Keyword: cryogenics
Paper Title Other Keywords Page
MOPAB037 Analytical and Numerical Performance Analysis of a Cryogenic Current Comparator damping, dipole, simulation, beam-diagnostic 160
 
  • N. Marsic, H. De Gersem, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • F. Kurian, M. Schwickert, T. Sieber
    GSI, Darmstadt, Germany
 
  Funding: This research is funded by the German Bundesministerium für Bildung und Forschung as the project BMBF-05P15RDRBB Ultra-Sensitive Strahlstrommessung für zukünftige Beschleunigeranlagen.
Nowa­days, cryo­genic cur­rent com­para­tors (CCCs) are among the most ac­cu­rate de­vices for mea­sur­ing ex­tremely small elec­tric cur­rents. Prob­a­bly the most in­ter­est­ing prop­erty of this equip­ment, is the ex­cel­lent po­si­tion in­de­pen­dence of the cur­rent pass­ing through it. This fea­ture mo­ti­vated the use of CCCs for beam in­stru­men­ta­tion in par­ti­cle ac­cel­er­a­tors. A typ­i­cal CCC con­sists of a fer­rite core, a pick-up coil, a su­per­con­duct­ing quan­tum in­ter­fer­ence de­vice, ap­pro­pri­ate elec­tron­ics and su­per­con­duct­ing shield­ing con­sist­ing of a me­an­der struc­ture. This con­fig­u­ra­tion of­fers a strong at­ten­u­a­tion for all the mag­netic field com­po­nents, ex­cept for the az­imuthal one. Thus, high pre­ci­sion mea­sure­ments of ex­tremely low beam cur­rents are made pos­si­ble. The damp­ing per­for­mance of this de­vice is analysed in this work. A 3D fi­nite el­e­ment (FE) analy­sis has been car­ried out and the com­puted re­sults were com­pared to an an­a­lyt­i­cal model*. Fur­ther­more, in order to re­duce the com­pu­ta­tion time, a 2.5D FE model is also pro­posed and dis­cussed.
* K. Grohmann et al., Field attenuation as the underlying principle of
cryo-current comparators 2. Ring cavity elements, Cryogenics, vol. 16, no. 10, pp. 601-605, 1976.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK009 Characterization of Cold Model Cavity for Cryocooled C-Band 2.6-Cell Photocathode RF Gun at 20 K cavity, gun, experiment, simulation 518
 
  • T. Tanaka, K. Hayakawa, Y. Hayakawa, K. Nakao, K. Nogami, T. Sakai, K. Takatsuka
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, D. Satoh, T. Takatomi, N. Terunuma, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
 
  Funding: This work was partly supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
A cry­ocooled C-band 2.6-cell pho­to­cath­ode RF elec­tron gun has been stud­ied at Nihon Uni­ver­sity in co­op­er­a­tion with KEK. The cold model cav­ity with an input cou­pler was com­pleted in spring 2016. The RF char­ac­ter­is­tics mea­sured at room tem­per­a­ture were in agree­ment with the pre­dic­tion by the CST Stu­dio sim­u­la­tion. The RF char­ac­ter­is­tics at 20 K have been mea­sured using a rather sim­ple cav­ity-cool­ing vac­uum sys­tem that was built by using ex­ist­ing com­po­nents for ten­ta­tive ex­per­i­ments. A thin-wall stain­less-steel R48 wave­guide with cop­per-plated inner walls has been used for the RF power trans­mis­sion from the room-tem­per­a­ture input port to the 20-K cooled cou­pler wave­guide. The un­loaded Q-value of 73000 has been ob­tained by the re­flec­tion co­ef­fi­cient mea­sure­ment at 20 K, which is in agree­ment with the re­sult of the CST Stu­dio sim­u­la­tion using the cav­ity sur­face re­sis­tance pre­dicted by the the­ory of the anom­alous skin ef­fect.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA040 Status of the ESS Elliptical Cryomodules at CEA Saclay cryomodule, cavity, vacuum, SRF 945
 
  • P. Bosland, C. Arcambal, F. Ardellier, S. Berry, A. Bouygues, A. Bruniquel, E. Cenni, J.-P. Charrier, C. Cloué, G. Devanz, F. Éozénou, T. Hamelin, X. Hanus, P. Hardy, C. Marchand, O. Piquet, J. Plouin, J.P. Poupeau, T. Trublet
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • G. Costanza
    Lund University, Lund, Sweden
  • C. Darve
    ESS, Lund, Sweden
  • P. Michelato
    INFN/LASA, Segrate (MI), Italy
  • G. Olivier
    IPN, Orsay, France
  • F. Peauger
    CEA/DSM/IRFU, France
 
