and additional shielding is installed around the scraper. Simulation and beam test results are reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK071 The Novel Implementation of the Orbit Correction Algorithm for Solaris Storage Ring TANGO, controls, synchrotron, radiation 1861
 
  • P. Sagało, L.J. Dudek, A. Kisiel, G.W. Kowalski, A.I. Wawrzyniak
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
  • P.P. Goryl
    3controls, Kraków, Poland
 
  The storage ring which is located in the National Synchrotron Radiation Center SOLARIS works under the TANGO control system. So far the correction of an electron beam orbit has been performed with an algorithm implemented in the Matlab Middle Layer (MML). To ensure consistency of the correction process with the entire control system, a new implementation of this algorithm has been developed. The algorithm of orbit correction based on SVD has been implemented as a TANGO Device, which is one of the fundamental blocks used in the Tango control system. The entire code has been written in the Python.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK105 The Design Improvement of Horizontal Stripline Kicker in TPS Storage Ring kicker, impedance, vacuum, operation 1961
 
  • P.J. Chou, C.K. Chan, C.-C. Chang, K.T. Hsu, K.H. Hu, C.K. Kuan, I.C. Sheng
    NSRRC, Hsinchu, Taiwan
 
  We plan to replace the existing horizontal stripline kicker of the transverse feedback system with an improved design. Large reflected power was observed at the downstream port of stripline kicker driven by the feedback amplifier. A rapid surge of vacuum pressure was observed when we tested the high current operation in TPS storage ring in April 2016. A burned feedthrough of the horizontal stripline kicker was discovered during a maintenance shutdown. The improved design is targeted to reduce the reflection of driving power from feedback system and to reduce beam induced RF heating. This major modification of the design is described. The results of RF simulation performed with the electromagnetic code GdfidL are reported as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK113 Performance of the Fast Orbit Feedback System with the Double-Double Bend Achromat Installed in Diamond Light Source feedback, sextupole, controls, vacuum 1989
 
  • S. Gayadeen, G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  At Diamond Light Source, the Double-Double Bend Achromat (DDBA) lattice upgrade involved the conversion of one cell of the storage ring from a double bend achromat (DBA) structure to a double-DBA (DDBA). The new cell includes corrector magnets that are different in design to the DBA corrector magnets. The DDBA vacuum chamber cross section is also different from the DBA cells and includes both stainless steel and copper sections over which corrector magnets are fitted. The performance of the Fast Orbit Feedback (FOFB) used for electron beam stabilisation with the DDBA cell installed is presented in this paper. Firstly the different corrector magnet dynamic responses are characterised and secondly the closed loop performance of the FOFB is measured and analysed for the upgraded lattice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK115 Control System Developments for the Diamond Light Source DDBA Upgrade controls, feedback, vacuum, software 1996
 
  • W.A.H. Rogers, M.G. Abbott, K.A.R. Baker, N.W. Battam, M.J. Furseman, I.J. Gillingham, P. Hamadyk, M.T. Heron, D.G. Hickin, S.C. Lay, I.P.S. Martin, A.J. Rose
    DLS, Oxfordshire, United Kingdom
 
  Upgrading one Double Bend Achromat cell to a Double Double Bend Achromat (DDBA) cell in the Diamond Light Source storage ring* necessitated a broad range of changes to the overall control system. These changes covered developments to the interface layer of the controls system to incorporate changes to the underlying instrumentation, associated development of user interface, changes to real-time feedback and feed-forward processes and to the online accelerator model. Given the pressures to minimise the shutdown length, the control system developments were optimised for time effective installation and commissioning. This paper outlines the control system developments for DDBA, the management process and lessons learnt from this process.
* R.P. Walker et al., The Double-Double Bend Achromat (DDBA) Lattice Modification for the Diamond Storage Ring, Proc. IPAC 2014, MOPRO103, (2014)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA077 The Phase Slip Factor of the Electrostatic Cryogenic Storage Ring CSR ion, quadrupole, cryogenics, simulation 2255
 
  • M. Grieser, R. Hahn, S. Vogel, A. Wolf
    MPI-K, Heidelberg, Germany
 
  For the determination of the momentum spread of an ion beam from the measurable revolution frequency distribution the knowledge of the phase slip factor of the storage ring is necessary. At various working points of the cryogenic storage ring CSR installed at the MPI for Nuclear Physics in Heidelberg the slip factor was simulated and compared with measurements. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to magnetic storage rings. In the paper we compare the results of the simulations with the measurements  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA081 An MDM Spin Transparent Quadrupole for Storage Ring Based EDM Search quadrupole, lattice, closed-orbit, dipole 2264
 
  • Y. Dutheil, M. Bai
    FZJ, Jülich, Germany
  • D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  A storage ring provides an attractive option for directly measuring the electric dipole moment (EDM) of charged particles. To reach a sensitivity of 1029 e.cm, it is critical to mitigate the systematic errors from all sources. This daunting task is pushing the precision frontier of accelerator science and technology beyond its current state of the art. Here, we present a unique idea of a magnetic dipole moment (MDM) spin transparent quadrupole that can significantly reduce the systematic errors due to the transverse electric and magnetic fields that particle encounters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA082 Spin Tracking for a Deuteron EDM Storage Ring simulation, lattice, dipole, quadrupole 2267
 
  • Al.Alb. Skawran, A. Lehrach
    FZJ, Jülich, Germany
 
  The purpose of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the electric dipole moment (EDM) of charged particles like deuterons. There are two possible experimental setups under consideration for realization of this measurement with deuterons: The Frozen and Quasi Frozen Spin storage ring experiments. Both approaches are discussed and compared in this presentation. Various misalignments and systematic effects are simulated in the context of comparison. Furthermore the clockwise-counterclockwise method (CW-CCW) is applied and checked for its validity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA123 Status of DESIREE ion, injection, experiment, detector 2379
 
  • A. Simonsson, M. Björkhage, M. Blom, H. Cederquist, K. Chartkunchand, G. Eklund, A. Källberg, P. Löfgren, H. Motzkau, P. Reinhed, S. Rosén, H.T. Schmidt
    Stockholm University, Stockholm, Sweden
 
  DESIREE, the double electrostatic storage rings in Stockholm has been running since 2011(?). In the cold (13 K) environment with an excellent vacuum, very long storage times in both rings have been achieved, which has enabled the preparation of beams in a single quantum state. The status of DESIREE is presented with particular emphasis on measurements of stored beam currents in the sub-nA range. We also discuss the ongoing work towards stochastic cooling of very slow beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA134 Accelerators Validating Antimatter Physics (AVA) antiproton, experiment, electron, diagnostics 2414
 
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk'odowska-Curie grant agreement No 721559.
Antimatter experiments are at the cutting edge of science. They are, however, very difficult to realize and have been limited by the performance of the only existing facility in the world, the Antiproton Decelerator (AD) at CERN. The Extra Low Energy Antiproton ring (ELENA) will be a critical upgrade to this unique facility and commissioned from autumn 2016. This will significantly enhance the beam quality and enable new experiments. To fully exploit the discovery potential of this facility, advances are urgently required in numerical tools that can adequately model beam transport, life time and interaction, beam diagnostics tools and detectors to characterize the beam's properties, as well as in novel experiments that exploit the enhanced beam quality that ELENA will provide. AVA is a new European research and training initiative between universities, research centers and industry that will carry out R&D into ELENA and related facilities. This contribution gives an overview of the AVA research programme across its three scientific work packages.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA134  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA136 Using Sloppy Models for Constrained Emittance Minimization at the Cornell Electron Storage Ring (CESR) emittance, lattice, simulation, coupling 2418
 
  • W.F. Bergan, A.C. Bartnik, I.V. Bazarov, H. He, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.P. Sethna
    Cornell University, Ithaca, New York, USA
 
  Funding: DOE DE-SC0013571 NSF DGE-1144153
In order to minimize the emittance at the Cornell Electron Storage Ring (CESR), we measure and correct the orbit, dispersion, and transverse coupling of the beam.* However, this method is limited by finite measurement resolution of the dispersion, and so a new procedure must be used to further reduce the emittance due to dispersion. In order to achieve this, we use a method based upon the theory of sloppy models.** We use a model of the accelerator to create the Hessian matrix which encodes the effects of various corrector magnets on the vertical emittance. A singular value decomposition of this matrix yields the magnet combinations which have the greatest effect on the emittance. We can then adjust these magnet ‘‘knobs'' sequentially in order to decrease the dispersion and the emittance. We present here comparisons of the effectiveness of this procedure in both experiment and simulation using a variety of CESR lattices. We also discuss techniques to minimize changes to parameters we have already corrected.
* J. Shanks, D.L. Rubin, and D. Sagan, Phys. Rev. ST Accel. Beams 17, 044003 (2014).
** K.S. Brown and J.P. Sethna, Phys. Rev. E 68, 021904 (2003).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCA1 Performance of SOLARIS Storage Ring injection, electron, closed-orbit, photon 2490
 
  • A.I. Wawrzyniak, P.B. Borowiec, M.B. Jaglarz, A. Kisiel, P.M. Klimczyk, M.A. Knafel, M.P. Kopeć, A.M. Marendziak, S. Piela, P. Sagało, M.J. Stankiewicz, K. Wawrzyniak, M. Zając
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  After one year of the Solaris storage ring commission-ing excellent performance has been achieved. The optics was corrected close to the design values. However, some minor adjustments are still needed. The commissioning of the Solaris 1.5 GeV storage ring required a big effort in machine parameters optimization. Performance of posi-tion monitoring devices has proven essential for the suc-cessful optimization of beam parameters such as: closed orbit, tune, chromaticity, and dispersion. Now, the effort is focused on fine-tuning the machine by implementing the linear optics from orbit correction (LOCO) and reduc-ing the disparity between model and measured results revealed by the phase advance analysis and dispersion measurement. Moreover, during daily operation the main task is to maintain long-term stability of the circulating electron beam allowing for beamlines commissioning. Within this presentation the current status of the Solaris facility and the commissioning results will be reported.  
slides icon Slides WEOCA1 [13.180 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOCA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCA3 Status of the Development of Superconducting Undulators at the Advanced Photon Source undulator, photon, vacuum, FEL 2499
 
  • Y. Ivanyushenkov, C.L. Doose, J.F. Fuerst, E. Gluskin, Q.B. Hasse, M. Kasa, Y. Shiroyanagi
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
Superconducting planar undulator (SCU) technology has been developed and is currently in use at the Advanced Photon Source (APS). The experience of building and operating the first short-length, 16-mm period superconducting undulator, SCU0, paved the way for two 1-m long, 18-mm period devices, SCU18-1 and SCU18-2. The first of those undulators has been in operation since May 2015, while the second one replaced SCU0 in September 2016. The possibility of building planar SCUs with a high quality field has been demonstrated at the APS. The measured phase errors of SCU18-2 at the design operational current are only 2 degrees rms, for example. An FEL SCU prototype - a 1.5-m long, 21-mm period undulator - was also built and tested as part of an LCLS SCU R&D program. This undulator successfully achieved all LCLS-II undulator requirements including a phase error of 5 degrees rms. The superconducting undulator technology also allows the fabrication of circular polarizing devices. Currently, a new helical SCU is under construction at the APS. In addition, the concept of a novel Superconducting Arbitrarily Polarizing Emitter, or SCAPE, has been suggested and is now under development.
 