  The first ESS pro­to­type cry­omod­ule with medium beta cav­i­ties named M-EC­CTD is being as­sem­bled at CEA Saclay. The Q curves of the 4 cav­i­ties mounted in­side the cry­omod­ule are pre­sented, and the four power cou­plers have been con­di­tioned at high power be­fore their as­sem­bly onto the cav­ity string. Com­ple­tion of the M-EC­CTD as­sem­bly out­side clean room is in progress as well as the fi­nal­iza­tion of the RF power test stand prepa­ra­tion. RF power tests of the M-EC­CTD will be per­formed dur­ing sum­mer 2017. CEA is prepar­ing the pro­duc­tion of the ESS medium and high beta cry­omod­ules of the se­ries be­fore the test of the M-EC­CTD and the con­tracts for the pro­cure­ment of the most crit­i­cal com­po­nents have al­ready been signed  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA068 Experience on Design, Fabrication and Testing of a Large Grain ESS Medium Beta Prototype Cavity cavity, radiation, niobium, operation 1027
 
  • D. Sertore, A. Bellandi, M. Bertucci, A. Bignami, A. Bosotti, J.F. Chen, C.G. Maiano, P. Michelato, L. Monaco, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • S. Pirani
    ESS, Lund, Sweden
 
  We re­port on the de­sign, fab­ri­ca­tion and test­ing of an ESS Medium Beta pro­to­type cav­ity made with Large Grain Nio­bium sheets sliced from an ingot pro­vided by CBMM. The pe­cu­liar choices dur­ing the fab­ri­ca­tion process re­lated to the Large Grain Nio­bium ma­te­r­ial are de­scribed. We pre­sent also the re­sults of the cav­ity test at cryo­genic tem­per­a­ture and the ded­i­cated quench di­ag­nos­tic.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA075 Development of High Sensitive X-Ray Mapping for SC Cavities cavity, survey, operation, interface 1040
 
  • H. Tongu, H. Hokonohara, Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • R.L. Geng, A.D. Palczewski
    JLab, Newport News, Virginia, USA
  • H. Hayano, T. Kubo, T. Saeki, Y. Yamamoto
    KEK, Ibaraki, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  We de­vel­oped an X-ray map­ping sys­tem sX-map for su­per­con­duct­ing cav­i­ties. The sen­sors are in­serted under the stiff­ener rings be­tween cav­ity cells, whose lo­ca­tions are close to the iris areas. The whole cir­cuits are im-mersed in liq­uid He and the mul­ti­plexed sig­nals re­duces the num­ber of ca­bles to the room tem­per­a­ture re­gion. sX-map has the ad­van­tages in its com­pact size, low cost and sim­ple setup for non­de­struc­tive in­spec­tions. The sX-map sys­tem de­tected X-rays from field emis­sions in ver­ti­cal RF tests of ILC 9-cell cav­i­ties at Jef­fer­son Lab (JLab) and KEK. sX-map showed an ex­cel­lent per­for­mance in the meas-ure­ment test at JLab, it ex­hib­ited a high sen­si­tiv­ity com-pared with an the fixed diode rings colo­cated at irises and ion cham­ber lo­cated out side of the ver­ti­cal test cryo­stat.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA076 Measurement of Thin Film Coating on Superconductors controls, experiment, FPGA, photon 1043
 
  • Y. Iwashita, Y. Fuwa, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • H. Hayano, T. Kubo, T. Saeki
    KEK, Ibaraki, Japan
  • M. Hino
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  Funding: This research is supported by following programs: Grant-in-Aid for Exploratory Research JSPS KAKENHI Grant Number 26600142 and Photon and Quantum Basic Research Coordinated Development Program from the MEXT.
Mul­ti­layer thin film coat­ing is a promis­ing tech­nol­ogy to en­hance per­for­mance of su­per­con­duct­ing cav­i­ties. Until re­cently, prin­ci­pal pa­ra­me­ters to achieve the suf­fi­cient per­for­mance had not been known, such as the thick­ness of each layer. We pro­posed a method to de­duce a set of the pa­ra­me­ters to ex­hibit a good per­for­mances. In order to ver­ify the scheme, we are try­ing to make some ex­per­i­ments on the sub­ject at Kyoto. The sam­ple prepa­ra­tion and the test setup for the mea­sure­ment ap­pa­ra­tus will be dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA089 The Cryomodule Test Stands for the European Spallation Source cryomodule, klystron, cavity, controls 1064
 