slides icon Slides WEOCA3 [2.826 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOCA3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB002 Pushing the MAX IV 3 GeV Storage Ring Brightness and Coherence Towards the Limit of its Magnetic Lattice optics, lattice, brightness, emittance 2557
 
  • S.C. Leemann
    MAX IV Laboratory, Lund University, Lund, Sweden
  • W.A. Wurtz
    CLS, Saskatoon, Saskatchewan, Canada
 
  The MAX IV 3 GeV storage ring is presently being commissioned and crucial parameters such as machine functions, emittance, and stored current have either already been reached or are approaching their design specifications*. Once the baseline performance has been achieved, a campaign will be launched to further improve the brightness and coherence of this storage ring for typical x-ray users. During recent years, several such improvements have been designed**. Common to these approaches is that they attempt to improve the storage ring performance using existing hardware provided for the baseline design. Such improvements therefore present more short-term upgrades. In this paper, however, we investigate medium-term improvements assuming power supplies can be exchanged in an attempt to push the brightness and coherence of the storage ring to the limit of what can be achieved without exchanging the magnetic lattice itself. We outline optics requirements, the optics optimization process, and summarize achievable parameters.
* WEPAB075 & WEPAB076 at IPAC17
** MOPHO05 at PAC2013, TUPRI026 at IPAC'4, PRAB 19 060701 (2016)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB004 Progress Status for the 10 Year Old SOLEIL Synchrotron Radiation Facility operation, injection, booster, undulator 2564
 
  • L.S. Nadolski, Y.-M. Abiven, P. Brunelle, A. Buteau, N. Béchu, M.-E. Couprie, X. Delétoille, J.M. Dubuisson, C. Herbeaux, N. Hubert, M. Labat, J.-F. Lamarre, P. Lebasque, A. Lestrade, A. Loulergue, M. Louvet, P. Marchand, O. Marcouillé, F. Marteau, A. Nadji, R. Nagaoka, F. Ribeiro, K.T. Tavakoli, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Synchrotron SOLEIL has just turned 10 years since its commissioning. The 2.75 GeV facility is now delivering very stable photon beams to 29 beam lines. A total of 5 operation modes are available in top-up. Maintaining and updating the key performance metric remains a daily work facing both aging of components and tighter operation requirements. Low-alpha operation is attracting more beam lines leading us to an upgrade of the Booster (BOO) radiofrequency (RF) system in order to increase the injection efficiency into the storage ring (SR). The femtoslicing experiment is now in production for a hard X-ray beam line; a dedicated chicane has been installed for a second beam line in the soft X-ray regime. The two long canted beam lines can operate simultaneously at minimum gaps since May 2016 thanks to the introduction of a dedicated photon absorber and a fast angle interlock. R&D work in several areas will be reported. In parallel lattice design are in progress both for short term and long term evolution of the ring performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 First MOGA Optimization of the Soleil Lattice lattice, injection, synchrotron, simulation 2568
 
  • L.S. Nadolski, P. Brunelle, X.N. Gavaldà
    SOLEIL, Gif-sur-Yvette, France
 
  The first optimization of the nonlinear beam dynamics of the SOLEIL synchrotron radiation light sources using Multi-Objective Genetic Algorithm is reported. After benchmarking ELEGANT against TRACY3, beam lifetime studies with the operation lattice and fine-tuning of the storage ring model, MOGA-ELEGANT was used to find the best settings of quadrupole and sextupole magnets in order to maximize the dynamic and momentum apertures used as proxies for the Touschek lifetime and the injection efficiency respectively. The solutions obtained after one month of computation in the high level computational cluster of SOLEIL using 200 CPUs are detailed. The improvement of the Touschek lifetime obtained with MOGA is confirmed by the beam-based experiments. The beam lifetime of the SOLEIL storage ring was increased experimentally by 40% as predicted by the simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB006 Performance Improvements of the BESSY II Storage Ring by Optimizing the Phase Acceptance injection, sextupole, resonance, optics 2571
 
  • P. Kuske, J. Li
    HZB, Berlin, Germany
 
  Linear optics modifications in order to improve injec-tion efficiency and for the installation of two IDs in one straight section demand an optimization of the sextupole correction scheme. Four harmonic sextupole families were sufficient with the earlier 8-fold symmetric lattice. Today there are ten families of harmonic sextupole mag-nets in addition to the three families of chromatic sextu-poles. This paper describes our experimental approach to find better settings for these harmonic sextupoles based on the direct optimization of the injection efficiency with a longitudinal phase offset between storage ring and the injector - in our case a booster synchrotron. As demon-strated in the paper, the resulting improvement of the phase acceptance of the ring leads to increased momen-tum acceptance by suppressing 3rd order non-systematic resonances. This increases not only the injection effi-ciency for long bunches but also the Touschek lifetime, the largest contribution to the overall lifetime of low emittance storage rings.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB035 Elettra Status Present Upgrades and Plans undulator, operation, controls, photon 2657
 
  • E. Karantzoulis, A. Carniel, M. Cautero, B. Diviacco, S. Krecic, R. Visintini
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The operational status of the Italian 2.4/2.0 GeV third generation light source Elettra is presented together with an account of some present upgrades and plans for the near future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB040 Upgrade Plan of Synchrotron Radiation Source at Hiroshima Synchrotron Center, Hiroshima University synchrotron, emittance, radiation, synchrotron-radiation 2670
 
  • K. Kawase, S. Matsuba
    HSRC, Higashi-Hiroshima, Japan
 
  Hiroshima Synchrotron Radiation Center belonging to Hiroshima University is a user facility of the synchrotron radiation with the wavelength of ultraviolet range for natural science especially including materials and biological sciences. The kely apparatus is an electron storage ring with energy of 700 MeV. This machine is a racetrack shape with large two bending magnets and the injection energy is 150 MeV. It is a very compact size with the circumstance of 30 m, but it has only 2 insertion section and the emittance is much larger than the modern synchrotron radiation sources. Therefore, all of users is eager to upgrade the radiation source with several straight sections and low emittance beam keeping compactness. To meet these requests, we are designing the storage ring based on MAX-III. In this conference, we show the present design of the storage ring and its injector.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB048 Present Status of Accelerators in Aichi Synchrotron Radiation Center synchrotron, operation, radiation, synchrotron-radiation 2691
 
  • M. Hosaka, T. Ishida, A. Mano, A. Mochihashi, Y. Takashima
    Nagoya University, Nagoya, Japan
  • Y. Hori, N. Yamamoto
    KEK, Ibaraki, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
  • S. Koda
    SAGA, Tosu, Japan
  • H. Ohkuma, S. Sasaki
    JASRI/SPring-8, Hyogo-ken, Japan
 
  Aichi Synchrotron Radiation Center is a synchrotron radiation facility in operation since 2013. The electron energy of the storage ring is 1.2 GeV and the circumference is 72 m. In spite of the compact size of the storage ring, synchrotron radiation up to hard X-ray region (~20 keV) is available from the 5 T super conducting bending magnets. Presently (Dec. 2016), 8 beamlines (5 hard X-ray and 3 soft X-ray) are in operation and 2 new hard X-ray beamlines are under commissioning. This contribution reports on the present status as well as machine studies to improve the performance of the accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB050 Commissioning of SESAME Storage Ring injection, optics, sextupole, kicker 2694
 
  • M. Attal, A.A. Abbadi, I.A. Abid, T.H. Abu-Hanieh, A. Al-Dalleh, H. Al-Mohammad, M.A. Al-Najdawi, D.S. Foudeh, A. Hamad, E. Huttel, A. Ismail, S.Kh. Jafar, K. Manukyan, I. Saleh, N.Kh. Sawai, M.M. Shehab
    SESAME, Allan, Jordan
 
  SESAME light source uses a 2.5GeV storage ring, designed to produce synchrotron light in the hard X-ray region. The 133.2 m circumference ring composed of 16 Double Bend Achromat cells with 16 dispersive straight sections, offers a maximum capacity of 25 beamlines. The storage ring is filled with electrons using an 800MeV injector of 1 Hz repetition rate. This article reports on the main results and first experience of storage ring commissioning and operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB052 Progress of the Lattice Design and Physics Studies on the High Energy Photon Source lattice, injection, booster, emittance 2697
 
  • Y. Jiao, X. Cui, Z. Duan, Y.Y. Guo, D. Ji, J.Y. Li, X.Y. Li, Y.M. Peng, Q. Qin, S.K. Tian, J.Q. Wang, N. Wang, Y. Wei, G. Xu, H.S. Xu, F. Yan, C.H. Yu, Y.L. Zhao
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by NSFC (11475202, 11405187, 11205171)
The High Energy Photon Source (HEPS) is a 6-GeV, kilometer-scale, ultralow-emittance storage ring light source to be built in Beijing, China. In this paper we will discuss the progress of the lattice design and related physics studies on HEPS, covering issues of storage ring design, booster design, injection design, collective effects, error study, insertion device effects, longitudinal dynamics, etc.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB054 Candidate HEPS Lattice Design With Emittances Approaching the Diffraction Limit of Hard X-Rays lattice, emittance, dipole, brightness 2703
 
  • Y. Jiao, S.Y. Chen, G. Xu
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by NSFC (11475202, 11405187)
The High Energy Photon Source is a 6-GeV, kilometre-scale storage ring light source to be built in Beijing. A lattice of the storage ring was proposed, consisting of 48 hybrid 7BAs, and having a natural emittance of 60 pm and a circumference of ~1.3 km. In this paper, we discuss the possibility of further reducing the emittance to approach the diffraction limit of hard X-ray with 'typical' wavelength of 1 Å. We introduce the considerations on the choice of lattice structure and circumference, and concrete lattice designs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB055 Characterizing the Nonlinear Performance of a DLSR With the Effective Acceptance of the Bare Lattice lattice, resonance, sextupole, emittance 2706
 
  • Y. Jiao, Z. Duan, G. Xu
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by NSFC (11475202, 11405187, 11605212)
In a diffraction-limited storage ring (DLSR) light source, associated with the strong focusing and sextu-poles, the detuning terms are large and integer and half integer resonances can be reached at small momentum deviation and transverse amplitudes. We propose to use the effective ring acceptances of the bare lattice to characterize the nonlinear performance of the actual ring, by considering the limiting effects of integer and half integer resonances on beam dynamics. Such a concept will be very useful in lattice design of a DLSR light source. In this paper, we will discuss the reasoning, verification, and application range of this definition.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB060 Design Study for the First Version of the HALS Lattice lattice, sextupole, emittance, quadrupole 2713
 