  • E. Asensi Conejero, W. Hees
    ESS, Lund, Sweden
  • K. Fransson, K.J. Gajewski, L. Hermansson, M. Jobs, H. Li, T. Lofnes, R.J.M.Y. Ruber, R. Santiago Kern, R. Wedberg
    Uppsala University, Uppsala, Sweden
 
  The Eu­ro­pean Spal­la­tion Source (ESS) is cur­rently under con­struc­tion in Lund, in south­ern Swe­den. The su­per­con­duct­ing sec­tion of the lin­ear ac­cel­er­a­tor con­sists of three parts; 26 dou­ble-spoke cav­i­ties at 352.21 MHz gath­ered in 13 cry­omod­ules, 36 medium beta el­lip­ti­cal cav­i­ties at 704.42 MHz gath­ered in 9 cry­omod­ules and 84 high beta el­lip­ti­cal cav­i­ties also at 704.42 MHz gath­ered in 21 cry­omod­ules. These cry­omod­ules allow the ac­cel­er­a­tion of the beam from 90 MeV to 2.0 GeV. The cry­omod­ules have to be tested in ded­i­cated test fa­cil­i­ties be­fore in­stal­la­tion in the ESS tun­nel, the Test Stand 2 (TS2) in Lund and the FREIA Test Stand at Up­p­sala Uni­ver­sity, Swe­den, which are ded­i­cated to the tests of the medium and high beta el­lip­ti­cal cry­omod­ules and the spoke cav­ity cry­omod­ules, re­spec­tively, for the ESS lin­ear ac­cel­er­a­tor. All cry­omod­ules will go through their Site Ac­cep­tance Tests (SAT) on these ded­i­cated test stands which will each con­sist of an RP bunker, a test stand cry­oplant and RF power sources. Both test stands will allow the SAT of cry­omod­ules with full cryo­genic load at the final op­er­at­ing tem­per­a­ture and with full RF load on all cav­i­ties in par­al­lel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA091 Investigation of HOM Frequency Shifts Induced by Mechanical Tolerances cavity, HOM, simulation, operation 1071
 
  • S. Pirani, M. Eshraqi, M. Lindroos
    ESS, Lund, Sweden
  • A. Bosotti, J.F. Chen, P. Michelato, C. Pagani, R. Paparella, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • T.P.Å. Åkesson
    Lund University, Department of Physics, Lund, Sweden
 
  We pre­sent Higher Order Mode (HOM) stud­ies on ESS Medium-Beta cav­ity of INFN-LASA de­sign, in­clud­ing both sim­u­la­tion and mea­sure­ment re­sults. Me­chan­i­cal tol­er­ances of the fab­ri­ca­tion process might shift HOMs fre­quen­cies to­ward har­mon­ics of the bunch fre­quency. Both sim­u­la­tion and mea­sure­ments at room and cryo­genic tem­per­a­ture show that INFN LASA cav­ity is fully com­pat­i­ble with ESS re­quire­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA097 Finite Element Analysis on Helium Discharge from Superconducting RF in the Storage Ring Tunnel simulation, SRF, cavity, distributed 1085
 
  • J.-C. Chang, F. Z. Hsiao, J.C. Huang, S.P. Kao, H.C. Li, W.R. Liao, C.Y. Liu, H.H. Tsai, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  Liq­uid he­lium for trans­fer­ring cool­ing power from the cryo­genic plant to the mag­nets and SRF cav­i­ties had been widely ap­plied on the ad­vanced large su­per­con­duct­ing par­ti­cle ac­cel­er­a­tors. For re­quire­ments of high sta­ble and re­li­able op­er­a­tion, many ef­forts have been put into the im­prove­ment and mod­i­fi­ca­tion of the cryo­genic sys­tem. How­ever, per­son­nel safety is an­other crit­i­cal issue of the cryo­genic sys­tem. Once large liq­uid he­lium was re­leased on the at­mos­pheric tun­nel, the vol­ume of he­lium will ex­pand sev­eral hun­dred times and cause oxy­gen de­fi­ciency in short time due to sud­den change of he­lium den­sity. In this study, we ap­plied nu­mer­i­cal sim­u­la­tion to an­a­lyze he­lium dis­charge through a SRF cav­ity in the TPS tun­nel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA098 Strategy Towards Non-Interrupted Operation of Superconducting Radio Frequency Modules at NSRRC SRF, operation, vacuum, cavity 1088
 