  • Z.H. Bai, W. Li, L. Wang, P.H. Yang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The Hefei Advanced Light Source (HALS) was proposed as a future soft X-ray diffraction-limited storage ring at NSRL. Recently the first version lattice of the HALS storage ring has been studied using a new lattice design concept that we proposed for diffraction-limited storage rings. In this new concept, the beta functions of each cell are made to be locally symmetric. In this paper, an 8BA lattice and a 6BA lattice are designed for the HALS with the first and the second kind of the new concept, respectively. In their nonlinear optimization, good dynamic aperture and momentum aperture can be easily obtained. Especially the dynamic momentum aperture can be larger than 7% or even 10%, which enables long beam lifetime and implementation of longitudinal injection scheme. The studied 6BA lattice is at present considered as the nominal HALS lattice of the first version.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB063 Considerations on Developing a Dedicated Terahertz Light Source Based on the HLS-II Storage Ring radiation, synchrotron, synchrotron-radiation, electron 2716
 
  • S.W. Wang, J.Y. Li, W.B. Wu, W. Xu, K. Xuan, X. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  There is an increasing interest in generating terahertz radiation for different kinds of researches. A high-power terahertz light source can be realized through coherent synchrotron radiation from a storage ring. The radiation power of coherent synchrotron radiation is proportional to square of the number of electrons in a bunch. To generate coherent synchrotron radiation, the electron bunch length should be shorter than its radiation wavelength. This paper presents our preliminary study on developing a terahertz light source based on Hefei Light Source. We will introduce the status of Hefei Light Source (HLS) and discusses the approach to change it to a dedicated Terahertz light source using coherent synchrotron radiation. Several schemes are proposed to shorten the electron bunch length in the storage ring, including using a low alpha lattice, adopting a magnetic chicane and upgrading the RF system with much higher frequency. The related beam instabilities are also analyzed to predict the beam current threshold.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB064 Upgrade Project on Top-Off Operation for Hefei Light Source operation, injection, radiation, controls 2719
 
  • W. Xu, D. Jia, S.P. Jiang, C. Li, J.Y. Li, J.G. Wang, K. Xuan, Y.L. Yang, Q.B. Zeng, X. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Hefei Light Source has successfully finished a major upgrade project and has been officially opened to users since January 2015. The upgrade project mainly includes increasing the linac injector energy from 200 MeV to 800 MeV which is the same as the ring energy, changing the ring lattice structure from TBA to DBA in order to provide more straight sections for insertion devices while keeping the circumference unchanged, and lowering the beam emittance to obtain higher photon brightness. Before the upgrade project, decay mode is the only choice for the operation of Hefei Light Source. This is because the injected beam from the linac injector needs to be ramped up to 800 MeV after injection. At prensent we have the conditions to operate Hefei Light Source with top-off mode since the linac can perform full-energy and bunch-by-bunch injection. The main challenge for the top-off operation is to control the radiation dose for personal and equipment safety, and to maintain high stability and reliability of the injector. In this paper, we report our work on the top-off operation project for Hefei Light Source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB067 Electron Beam Lifetime in SOLARIS Storage Ring electron, scattering, vacuum, damping 2731
 
  • M.B. Jaglarz, P.B. Borowiec, A. Kisiel, A.I. Wawrzyniak
    Solaris, Kraków, Poland
  • A.M. Marendziak
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  Solaris storage ring is a recently constructed and commissioned machine. At the beginning of storage ring operation the lifetime was very short mostly dominated by the ion trapping and residual gas scattering. After a 390 A·h of beam cleaning the measured total lifetime has reached 20 h for 100mA of a stored current. Since the main contribution to the total lifetime in the storage ring comes from single Coulomb and Touschek scattering the dependence of the residual gas pressure and the vertical aperture of storage ring is investigated. Moreover to improve the Touschek lifetime the 3rd harmonic cavities were installed. Recently the cavities were tuned close to the resonance and the total lifetime increased significantly. This presentation will report on the lifetime measurements and calculations carried out for Solaris 1.5 GeV storage ring at different vacuum and RF conditions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB068 Residual Gas in the Vacuum System of the Solaris 1.5GeV Electron Storage Ring vacuum, electron, ion, injection 2734
 
  • A.M. Marendziak, S. Piela, M.J. Stankiewicz, A.I. Wawrzyniak, M. Zając
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
  • E. Al-Dmour
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Solaris is a third generation light source constructed at the Jagiellonian University in Kraków, Poland. The machine was designed by the MAX IV Laboratory team. The replica of the 1.5 GeV storage ring with 96 m circumference of a vacuum system was successfully built and now the synchrotron facility is after the 3rd phase of commissioning. Recent installation of the Residual Gas Analyzer (RGA) in the storage ring allows now for evaluation of the residual gas composition. Within this paper the result of residual gas analysis in the vacuum system of storage ring during different states of the machine will be presented. Result of vacuum performance regarding beam cleaning and beam lifetime will be presented. Moreover, the NEG strips performance will be evaluated and reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB069 Possible Suppression of Head-Tail Instability by a Feedback Kicker for a Light Source Without Any Sextupole sextupole, emittance, dynamic-aperture, resonance 2738
 
  • T.-Y. Lee, B.H. Oh
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  As storage ring based light sources pursue as low emittance as possible down to the diffraction limited number by adopting as many bending magnets and quadrupoles in a cell, the number of sextupole magnets required to correct chromaticity and secure a sufficiently big dynamic aperture grows substantially. As a result, the circumference of a multi-bend achromatic lattice storage ring is typically very long. This paper discusses over a possible scheme to run a storage ring without sextupole magnets at all and suppress the head-tail instability by using a transverse feedback kicker.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB071 Single Bunch Bucket Selection Injection Modes in the ALBA Storage Ring injection, linac, operation, electron 2744
 
  • R. Muñoz Horta, G. Benedetti, D. Lanaia, J. Moldes, F. Pérez, M. Pont, L. Torino
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA Synchrotron has been operating routinely in top-up mode since 2014, performing reinjections of multi-bunches every 20 minutes. Recently, the control of the timing has been upgraded to allow single bunches to be injected into any storage ring bucket and therefore to top up the stored current also in single bunch injector mode. In addition, by means of a specific algorithm, a new injection mode called Single Bunch Bucket Selection (SBBS) has been developed to provide any kind of filling pattern in the ALBA storage ring. This mode controls independently the amount of current injected into each bucket, and injects first into those buckets with lowest charge. When used in top-up mode, SBBS keeps the charge distribution of the filling pattern with a uniformity below 10%. The improved flexibility and stability of the filling pattern increases the scope of research for the ALBA experiments and for machine studies development. The implementation of the new injection modes and their performance are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB073 First Measurements of Pulse Picking by Resonant Excitation (PPRE) at the MAX IV 3 GeV Storage Ring emittance, diagnostics, timing, feedback 2750
 
  • T. Olsson, Å. Andersson
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  At synchrotron light storage rings there is demand for serving high-brilliance users requesting multibunch operation while simultaneously serving timing users who require single-bunch operation. One method to accomplish this is PPRE developed and currently in user operation at BESSY-II. In the method, the transverse emittance of one of the bunches in the bunch train is increased by an incoherent betatron excitation. Part of the light from this bunch can then be separated from the multibunch light by an aperture in the beamline, resulting in single-bunch light for the experiment. Methods such as this expand the scope of storage rings without requiring special fill patterns. This is of growing interest due to the upgrade trend towards diffraction-limited storage rings where it becomes more challenging to operate with inhomogeneous fill patterns. Measurements of PPRE were performed at the MAX IV 3 GeV storage ring utilizing the bunch-by-bunch feedback system both for excitation and as a diagnostic. Furthermore, measurements involving direct beam imaging at the diagnostics beamline allowed quantifying the effect of this excitation on the horizontal and vertical emittance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB075 First Optics and Beam Dynamics Studies on the MAX IV 3 GeV Storage Ring injection, emittance, optics, synchrotron 2756
 
  • S.C. Leemann, Å. Andersson, M. Sjöström
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  We present results from beam commissioning of the MAX IV 3 GeV storage ring as well as a summary of the beam dynamics studies that have so for been carried out. We report on injection and accumulation using a single dipole kicker, top-up injection, slow orbit feedback, restoring the linear optics to design, effects of in-vacuum undulators with closed gaps, and adjusting nonlinear optics to achieve design chromaticity correction as well as dynamic aperture sufficient for high injection efficiency and good Touschek lifetime.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB085 Siam Photon Source: Present Machine Status and Future Upgrades injection, electron, photon, operation 2770
 
  • P. Klysubun, S. Boonsuya, N. Juntong, K. Kittimanapun, S. Kongtawong, S. Krainara, A. Kwankasem, T. Pulampong, P. Sudmuang, N. Suradet
    SLRI, Nakhon Ratchasima, Thailand
 
  Siam Photon Source, the Thailand synchrotron light source, has received several upgrades in recent years. Most important of which are the improvement of the positional stability of the stored electron beam, and the installation of 2 IDs, i.e. a 2.2 T hybrid multipole wiggler and a 6.5 T superconducting wavelength shifter, to extend the available SR spectrum into hard x-ray region. The beam stability improvement was achieved through several activities, including improving the BPM system, upgrading the existing corrector power supplies, and implementing global orbit feedback. The two new IDs provide higher-intensity and higher-energy (up to 25 keV) synchrotron light, which will be utilized for MX, high-energy SAXS, WAXS, XAS, and microtomography. Ongoing machine upgrades include increasing the energy of the booster and transport line to 1.2 GeV for full-energy injection and eventual top-up operation. Utilization of the electron beam is also being explored. A beam test facility, which extracts electron beam in the booster for characterizing high-energy particle sensors, as well as calibrating other beam diagnostic instruments, has been constructed and is now in operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB091 Progress on Transparent Realignment of the Diamond Storage Ring alignment, controls, monitoring, survey 2790
 
  • M. Apollonio, R. Bartolini, W.J. Hoffman, A.J. Rose, A. Thomson
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  The mechanical alignment of Diamond Storage Ring is achieved by means of a 5-axis motion system under remote control via the EPICS toolkit from the Diamond Control Room. We have completed the first phase of the realignment program meant to improve the mechanical alignment of the machine by carefully moving the magnet girders with a virtually zero impact on the associated beamlines, hence the name Transparent Realignment (TR). During this phase we have equipped and realigned 3 out of 24 cells, involving two beamlines. We have also tested and perfected the technique to execute a move with live beam and total remote control of the realignment process. The program has entered a second phase entailing the commissioning of 6 more cells. Details of tests on the machine are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB093 Mechanical Engineering of the Diamond DDBA Upgrade insertion-device, insertion, vacuum, electron 2794
 
  • N.P. Hammond, A.G. Day, R.K. Grant, R. Holdsworth, J. Kay
    DLS, Oxfordshire, United Kingdom
 
  The Diamond storage ring has been upgraded to replace one cell of Double Bend Achromat (DBA) with a Double Double Bend Achromat (DDBA). This upgrade has enabled the construction of a new straight to install a much brighter insertion device X-ray source for a new beamline rather than use a weaker bending magnet source. The engineering challenges and experience from this project are described, especially those aspects relevant to building a future low emittance storage ring at Diamond.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB094 Diamond: Ten Years of Operation operation, cavity, vacuum, controls 2797
 
  • V.C. Kempson
    DLS, Oxfordshire, United Kingdom
 
  In January 2017 Diamond Light Source reached ten years of operation, providing beam to beam lines and users. At the start of operations there was an initial suite of 7 beam lines, phase 1. We are now in the later part of a phase 3 beam line upgrade bringing the total number of beam lines up to 29+ which is close to maximum capacity. The 3GeV storage ring has had a number of modifications and improvements across the last 10 years culminating in the recent (Autumn 2016) addition of a major local lattice modification, DDBA , reported elsewhere at this conference. This review paper will look at machine improvements operationally and machine developments that improved overall performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB095 Electron Beam Commissioning of the DDBA Modification to the Diamond Storage Ring injection, dipole, emittance, lattice 2800
 
  • I.P.S. Martin, M. Apollonio, C.P. Bailey, R. Bartolini, C. Christou, R.T. Fielder, M.J. Furseman, E. Koukovini-Platia, T. Pulampong, G. Rehm, W.A.H. Rogers, B. Singh
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  The Diamond storage ring has been modified by replacing one of the existing double bend achromat (DBA) cells with a double-DBA (DDBA) cell*. This change represents the largest modification to the storage ring since it was first commissioned in 2006, and was installed and fully commissioned during a single 8 week shutdown in autumn 2016. In view of this tight schedule, the planned commissioning steps and all high-level software needed to be developed and thoroughly tested in advance. Electron beam commissioning occupied the final 2 weeks of the shutdown, during which the injected electrons were captured and accumulated, the correct linear lattice was established, the nonlinear beam dynamics were studied, IDs were closed and the target 300 mA was achieved. This paper presents an overview of these activities.
* R.P. Walker et al., 'The Double-Double Bend Achromat (DDBA) Lattice Modification for the Diamond Storage Ring', Proc. IPAC 2014, MOPRO103, (2014)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB103 On-Axis Swap-Out Injection R+D for ALS-U kicker, injection, emittance, alignment 2821
 
  • C. Steier, A. Anders, S. De Santis, T.H. Luo, T. Oliver, G.C. Pappas, C. Sun, C.A. Swenson, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The ALS-U upgrade promises to deliver diffraction limited performance throughout the soft x-ray range by lowering the horizontal emittance by a factor of 40 compared to the current ALS. One of the consequences of producing a small emittance is a small dynamic aperture, although the momentum acceptance will remain large enough for acceptable beam lifetime. To overcome this challenge, ALS-U will use on-axis swap-out injection to exchange bunch trains between the storage ring and an accumulator ring. On-axis swapout injection requires special fast pulsers and state-of-the-art stripline kicker magnets. This paper reports on the results of the on-axis swap-out injection R&D program, including beam tests of a complete stripline kicker/pulser system on the current ALS and the development of methods to speed up beam based commissioning after the upgrade shutdown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB104 Status of the Conceptual Design of ALS-U emittance, lattice, kicker, vacuum 2824
 
  • C. Steier, A.P. Allézy, A. Anders, K.M. Baptiste, J.M. Byrd, K. Chow, G.D. Cutler, S. De Santis, R.J. Donahue, R.M. Duarte, J.-Y. Jung, S.C. Leemann, M. Leitner, T.H. Luo, H. Nishimura, T. Oliver, O. Omolayo, J.R. Osborn, G.C. Pappas, S. Persichelli, M. Placidi, G.J. Portmann, S. Reyes, D. Robin, F. Sannibale, C. Sun, C.A. Swenson, M. Venturini, W.L. Waldron, E.J. Wallén, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The ALS-U upgrade promises to deliver diffraction limited performance throughout the soft x-ray range by lowering the horizontal emittance to about 50~pm resulting in 2-3 orders of brightness increase for soft x-rays compared to the current ALS. The design utilizes a multi bend achromat lattice with on-axis swap-out injection and an accumulator ring. One central design goal is to install and commission ALS-U within a short dark period. This paper summarizes the status of the conceptual design of the accelerator, as well as some results of the R&D program that has been ongoing for the last 3 years.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB105 Design of the ALS-U Storage Ring Lattice lattice, emittance, quadrupole, focusing 2827
 
  • C. Sun, J.-Y. Jung, H. Nishimura, D. Robin, F. Sannibale, C. Steier, C.A. Swenson, M. Venturini, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory is proposing the upgrade of its synchrotron light source to reach soft x-ray diffraction limits within the present ALS footprint. The storage ring lattice design and optimization of this light source is one of the challenging aspects for this proposed upgrade. The candidate upgrade lattice needs not only to fulfill the physics design requirements such as brightness, injection efficiency and beam lifetime, but also to meet engineering constraints such as space limitations, maximum magnet strength as well as beamline port locations. In this paper, we will present the lattice design goals and choices and discuss the optimization approaches for the proposed ALS upgrade.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB114 Potential Performance Limit of Storage Rings emittance, quadrupole, sextupole, optics 2836
 
  • X. Huang
    SLAC, Menlo Park, California, USA
 
  The next generation of storage ring light sources will have significantly higher performance as multi-bend achromat cell structures are made practical with strong quadrupole and sextupole magnets. In principle the natural emittance can be made ever smaller with stronger magnets and larger rings until it reaches the true diffraction limit for hard X-rays. By considering the scaling laws of linear optics and nonlinear beam dynamics of storage rings and technical challenges, we explore the potential performance limit of future storage rings. A similar discussion may be applicable to the limit of energy frontier heavy-ion storage ring colliders.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB120 Reproducibility Issues of NSLS-II Storage Ring and Modeling of the Lattice operation, lattice, quadrupole, dipole 2851
 
  • J. Choi, W. Guo, T.V. Shaftan, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE Contract No: DE-SC0012704
As other facilities, in operating NSLS-II, we develop the lattices based on theoretical and simulation studies. Then the lattice is applied and the machine is optimized to have the desired design parameters. This process is very typical and works well and, furthermore, there is a general understanding that a model with the field measurement data is not realized as it is. However, it is evident that if the model represents the real machine close enough, there are lots of advantages we can take. One of them can be producing the lattice with changing environments. In this paper, we discuss the NSLS-II reproducibility status and efforts to construct the faithful realistic model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK028 Status of the Electron-Positron Collider VEPP-4 electron, collider, positron, experiment 2985
 
  • P.A. Piminov
    BINP SB RAS, Novosibirsk, Russia
 
  The next phase of the e+e collider VEPP-4 (Budker INP, Novosibirsk) is focused on experiments in the energy range from 4 to 10 GeV (c.m.). To recover the lack of positrons at high energy a new positron source was connected to the collider. The paper discusses the facility performance with new injection and other aspects of experimental study at high energy including laser polarimeter for precise energy calibration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK049 Overview of the eRHIC Ring-Ring Design electron, luminosity, proton, polarization 3035
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, W. Fischer, W. Guo, Y. Hao, A. Hershcovitch, Y. Luo, F. Méot, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Seletskiy, T.V. Shaftan, V.V. Smaluk, S. Tepikian, D. Trbojevic, E. Wang, F.J. Willeke, H. Witte, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The ring-ring electron-ion collider eRHIC aims at an electron-ion luminosity in the range from 1032 to 1033cm-2sec-1 over a center-of-mass energy range from 20 to 140GeV. To minimize the technical risk the design is based on existing technologies and beam parameters that have already been achieved routinely in hadron-hadron collisions at RHIC, and in electron-positron collisions elsewhere. This design has evolved considerably over the last two years, and a high level of maturity has been achieved. We will present the latest design status and give an overview of studies towards evaluating the feasibility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK052 Energy Acceptance and on Momentum Aperture Optimization for the Sirius Project lattice, betatron, resonance, dynamic-aperture 3041
 
  • P.S. Dester, L. Liu, F.H. de Sá
    LNLS, Campinas, Brazil
 
  A fast objective function to calculate Touschek lifetime and on momentum aperture is essential to explore the vast search space of strength of quadrupole and sextupole families in Sirius. Touschek lifetime is estimated by using the energy aperture (dynamic and physical), rf system parameters and driving terms. Non-linear induced betatron oscillations are considered to determine the energy aperture. On momentum aperture is estimated by using a chaos indicator and resonance crossing considerations. Touschek lifetime and on momentum aperture constitute the objective function, which was used in a multi-objective genetic algorithm to perform an optimization for Sirius.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK053 Studies of Delta-Type Undulators for Sirius undulator, polarization, lattice, dynamic-aperture 3045
 
  • L.N.P. Vilela, L. Liu, X.R. Resende, F.H. de Sá
    LNLS, Campinas, Brazil
 
  In this work we present the studies of the effects of Delta-type undulators in the storage ring beam dynamics of Sirius. The undulators were included in the ring model as kick maps and their effects on tune shift, dynamic aperture and beam lifetime were evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK054 Evaluation and Attenuation of Sirius Components Impedance impedance, HOM, dipole, vacuum 3048
 
  • H.O.C. Duarte, L. Liu, S.R. Marques
    LNLS, Campinas, Brazil
 
  The Sirius in-vacuum components have their design improvements, possibilities and choices presented, where wake heating, single-bunch and multi-bunch effects and mechanical aspects were taken into account. The results were finally evaluated and added to the Sirius impedance budget.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK055 Analysis and Countermeasures of Wakefield Heat Losses for Sirius HOM, impedance, simulation, vacuum 3052
 
  • H.O.C. Duarte, L. Liu, S.R. Marques, T.M. da Rocha, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Design evaluation and possible solutions for several in-vacuum components of Sirius are presented, having their impedance analysis focused on mitigating the wake heating impact. Thermal and/or structural simulation of the models are carried out by considering the heat load directly obtained from wakefield simulations with resistive wall boundary conditions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK058 Preliminary Longitudinal Impedance Model for the ESRF-EBS impedance, vacuum, simulation, undulator 3063
 
  • S.M. White
    ESRF, Grenoble, France
 
  In light sources, longitudinal beam coupling impedance can deteriorate performance through bunch lengthening or increased longitudinal emittance due to the microwave instability. Simulation estimates are therefore required to devise the appropriate counter-measures if necessary. The main contributors to the longitudinal impedance model of the new ESRF-EBS storage ring were simulated. A preliminary longitudinal impedance model is presented and preliminary tracking simulations are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK068 Non-Linear Beam Dynamics Studies of the CLIC Damping Wiggler Prototype wiggler, operation, optics, damping 3087
 