  • Ch. Wang, F.Y. Chang, L.-H. Chang, M.H. Chang, J. Chen, L.J. Chen, F.-T. Chung, M.-C. Lin, Z.K. Liu, C.H. Lo, C.L. Tsai, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  Two mod­ern 3rd gen­er­a­tion light sources, the well-de­vel­oped 1.5-GeV Tai­wan Light Source (TLS) and the new con­structed 3-GeV Tai­wan Pho­ton Source (TPS), are now in rou­tine op­er­a­tion. Both stor­age rings are pow­ered by the su­per­con­duct­ing RF (cav­ity) mod­ules, one CESR-type SRF mod­ule for the TLS since 2005 and two KEKB-type SRF mod­ules for the TPS since 2014. Thanks to con­tin­u­ous ef­forts, the op­er­a­tional re­li­a­bil­ity of SRF mod­ules at NSRRC is now com­pat­i­ble or bet­ter in com­par­i­son with the best op­er­a­tion record of room tem­per­a­ture cav­i­ties ever achieved at TLS (1992-2004). How to im­prove the long term avail­abil­ity but hold the achieved re­li­a­bil­ity of SRF mod­ules such as to max­i­mize the avail­able an­nual user beam time, es­pe­cially, under re­quire­ments on high RF power op­er­a­tion, be­come a new op­er­a­tional chal­lenge, es­pe­cially for the SRF mod­ules at TPS which is now rou­tinely op­er­ated with a for­ward RF power around 150-kW in­di­vid­u­ally and ex­pected to push to 300-kW in the com­ing fu­ture. Here we re­port our strat­egy and achieve­ment to min­i­mize long term in­ter­rupt of SRF op­er­a­tion owing to reg­u­lar full-ther­mal cy­cling and an­nual main­te­nance of cryo­genic plant.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA121 Frequency Tuner Development at Cornell for the RAON Half-Wave-Resonator cavity, cryomodule, controls, simulation 1134
 
  • M. Ge, F. Furuta, T. Gruber, D.L. Hall, S.W. Hartman, C. Henderson, M. Liepe, S. Lok, T.I. O'Connell, P.J. Pamel, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • B.H. Choi, J. Joo, J.W. Kim, W.K. Kim, J. Lee, I. Shin
    IBS, Daejeon, Republic of Korea
 
  The half-wave-res­onators (HWR) for the RAON pro-ject re­quire a slow fre­quency tuner that can pro­vide at least 80 kHz tun­ing range. Cor­nell Uni­ver­sity is cur­rently in the process of de­sign­ing, pro­to­typ­ing, and test­ing this HWR tuner. In this paper, we pre­sent the tuner de­sign, pro­to­type fab­ri­ca­tion, and first test re­sults.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA135 Fabrication, Processing and RF Test of RF-Dipole Prototype Crabbing Cavity for LHC High Luminosity Upgrade cavity, dipole, HOM, luminosity 1174
 
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • H. Park
    JLab, Newport News, Virginia, USA
 
  The su­per­con­duct­ing rf-di­pole crab­bing cav­ity is one of two crab­bing cav­ity de­signs pro­posed for the LHC high lu­mi­nos­ity up­grade. The proof-of-prin­ci­ple rf-di­pole cav­ity op­er­at­ing at 400 MHz has demon­strated ex­cel­lent per­for­mance ex­ceed­ing the de­sign spec­i­fi­ca­tions. The pro­to­type cav­ity for SPS beam test has been de­signed to in­clude the fun­da­men­tal power cou­pler, HOM cou­plers, and all the an­cil­lary com­po­nents in­tended to meet the de­sign re­quire­ments. A crab­bing cav­ity sys­tem is ex­pected to be in­stalled in the SPS beam line and tested prior to the in­stal­la­tion in LHC; this will be the first crab­bing cav­ity op­er­a­tion on a pro­ton beam. The fab­ri­ca­tion of two pro­to­type rf-di­pole cav­i­ties is cur­rently being com­pleted at Jef­fer­son Lab. This paper pre­sents the de­tails on cav­ity pro­cess­ing and cryo­genic test re­sults of the rf-di­pole cav­i­ties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA135  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAA3 Progress of Pr2Fe14B Based Hybrid Cryogenic Undulators at SOLEIL undulator, radiation, electron, photon 1213
 
  • A.M. Ghaith, P. Berteaud, F. Blache, F. Briquez, N. Béchu, M.-E. Couprie, J. Da Silva Castro, J.M. Dubuisson, C. Herbeaux, C.A. Kitegi, A. Lestrade, O. Marcouillé, F. Marteau, M. Sebdaoui, G. Sharma, A. Somogyi, K.T. Tavakoli, M. Tilmont, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
  • C. Benabderrahmane
    ESRF, Grenoble, France
 