  • J. Gethmann, A. Bernhard, E. Blomley, E. Huttel, A.-S. Müller, A.I. Papash, M. Schedler
    KIT, Karlsruhe, Germany
  • Y. Papaphilippou, P. Zisopoulos
    CERN, Geneva, Switzerland
  • K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Julian Gethmann acknowledges the support by the DFG-funded Doctoral School Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology
First beam dynamics studies of a damping wiggler prototype for the CLIC damping rings have been carried out at the KIT storage ring. Effects of the 2.9 T superconducting wiggler on the electron beam in the 2.5 GeV standard operation mode have been measured and compared with theoretical predictions. Higher order multipole components were investigated using local orbit bump measurements. Based on these findings the simulation models for the storage ring optic have been adjusted. The refined optics model has been applied to the 1.3 GeV, low-operation case. This case will be used to experimentally benchmark beam dynamics simulations involving strong wiggler fields and dominant collective effects. We present these measurements, comparisons and the findings of the simulations with the updated low-mode optics model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK071 Resistive-Wall Impedance Effects for the New KEK Light Source impedance, vacuum, betatron, feedback 3095
 
  • N. Nakamura
    KEK, Ibaraki, Japan
 
  KEK Light Source (KEK-LS) is a 3-GeV storage ring of 20-cell HMBA (Hybrid Multi-Bend Achromat) lattice*, which is planned to be constructed as a successor of the two existing Photon Factory storage rings (PF ring and PF-AR) in the KEK Tsukuba Campus. In this ring, a lot of in-vacuum undulators with a small magnetic gap (4 mm at minimum) will be installed and the vacuum pipe of a small aperture (25 mm in diameter) will be used. In addition, NEG coating, having a low electric conductivity, will be utilized for the vacuum pipe to ensure a sufficient beam lifetime early in the machine commissioning. In this paper, the heating power due to the longitudinal RW impedance and the growth rate of coupled-bunch instability caused by the transverse RW impedance are calculated and the effects of the RW impedance on KEK-LS are presented.
* K. Harada et al., Proc. of IPAC2016, Busan, Korea, pp.3251-3253; K. Harada et al., these proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK099 Beam Lifetime Studies for SPS Storage Ring insertion-device, operation, insertion, simulation 3178
 
  • P. Sudmuang, N. Juntong, P. Klysubun, T. Pulampong, N. Suradet
    SLRI, Nakhon Ratchasima, Thailand
 
  Limitation of beam lifetime was systematically investigated and studied for Siam Photon Source (SPS) storage ring. The objective was to identify the main cause of the observed reduction of beam lifetime. The simulations of momentum acceptance and Touschek lifetime were performed, incorporating non-linear effects generated by the installed high-field insertion devices. The Touschek lifetime was measured as a function of RF voltage and compared with the values obtained from simulation. The measurements were performed for a variety of different operation conditions of the insertion devices and different chromaticities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK117 A Comprehensive Study of the Microwave Instability lattice, simulation, electron, vacuum 3224
 
  • A. Blednykh, B. Bacha, G. Bassi, O.V. Chubar, M.S. Rakitin, V.V. Smaluk, M. Zhernenkov
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-SC0012704
Several instability thresholds and special waveform beam pattern have been observed during measurements of the horizontal beam size change vs single bunch current by the synchrotron light monitor (SLM) camera installed in a low dispersion area of the NSLS-II storage ring. The electron beam energy spread from In-Vacuum Undulator (IVU) of the Soft Matter Interfaces (SMI) beam line confirmed the microwave beam pattern behavior as a current dependent effect. The numerically obtained total longitudinal wakepotential by the GdfidL code allowed us to compare the measured results with particle tracking simulations using the SPACE code. The instability thresholds behavior at different RF voltages are in some sort of overarching agreement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK118 Synchronous Phase Shift from Beam Loading Analysis beam-loading, cavity, operation, resonance 3227
 
  • G. Bassi, A. Blednykh, J. Rose, V.V. Smaluk, J. Tagger
    BNL, Upton, Long Island, New York, USA
 
  We discuss measurements, performed in the NSLS-II storage ring, of the synchronous phase shift as a function of single bunch current from beam loading parameters. The synchronous phase is calculated from the forward and reflected power measured in the RF cavities. The comparison with direct synchronous phase measurements shows good agreement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK119 Lost Muon Study for the Muon g-2 Experiment at Fermilab positron, background, quadrupole, experiment 3230
 
  • J.D. Crnkovic, W. Morse
    BNL, Upton, Long Island, New York, USA
  • S. Ganguly
    University of Illinois at Urbana-Champaign, Urbana, USA
  • D. Stratakis
    Fermilab, Batavia, Illinois, USA
 
  The Fermilab Muon g-2 Experiment has a goal of measuring the muon anomalous magnetic moment to a precision of 140 ppb - a fourfold improvement over the 540 ppb precision obtained by the BNL Muon g-2 Experiment. Some muons in the storage ring will interact with material and undergo bremsstrahlung, emitting radiation and loosing energy. These so called lost muons will curl in towards the center of the ring and be lost, but some of them will be detected by the calorimeters. A systematic error will arise if the lost muons have a different average spin phase than the stored muons. Algorithms are being developed to estimate the relative number of lost muons, so as to optimize the stored muon beam. This study presents initial testing of algorithms that can be used to estimate the lost muons by using either double or triple detection coincidences in the calorimeters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK120 Simulated performance of the Production Target for the Muon g-2 Experiment at Fermilab target, experiment, proton, polarization 3234
 
  • D. Stratakis, M.E. Convery, J.P. Morgan, D.A. Still, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • V. Tishchenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
The Muon g-2 Experiment plans to use the Fermilab Recycler Ring for forming the proton bunches that hit its production target. The proposed scheme uses one RF system, 80 kV of 2.5 MHz RF. In order to avoid bunch rotations in a mismatched bucket, the 2.5 MHz is ramped adiabatically from 3 to 80 kV in 90 ms. In this study, the interaction of the primary proton beam with the production target for the Muon g-2 Experiment is numerically examined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK122 Applying Square Matrix to Optimize Storage Ring Nonlinear Lattice lattice, resonance, dynamic-aperture, sextupole 3241
 
  • Y. Li, L. Yu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Supported by US DOE Contract No. DE-AC02-98CH10886 and DE-SC0012704.
A new method of using linear algebra technique to analyze periodical nonlinear beam dynamics is presented. For a given dynamical system, a square upper triangular transfer matrix is constructed out of a one turn Taylor transfer map. First we separate the matrix into different low dimensional invariant subspaces according to their eigenvalues. Then a stable Jordan transformation can be obtained on each subspace. The transformation provides an excellent action-angle approximation to the solution of the nonlinear dynamics. And the deviation of the new action from constancy provides a measure of the nonlinearity of the motions, which provides a novel method to optimize the nonlinear dynamic system. We applied this method to optimize various rings, such as NSLS-II, SPEAR3, and APS-U lattice, the promising dynamic aperture have been achieved from both tracking simulation and experimental measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA047 Input Signal Generation for Barrier Bucket RF Systems at GSI cavity, synchrotron, operation, impedance 3359
 
  • J. Harzheim, D. Domont-Yankulova, K. Groß, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Frey, H. Klingbeil
    GSI, Darmstadt, Germany
 
  At the GSI facility in Darmstadt, Germany, Barrier Bucket RF systems are currently designed for the SIS 100 synchrotron (part of the future FAIR facility) and the Experimental Storage Ring (ESR). The purpose of these systems is to provide single sine voltage pulses at the cavity gap. Due to the high requirements regarding the gap signal quality, the calculation of the pre-distorted input signal plays a major role in the system development. A procedure to generate the input signal based on the dynamic properties in the linear region of the system has been developed and tested at a prototype system. It was shown that this method is able to generate single sine gap signals of high quality in a wide voltage range. As linearity can only be assumed up to a certain magnitude, nonlinear effects limit the quality of the output signal at very high input levels. An approach to overcome this limit is to extend the input signal calculation to a nonlinear model of the system. In this contribution, the current method to calculate the required input signal is presented and experimental results at a prototype system are shown. Additionally, first results in the nonlinear region are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA052 The Infrastructure for the Elettra Sincrotrone Trieste linac, FEL, operation, laser 3375
 
  • D. Zangrando, D. Baron, A. Buonanno, A. Galimberti, A. Martinolli, M. Miculin, D. Morelli
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Elettra - Sincrotrone Trieste S.C.p.A. is a multidisciplinary international laboratory, specialized in generating high quality synchrotron and free-electron laser light and applying it in materials science. The main assets of the research centre are two advanced light sources, the electron storage ring Elettra and the free-electron laser (FEL) FERMI, continuously (H24) operated supplying light of the selected colour and quality to more than 30 experimental stations. In this paper, we are giving an overview on the status of the infrastructure plants devoted to ensuring the operation of Elettra and FERMI machines. We will also analyse the systems that mostly have impacted on the performance of both accelerators and their downtime.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA059 Construction of the New Septum Magnet Systems for PF-Advanced Ring septum, injection, vacuum, linac 3398
 
  • A. Ueda, S. Asaoka, T. Honda, S. Nagahashi, N. Nakamura, T. Nogami, H. Takaki, T. Uchiyama
    KEK, Ibaraki, Japan
 
  From July 2016 we are constructing a new beam transport (BT) line for the Photon Factory Advanced Ring (PF-AR). The new BT line was designed to transport the full energy 6.5-GeV beam directly from the LINAC, and the top up injection will be possible for the PF-AR. We designed and produced new pulsed septum magnet systems for this project. Two pulsed septum magnets are used for the injection of the 6.5-GeV beam. The septum magnets were constructed with a passive type magnet, a copper eddy current shield and a silicon steel magnetic shield. The magnetic fields of these magnets have been measured by the search coil method. We paid attention to evaluating eddy current losses of the SUS beam duct in the magnetic field measurement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA082 Technical Overview of the SOLARIS Low-Conductivity Water Cooling System synchrotron, operation, linac, klystron 3449
 
  • P. Czernecki, P. Bulira, P. Gębala, J. Janiga, P. Klimecki
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  National Synchrotron Radiation Centre Solaris started operation in May 2015. In order to receive heat deposited in various synchrotron devices during operation, a low-conductivity water (LCW) cooling system was installed. To fulfill all tasks of cooling system at an acceptable cost of investment and maintenance certain technical and economic conditions, i.e.:installation materials, LCW quality, hydraulic balancing system, automation, control and diagnostics, including the planned service intervals, have to be met. Within this presentation the design, construction and operation of the LCW cooling system will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA090 The Vacuum System of MAX IV Storage Rings: Installation and Conditioning vacuum, ion, synchrotron, linac 3468
 
  • E. Al-Dmour, M.J. Grabski
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The installation of the vacuum system of the 3 GeV storage ring was started in November 2014 and finished in May 2015. In August 2015 the commissioning of the storage ring started, the first stored beam has been achieved on the 15th of September 2015. The installation of the vacuum system of the 1.5 GeV storage ring was done from September 2015 and the main part finished in December 2015, the connection to the Linac with the transfer line has been done in August 2016. In September 2016 the commissioning of the 1.5 GeV storage ring started with the first stored beam achieved on the 30th of September 2016. The vacuum system conditioning for the two rings was successful; the average dynamic pressure reduction and the increase in the lifetime with the accumulated beam dose is a demonstration of the good performance of the vacuum system. The installation procedure and the results of the conditioning together with the latest developments are introduced here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA120 Beam Dynamics Simulation for EPU200 in TPS emittance, electron, undulator, simulation 3551
 
  • M.-S. Chiu, C.H. Chen, J.Y. Chen, P.J. Chou, T.Y. Chung, Y.-C. Liu, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is a low-emittance 3-GeV light source at Natioal Synchrotron Radiation Research Center (NSRRC). Five in-vacuum undulator beamlines were delivered to users on Sep. 22, 2016. To generate 10 ~ 500 eV photon with variuos polarizations, users proposed a new EPU : EPU200. In this paper, we present the preliminary results of beam dynamics simulation for EPU200.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA121 Thermal Experimet Results on TPS Beam Position Monitors impedance, simulation, cavity, vacuum 3554
 
  • Y.T. Huang, C.K. Chan, J. -Y. Chuang, I.C. Sheng, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  Beam position monitors mounted in straight sections exhibit an unusual temperature rise which is attributed to poor thermal and electrical conductivity of the stainless steel BPM chamber, to the vicinity to RF-bellows, and the large button electrode size to get superior signal levels. Thermocouples tied to BPM flanges and RF bellows show that the temperature could reach 50 oC when storing a beam current of 400 mA and BPMs located between two RF-bellows in RF cavity sections responds by even 5-10 oC higher values than average. To resolve this issue, off site experiments and simulations were conducted to further understand the heat flow in the whole structure. In this paper we discuss more details of these studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA122 Two Year Operational Experience With the Tps Vacuum System vacuum, synchrotron, operation, radiation 3557
 
  • Y.C. Yang, C.K. Chan, J. -Y. Chuang, Y.T. Huang, C.C. Liang, I.C. Sheng
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS), a 3-GeV third generation synchrotron light source, was commissioned in 2014 December and is now currently operated in top-up mode at 300mA for users. During the past two years, the machine was completed to meet design goals with among others the installation of superconducting cavities (SRF), the installation of insertion devices (ID) and the correction of vacuum chamber structure downstream from the IDs. The design goal of 500mA beam current was achieved with a total accumulated beam dose of more than 1000Ah, resulting in three orders of magnitude reduction of out-gassing. As the beam current was increased, a few vacuum problems were encountered, including vacuum leaks, unexpected pressure bursts, etc. Vacuum related issues including high pressure events, lessons learned and operational experience will be presented and discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA123 Beam Cleaning of the Vacuum System of the TPS Storage Ring without Baking in Situ vacuum, injection, synchrotron, synchrotron-radiation 3561
 
  • C.K. Chan, C.-C. Chang, B.Y. Chen, C.M. Cheng, Y.T. Cheng, J. -Y. Chuang, Y.M. Hsiao, Y.T. Huang, I.C. Sheng, C. Shueh, L.H. Wu, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  A maintenance procedure without baking in situ has been successfully developed and applied to maintain and upgrade the TPS storage ring vacuum system to shorten the machine downtime. The data of photon-stimulated desorption(PSD) reveal that no obvious discrepancy between the in-situ baked and the non-in-situ baked vacuum systems. A beam conditioning dose of extent only 11.8 A·h is required to recover rapidly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA137 Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project vacuum, photon, lattice, radiation 3590
 
  • B.K. Stillwell, B. Billett, B. Brajuskovic, J.A. Carter, E.S. Kirkus, M.A. Lale, J.E. Lerch, J. R. Noonan, M.M. O'Neill, B.G. Rocke, K.J. Suthar, D.R. Walters, G.E. Wiemerslage, J. Zientek
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction, and rf cavity straight sections. An overview of progress in these areas is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA137  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA142 Active Compensation Coils in the Fermilab g-2 Experiment multipole, dipole, experiment, simulation 3602
 
  • K.E. Badgley
    Texas A&M University, College Station, USA
  • B. Kiburg
    Fermilab, Batavia, Illinois, USA
  • M.W. Smith
    University of Washington, CENPA, Seattle, USA
 
  The recently commissioned Fermilab muon g-2 experiment is aiming to determine the anomalous magnetic moment of the muon to 140 ppb. To achieve this level of precision, the magnetic field seen by the muon must be know at fraction of a ppm level, which puts limits on the required magnetic field uniformity. In addition to the mechanical adjustments made to magnet pole tips, a set of 200 trim coils were added to the ring. These coils form concentric rings with 100 on the top pole and 100 on the bottom. Measurements of the remaining integrated filed errors were made using NMR probes. The use of these trim coils to reduce the remaining higher order field errors will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA142  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXA1 Beam-Based Optimization of Storage Ring Nonlinear Beam Dynamics sextupole, dynamic-aperture, injection, resonance 3627
 
  • X. Huang, J.A. Safranek
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
This paper will present considerations and algorithms for direct online optimization of the nonlinear beam dynamics of existing and future storage rings. The experimental setup and results from using this approach to improve the dynamic aperture of the SPEAR3 storage ring, using the robust conjugate direction search method and the particle swarm optimization method, will be covered.
 
slides icon Slides THXA1 [1.589 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THXA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA1 Studies of the Micro-Bunching Instability in Multi-Bunch Operation at the ANKA Storage Ring synchrotron, bunching, photon, radiation 3645
 
  • M. Brosi, E. Blomley, E. Bründermann, M. Caselle, B. Kehrer, A. Kopmann, A.-S. Müller, L. Rota, M. Schedler, M. Schuh, M. Schwarz, P. Schönfeldt, J.L. Steinmann, M. Weber
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: Supported by the German Federal Ministry of Education and Research (05K13VKA & 05K16VKA), the Helmholtz Association (VH-NG-320) and the Helmholtz International Research School for Teratronics (HIRST)
The test facility and synchrotron light source ANKA at the Karlsruhe Institute of Technology (KIT) operates in the energy range from 0.5 to 2.5 GeV and can generate brilliant coherent synchrotron radiation (CSR) in the THz range employing a dedicated bunch length-reducing optic at 1.3 GeV beam energy. The high degree of spatial compression leads to complex longitudinal dynamics and to time evolving sub-structures in the longitudinal phase space of the electron bunches. The results of the micro-bunching instability are time-dependent fluctuations and strong bursts in the radiated THz power. To study these fluctuations in the emitted THz radiation simultaneously for each individual bunch in a multi-bunch environment, fast THz detectors are combined with KAPTURE, the dedicated KArlsruhe Pulse Taking and Ultrafast Readout Electronics system, developed at KIT. In this contribution we present measurements conducted to study possible multi-bunch effects on the characteristic bursting behavior of the micro-bunch instability.
 
slides icon Slides THOBA1 [12.910 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THOBA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB006 Nuage, Ion Cloud Tracker ion, simulation, electron, injection 3692
 
  • A. Gamelin, C. Bruni, D. Radevych
    LAL, Orsay, France
 
  Funding: Work is supported by ANR-10-EQPX-51, by grants from Région Ile-de- France, IN2P3 and Pheniics Doctoral School.
NUAGE is a data parallel Matlab code which simulates the ion cloud effect in electron storage rings. The ion cloud is tracked in the ring taking into account the transverse and longitudinal effect of the beam-ion interaction, tracking in magnetic elements, usage of electrodes and gaps as clearing means. This program has been used to compute ionised ion equilibrium state and its neutralisation factor. In this article the NUAGE code is presented. The model, analysis method and performances are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB008 Particle Swarm Optimization Algorithm Applied in Online Commissioning at the MLS and BESSY II sextupole, injection, simulation, dynamic-aperture 3700
 
  • J. Li, J. Feikes, P. Goslawski, M. Ries
    HZB, Berlin, Germany
 
  Particle Swarm Optimization (PSO) is a population based optimization technique inspired by the social behaviour of bird flocking. This algorithm has been successfully used for beam dynamics simulation due to its excellent capability to deal with large-dimensional optimization problems. At the MLS and BESSY II PSO was first successfully applied to improve the lifetime by 20~30% within only 10 iterations respectively. Now the PSO has been implemented as a multifunctional online optimizer to improve the machine performance. This paper presents some results of online experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB032 Estimates of Collective Effects in the HALS Storage Ring Having the First Version Lattice emittance, impedance, coupling, lattice 3770
 
  • N. Hu, Z.H. Bai, W. Li, Q. Luo, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The Hefei Advanced Light Source (HALS) is a diffraction-limited storage ring with a beam energy of 2.0 GeV. Recently the first version lattice has been designed for the HALS storage ring, and the natural emittance is about 18 pm·rad. In this paper, we study the collective effects in this storage ring, including calculations of intra-beam scattering effect and Touschek lifetime, and estimates of the thresholds of some single-bunch and multi-bunch instabilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB051 A GPU Variant of Mbtrack and Its Application in SLS-2 simulation, GPU, cavity, synchrotron 3827
 
  • U. Locans, A. Adelmann, L. Stingelin, H.S. Xu
    PSI, Villigen PSI, Switzerland
  • U. Locans
    University of Latvia, Riga, Latvia
 
  Mbtrack is a widely used multi-bunch tracking code, developed at SOLEIL, for modeling the collective instabilities in electron storage rings. It has been applied to the Swiss Light Source upgrade proposal (SLS-2) for the study of single bunch instabilities. However, an n-bunch simulation using mbtrack requires to run n+1 MPI processes. Therefore, a large scale computing cluster may be necessary to perform the simulation. In order to reduce the demands of computing resources for multi-bunch simulations, a CUDA version of mbtrack has been developed, in which the computations of mbtrack are offloaded to a graphics processing unit (GPU). With the mbtrack-cuda variant, multi-bunch simulations can now run in a standalone workstation equipped with an Nvidia graphics card for scientific computing. The implementation and benchmark of the mbtrack-cuda code together with the applications in the study of longitudinal instabilities for SLS-2 will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB055 Modelling of Curvilinear Electrostatic Multipoles in the Fermilab Muon g-2 Storage Ring multipole, quadrupole, emittance, lattice 3837
 
  • A.T. Herrod, S. Jones, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • I.R. Bailey, A.T. Herrod, S. Jones, M. Korostelev, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I.R. Bailey, M. Korostelev
    Lancaster University, Lancaster, United Kingdom
 
  Funding: This research was funded by the STFC Cockcroft Institute Core grants no. ST/G008248/1 and ST/P002056/1.
The Fermilab Muon g-2 Experiment (E989) contains flat-plate electrostatic quadrupoles, curved with the reference trajectory as defined by the constant, uniform magnetic dipole field. To understand the beam behaviour at a sufficient level, we require fast, high-accuracy particle tracking methods for this layout. Standard multipole fits to numerically calculated 2D transverse electric field maps have provided a first approximation to the electric field within the main part of the quadrupole, but cannot model the longitudinal curvature or extended fringe fields of the electrostatic plates. Expressions for curvilinear multipoles can be fit to a 2D transverse slice taken from the central point of a numerically calculated 3D electric field map of the quadrupole, providing a curved-multipole description. Generalised gradients can be used to model the fringe field regions. We present the results of curvilinear multipole and generalised gradient fits to the curved quadrupole fields, and the differences in tracking using these fields over 200 turns of a model of the storage ring in BMAD.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB074 MuSim, a Graphical User Interface for Multiple Simulation Programs simulation, interface, proton, electron 3880
 
  • T.J. Roberts, R.J. Abrams, M.A. Cummings
    Muons, Inc, Illinois, USA
  • Y. Bao
    UCR, Riverside, California, USA
 
  MuSim is a user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parameterized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer, allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline 3.02, MCNP 6.1, and MAD-X; more are coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB117 Development of a New LLRF System Based on MicroTCA.4 for the SPring-8 Storage Ring cavity, klystron, controls, LLRF 3996
 
  • T. Ohshima, H. Ego, N. Hosoda, H. Maesaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • T. Fukui
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • M. Ishii
    JASRI/SPring-8, Hyogo-ken, Japan
 
  SPring-8 is a 3rd generation synchrotron radiation facility, which has been operated since 1997. The analog-circuit-based rf modules now in use at the storage ring are obsolete and hard to be maintained. The renewal of them with modern digital ones is underway and the developed LLRF system will be used for the operation of SPring-8-II. We built an amplitude and phase stabilizing system with commercial MicroTCA.4 modules. A motor driver controlled through EtherCAT was newly adapted to the cavity tuner. The system was implemented to the high power rf test stand which consists of a 1 MW klystron, a circulator, and a 508.58 MHz cavity. The rf power was successfully regulated to keep the cavity voltage with an amplitude deviation of less than 0.1% and a phase stability of less than 0.1 degree in rms. We are also developing new MTCA.4 modules: a digitizer AMC having sampling rate of 370 MHz and 16bit resolution, and a signal conditioning RTM. These modules are used for under-sampling rf detection achieving simple composition and more robustness to the ambient parameter changes. We will start installation of the digital system to one of four rf stations in the storage ring in summer 2017.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB151 Online Optimisation Applications at SPS injection, coupling, sextupole, quadrupole 4086
 
  • T. Pulampong, P. Klysubun, S. Kongtawong, S. Krainara, P. Sudmuang
    SLRI, Nakhon Ratchasima, Thailand
 
  Optimisation of a particle accelerator with very limited diagnostic system is proved to be very challenging and complicated. Theoretical calculation and perfect machine model never guarantee the best solution in the actual machine. In this work, optimisation of injection system from Low energy Beam Transport line (LBT) to Siam Photon Source (SPS) storage ring and reduction of beam coupling employing Robust Conjugate Direction Search (RCDS) algorithm are demonstrated. New record improvement on injection efficiency and better coupling control will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB151  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB152 Digital Low Level RF Systems for Diamond Light Source cavity, booster, LLRF, hardware 4089
 
  • P. Gu, C. Christou, P. Hamadyk, D. Spink, I.S. Uzun
    DLS, Oxfordshire, United Kingdom
  • E. Morales, F. Pérez, A. Salom
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Analogue low level RF (LLRF) systems have been used to date for both Diamond storage ring and booster RF cavities. They have been in operation for nearly ten years without a major problem. However, digital LLRF can offer new desirable functionalities such as fast data logging, 'probe blip' blockage and automation of routine tasks. Better performance is also envisaged with up to date hardware. A digital LLRF system has been developed with Alba Synchrotron as a common platform for the storage ring and booster, including superconducting and normal conducting RF cavities. The new digital LLRF is based on Virtex6 FPGA and fast ADCs and DACs. One system has been built and verified in the Diamond booster with beam. The design will be implemented for all other Diamond RF cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB152  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB153 An Online Multi-Objective Optimisation Package injection, controls, kicker, timing 4092
 
  • I.P.S. Martin, M. Apollonio, R. Bartolini, M.J. Furseman
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini, G.A. Bird
    JAI, Oxford, United Kingdom
  • D.R. Obee
    Durham University, Durham, United Kingdom
 
  The overall performance of an electron storage ring is critically dependant on a large number of variables. It can be characterised in many ways, such as by lifetime, injection efficiency, beam stability and so on. It is frequently the case however that improving one parameter comes at the cost of harming another. Equally, given the large number of variables involved in optimising the ring performance, the true, global optimum solution may be difficult to identify using simple parameter scans. In order to address this problem, a flexible optimisation tool has been developed. This tool is capable of optimising several parameters at once and can cope with an arbitrary number of variables (individually or in families). The tool is designed to be robust to measurement noise, and has been applied to a number of different optimisation problems. This paper presents an overview of the package, as well as the results of the first tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB153  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK013 Renewal of Bessy Ii Rf System - Solid State Amplifiers and Hom Damped Cavities cavity, klystron, HOM, synchrotron 4127
 
  • W. Anders, P. Goslawski, A. Heugel, H.-G. Hoberg, H. Hoffmann, A. Jankowiak, J. Knobloch, G. Mielczarek, M. Ries, M. Ruprecht, A. Schälicke, B. Schriefer, H. Stein
    HZB, Berlin, Germany
  • M. Haucke
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, Germany
  • K. Ludwig
    BESSY GmbH, Berlin, Germany
 
  Due to the fact that the klystrons run out of production and due to the aging of the old cavities, a renewal of the RF system was necessary. Solid state based transmitters and HOM damped nc single cell cavities have been installed at the BESSY II storage ring. The parameters of the components, the installation phase and the results to the beam will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK030 THE RF CAVITY FOR THE SESAME FACILITY cavity, vacuum, controls, pick-up 4158
 
  • C. P. Pasotti, M. Bocciai, M. Rinaldi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • D.S. Foudeh, E. Huttel
    SESAME, Allan, Jordan
 
  SESAME is a 2.5 GeV Synchrotron Light Source under commissioning in Allan (Jordan). It will be the first inter-national research centre in the Middle East [1]. It is a cooperative venture with support provided by several international organizations and scientific laboratories. Elettra-Sincrotrone Trieste (Italy) is among them. In the framework of the collaboration agreement among SESAME (Jordan), INFN (Italy) and Elettra-Sincrotrone Trieste, four 500 MHz normal conducting (NC) copper cavities have been built and commissioned at Elettra and then successfully installed in the SESAME storage ring. The cavities properties, their fabrication process, their characterization at low and high RF power is presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK037 Simulation Study of Normal-Conducting Double RF System for the 3-GeV KEK Light Source Project cavity, beam-loading, emittance, simulation 4176
 
  • N. Yamamoto, S. Sakanaka, T. Takahashi
    KEK, Ibaraki, Japan
 
  For the proposed 3-GeV KEK Light Source (KEK-LS) project*, a double RF system using 500-MHz accelerating and 1.5-GHz third-harmonic cavities is under consideration. To mitigate intrabeam scattering due to ultra-low emittance, the bunch length will be elongated using the harmonic cavities which is based on the TM020 resonant mode. An accelerating cavity based on this mode was first proposed by Ego et al.**, and we found it very suitable for the harmonic cavities due to the following reasons: 1) it has high unloaded-Q and high stored electromagnetic energy which result in the reduction of transient beam-loading effect due to bunch gaps, and 2) efficient damping of higher (or lower) order modes is possible. Our investigations based on numerical simulations predicted the bunch elongation by a factor of 3.1 when realistic bunch-gaps were assumed. To improve the bunch elongation further, we also proposed to compensate the transient beam loading with two realistic measures: 1) compensation of rf voltages due to feedforward technique, and 2) compensation using a separate rf cavity. We will present our study on the double rf system based on numerical simulations.
* K. Harada et al., IPAC2016, THPMB012.
** H. Ego et al., Proceedings of the 11-th Annual Meeting of Particle Accelerator Society of Japan, Aug. 9-11, 2014, MOOL14 [in Japanese].
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK041 The RF System of the SESAME Storage Ring cavity, controls, LLRF, operation 4187
 
  • D.S. Foudeh, E. Huttel, N.Kh. Sawai
    SESAME, Allan, Jordan
 
  SESAME the Synchrotron Radiation Light Source in Allan (Jordan) consists of a 22 MeV Microtron, an 800 MeV Booster Synchrotron (originally from BESSY I, Berlin, Germany) and a 2.5 GeV Storage Ring (new de-sign). The RF system consists of four 500 MHz ELET-TRA cavities powered by four 80 kW Solid State Ampli-fiers whereas the first amplifier is produced by SOLEIL and the other three are produced by SIGMA-PHI. The RF plant is controlled by the digital Low Level Electronics from DIMTEL. The system has been installed end of 2016. This report describes the setup of the facility and the results of the commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK064 Beam Lifetime Analysis of HLS-II Storage Ring scattering, vacuum, operation, emittance 4242
 
  • K. Xuan, C. Li, J.Y. Li, G. Liu, G. Liu, J.G. Wang, L. Wang, W. Xu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Beam lifetime is one of the important parameters of electron storage rings, which can describe the particle loss rate quantitatively and is restrict by quantum lifetime, beam-gas scattering and Touschek effect. The upgrade project of Hefei light source, named HLSII, has greatly improved the performance of the light source. The beam lifetime has been maintained at more than 5 hours. In this paper, a combined analysis method is derived by the analysis of the beam lifetime, and the method is applied to the HLSII storage ring. The experimental results show that this method is simple and reliable for the analysis of the Touschek lifetime and beam-gas scattering lifetime.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK079 Developments and Measurements Done at ALBA Magnetic Measurements Laboratory Along 2016 dipole, quadrupole, alignment, extraction 4266
 
  • J. Campmany, L.G.O. Garcia-Orta, J. Marcos, V. Massana
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Along 2016, ALBA magnetic measurements laboratory has measured magnets for a number of facilities that are being built over the world. Their measurement has been a challenge in terms of improving the methodologies of fiducialization and data analysis, since we have to accommodate to the different set of magnets characteristics and specifications. Especially relevant has been the measurement of closed structures using a conventional Hall probe bench, making the measurement in two steps and relying on alignment accuracy to merge both measurements. In this paper we enumerate the different projects in which ALBA has collaborated, and we remark the method for aligning the quadrupoles to the rotating coil, as well the methodology used to measure closed magnets in two steps with the conventional Hall probe bench.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK086 Design and Implementation of Stripline Feedback Kickers in the MAX IV 3 GeV Ring feedback, kicker, impedance, cavity 4285
 
  • D. Olsson, L. Malmgren, K. Åhnberg
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The commissioning of a bunch-by-bunch feedback system for the MAX IV 3 GeV storage ring was started in early 2016. At date, the actuators are two stripline kickers oriented in the horizontal and in the vertical plane, respectively. Apart from providing feedback in the transverse plane, the horizontal stripline is simultaneously operating as a longitudinal kicker. This is done by upconverting the longitudinal 0 - 50 MHz baseband signal to the 150 MHz - 250 MHz range where the longitudinal shunt impedance of the stripline is higher. This signal is then fed to the stripline electrodes in common-mode. The design of the stripline kickers and the layout of the bunch-by bunch feedback system in the 3 GeV ring are presented in this report. Results from instability studies in this ring are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK087 A Waveguide Overloaded Cavity Kicker for the MAX IV Bunch-by-Bunch Feedback System cavity, feedback, kicker, impedance 4289
 
  • D. Olsson, L. Malmgren, K. Åhnberg
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The higher-order modes (HOMs) in the main and the 3:rd harmonic cavities are driving longitudinal coupled-bunch mode instabilities (CBMIs) in the MAX IV 3 GeV storage ring. This far, negative feedback has been applied in the longitudinal plane by a stripline kicker at lower ring currents. However, the maximum longitudinal feedback voltage provided by the stripline is rather weak, and a waveguide overload cavity was therefore designed in order to suppress CBMIs at higher ring currents as well. Due to the long bunch length in the MAX IV storage rings, a relatively low center frequency of 625 MHz is selected. The new cavity kicker has been manufactured, and will be installed in the 3 GeV ring during the summer shut-down of 2017. In this paper, the RF and mechanical design of the cavity is presented. Simulation results are also compared with measurements of the manufactured cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK102 Commissioning of the SLRI Storage Ring Second RF System cavity, electron, LLRF, rf-amplifier 4328
 
  • N. Juntong, S. Boonsuya, S. Cheedket, Ch. Dhammatong, S. Krainara, W. Phacheerak, R.R. Rujanakraikarn, N. Suradet
    SLRI, Nakhon Ratchasima, Thailand
 
  The old RF cavity in the storage ring of SIAM Photon Source (SPS), the 1.2 GeV second generation synchrotron light source in Thailand, has been pushed to its maximum capability to compensate electron energy lost in the storage ring. This energy lost is the effect from two additional insertion devices, which have been installed in SPS storage ring during June to August 2013. The new RF system has been planned since 2012, but with some technical and procurement difficulty the new system was successfully commissioning and running in August 2016. The installation, acceptance testing, conditioning and commissioning results of the new RF cavity, RF high power transmitter, and the low level RF system will be presented  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK103 Six Months of Operation of the New RF Cavity System of SLRI cavity, operation, radiation, status 4331
 
  • N. Juntong, Ch. Dhammatong, P. Sudmuang, N. Suradet
    SLRI, Nakhon Ratchasima, Thailand
 
  The new RF cavity system has been installed in the storage ring of SIAM Photon Source (SPS) since August 2016. The RF cavity was designed base on the MAX-IV laboratory capacitive loaded type cavity. The solid-state technology was implemented in the RF high power transmitter. The low-level RF system utilized the digital technology. The system has been successfully commissioned and run with a capability to compensate an energy lost from a full capacity run of insertion devices since August 2016. This paper summarizes the problems and actions of the new RF system and presents an overview of six months of operation of the new RF system in the storage ring of SPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK112 Progress With the Diamond Light Source RF Upgrade cavity, operation, superconducting-cavity, HOM 4358
 
  • C. Christou, A.G. Day, M.J. Duignan, P. Gu, N.P. Hammond, P.J. Marten, S.A. Pande, D. Spink
    DLS, Oxfordshire, United Kingdom
 
  Failure of a superconducting cavity in the Diamond storage ring can lead to extended down-time because of the time required to remove the module from the ring, the inability to access the cavity without removal from the cryostat and the long time to repair of the module. To reduce the risk to storage ring operation, normal conducting cavities are being installed to support operation of the superconducting cavities. Two cavities will be introduced in 2017 and work is progressing with RF amplifiers, transmission lines and low-level RF as well as storage ring engineering and controls. A summary of progress so far is presented and the plan for installation and further RF upgrades is outlined.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA012 Transverse Impedance Measurement in SuperKEKB damping, impedance, betatron, operation 4442
 
  • N. Kuroo
    UTTAC, Tsukuba, Ibaraki, Japan
  • T. Ishibashi, T. Mimashi, K. Ohmi, Y. Ohnishi, K. Shibata, Y. Suetsugu, S. Terui, M. Tobiyama, D. Zhou
    KEK, Ibaraki, Japan
 
  In KEK(Japan), SuperKEKB project is progressing toward upgrade. This project aims improvement luminosity (8×1035 cm-2s- 1) which is 40 times of the performance of the KEKB accelerator. In Phase 1 of this project, a performance test as storage ring was carried out. Understanding of ring Impedance/wake is an important subject in phase I. Measurement of Head Tail Damping using Turn by Turn monitor was performed to evaluate impedance/wake. Betatron motion is excited by kicker and its damping is measured for several parameters sets of bunch current and chromaticity in both HER and LER. The wake field was calculated from the decrement of betatron amplitude. We present the wake field which is cross-checked with tune shift based on the current dependence.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA029 Study of Single Bunch Instabilities with Transverse Feedback at Diamond feedback, operation, coupling, controls 4489
 
  • E. Koukovini-Platia, R. Bartolini, A.F.D. Morgan, G. Rehm
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Single bunch instability studies have been carried out at Diamond with and without the transverse multi-bunch feedback (TMBF) system. Single bunch instability thresholds were measured for zero, positive and negative chromaticity values by increasing the current till the instability onset. The bunch-by-bunch feedback system was then used to suppress the motion of the bunch centroid and the new thresholds were measured in all chromaticity regimes. The feedback loop phase of the TMBF was changed from resistive to reactive as well as intermediate to find the optimal feedback settings that maximize the single bunch instability thresholds.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA030 Collective Effects Studies of the Double-Double Bend Achromat Cell at Diamond impedance, simulation, dipole, insertion-device 4493
 
  • E. Koukovini-Platia, R. Bartolini, L.M. Bobb, R.T. Fielder
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  One cell of the Diamond storage ring has been converted from a double bend achromat to a double-double bend achromat (DDBA). After the successful installation and beam commissioning in November 2016, beam-based studies were done to assess the effect of the new cell on the single bunch and multi-bunch instabilities both in transverse and longitudinal planes. These are compared with the impedance estimate carried out both numerically and analytically.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA033 Towards commissioning the Fermilab Muon g-2 Experiment proton, experiment, target, operation 4505
 
  • D. Stratakis, J.P. Morgan, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • A. Fiedler, M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • S-C. Kim
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Korostelev
    Lancaster University, Lancaster, United Kingdom
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
Starting this summer, Fermilab will host a key exper-iment dedicated to the search for signals of new phys-ics: The Fermilab Muon g-2 Experiment. Its aim is to precisely measure the anomalous magnetic moment of the muon. In full operation, in order to avoid contami-nation, the newly born secondary beam is injected into a 505 m long Delivery Ring (DR) wherein it makes several revolutions before being send to the experi-ment. Part of the commissioning scenario will execute a running mode wherein the passage from the DR will be skipped. With the aid of numerical simulations, we provide estimates of the expected performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA068 General Design of ID Front Ends in the TPS photon, radiation, vacuum, synchrotron 4601
 
  • C.K. Kuan, C.K. Chan, Y.T. Cheng, J. -Y. Chuang, Y.M. Hsiao, I.C. Sheng, C. Shueh, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source is a 3 GeV, 3rd generation synchrotron radiation source at the NSRRC. Phase-I commissioning includes seven Insertion Device (ID) Front Ends which are built to transmit intense synchro-tron radiation generated by In-vacuum Undulators and Elliptically Polarizing Undulators in the storage ring to the Photon Beamline. The total power and power distri-bution on Front End components is calculated and ana-lysed and Finite Element Analysis is used to verify the thermal performance under high heat loads while Monte-Carlo methods are utilized to simulate the vacuum pres-sure distribution. All apertures of the components are the same to simplify and standardize the design of the Front Ends. This paper describes main design considerations, especially the high heat load and vacuum pressure distri-bution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA073 Latest Results on Fast Kicker for g-2 E-989 Experiment at Fermilab kicker, impedance, experiment, injection 4616
 
  • A.A. Mikhailichenko, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We are describing the latest results on fabrication and measurements of kicker and pulser and beam dynamics in E-989 experiment at FERMILAB on precise measurement of anomalous magnetic moment of muon.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA084 Evaluation of Collective Effects in Iranian Light Source Facility (ILSF) Storage Ring impedance, vacuum, emittance, scattering 4650
 
  • E. Ahmadi, S. Ahmadiannamin, J. Rahighi
    ILSF, Tehran, Iran
  • S.M. Jazayeri
    IUST, Narmac, Tehran, Iran
 
  In this paper, we present the calculations of various collective effects in the storage ring of ILSF, a synchrotron light source under design in Iran. The ILSF storage ring is based on 5-BA lattice structure and emittance of 270 pm-rad which is optimized to provide high brightness and flux photons for the users. Because of design features, small radius vacuum pipe and small momentum compaction factor of lattice, it is expected that instabilities emerging from collective effects will affect significantly the beam quality and make it is challenging to reach maximum designed beam current. We will address the results of beam quality degradation and threshold calculations for different singlebunch and multibunch instabilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA095 Storage Ring Injection Kickers Alignment Optimization in NSLS-II kicker, injection, timing, operation 4683
 
  • G.M. Wang, W.X. Cheng, J. Choi, T.V. Shaftan, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. The SR is designed to work in top-off injection mode. The injection straight includes a septum and four fast kicker magnets with independent amplitude and timing control. Ideally, fast kickers formed a local bump, which is transparent to stored beam during top off injection. Due to mismatch of kicker voltage, timing or waveform, there is residual betatron oscillation and impact normal operation. This paper will present the injection kicker waveform measurement with beam, local and global alignment optimization to in improve top off injection transition.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXAB1 Accelerator Vacuum Technology Challenges for Next-Generation Synchrotron-Light Sources vacuum, photon, impedance, lattice 4830
 
  • P. He
    IHEP, Beijing, People's Republic of China
 
  The development trend of future next-generation synchrotron light source storage rings is a compact lattice combined with small magnet apertures. This leads to important engineering challenges for the design and performance of a vacuum system because of lack of space, conductance limitation and high precision and stability positioning requirements. The speaker will review some possible solutions including the use of distributed pumping (NEG coating), distributed absorber (good thermal conducting material vacuum chamber wall), and distributed cooling (different water cooling channel design at the location where the synchrotron radiation hits the wall). In situ baking for NEG activation and precise installation will also be covered.  
slides icon Slides FRXAB1 [3.627 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-FRXAB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)