  Cryo­genic Per­ma­nent Mag­net Un­du­la­tors (CPMUs) take ad­van­tage of the en­hanced field per­for­mance of per­ma­nent mag­nets when cooled down to low tem­per­a­ture, en­abling shorter pe­riod with suf­fi­cient mag­netic field to achieve high bright­ness ra­di­a­tion in the X-ray do­main. Sev­eral CPMUs have been man­u­fac­tured at SOLEIL. The first CPMU of pe­riod 18 mm (U18), op­ti­mized with a phase error of 3.2° at tem­per­a­ture of 77 K, has been in­stalled and op­er­ated for the past 5 years at SOLEIL for the NANOSCOPIUM beam­line. We re­port on pho­ton beam based align­ment en­abling for a bet­ter ad­just­ment of the ver­ti­cal po­si­tion off­set of the un­du­la­tor with a pre­ci­sion of 50 μm, and on the cor­rec­tion of the taper with a pre­ci­sion of 5 μrad to en­hance the ra­di­a­tion flux. A sec­ond U18 cryo-ready un­du­la­tor, with a new me­chan­i­cal and mag­netic sort­ing of mod­ule shim­ming, has at­tained a phase error of 2.3° at CT with­out any fur­ther ad­just­ments after the as­sem­bly. Cur­rently, two more CPMUs are being built; a 2 m long U18 for the SOLEIL ANATOMIX beam­line, and a 3 m long U15 un­du­la­tor reach­ing a mag­netic gap of 3 mm. The new chal­lenges en­coun­tered with mag­netic mea­sure­ments and me­chan­i­cal de­signs for U15 are pre­sented.  
slides icon Slides TUOAA3 [3.491 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOAA3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB032 Development of a Cryogenic GaAs DC Photo-Gun for High-Current Applications electron, cathode, vacuum, ion 1391
 
  • S. Weih, T. Eggert, J. Enders, M. Espig, Y. Fritzsche, N. Kurichiyanil, M. Wagner
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by DFG (GRK 2128) and BMBF (05H15RDRB1)
For high-cur­rent ap­pli­ca­tions of GaAs pho­to­cath­odes it is nec­es­sary to max­i­mize the charge life­time of the cath­ode ma­te­r­ial to en­sure re­li­able op­er­a­tion. By means of cryo­genic cool­ing of the elec­trode, the local vac­uum con­di­tions around the source can be im­proved due to cryo­genic ad­sorp­tion of re­ac­tive rest-gas mol­e­cules at the sur­round­ing walls. Fur­ther­more, the cool­ing also al­lows a higher laser power de­posited in the ma­te­r­ial, re­sult­ing in higher cur­rents that can be ex­tracted from the cath­ode. Ion-back­bom­bard­ment is ex­pected to be re­duced using elec­tro­sta­tic bend­ing of the elec­trons be­hind the cath­ode. To mea­sure the char­ac­ter­is­tics of such an elec­tron source, a ded­i­cated set-up is being de­vel­oped at the Photo-CATCH test fa­cil­ity in Darm­stadt.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB039 Installation Management for the European XFEL Main Accelerator Ethernet, status, controls, electron 1409
 
  • M. Bousonville, S. Choroba, F. Eints
    DESY, Hamburg, Germany
 
  By end of 2016, the main ac­cel­er­a­tor of the Eu­ro­pean XFEL was com­pleted. To build this com­plex ma­chine in a min­i­mum of time, cer­tain man­age­ment meth­ods were in­tro­duced in mid 2015, which ac­cel­er­ated the in­stal­la­tion process sub­stan­tially. In the fol­low­ing 64 weeks ad­di­tional 84 % of the main ac­cel­er­a­tor were set up. This was pos­si­ble due to an im­proved plan­ning, the re­in­force­ment of two teams as well as a per­ma­nent con­trol­ling and op­ti­miz­ing of the in­stal­la­tion process. In this paper, the in­stal­la­tion process from July 2015 to end 2016 and the mea­sures which speeded up the work­flow are de­scribed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB064 Development of a PrFeB Cryogenic Permanent Magnet Undulator (CPMU) Prototype at IHEP vacuum, undulator, permanent-magnet, photon 1469
 
  • H.H. Lu, W. Chen, L. Gong, X.Y. Li, L.Z. Li, S.C. Sun, Y.J. Sun, Y.F. Yang, L. Zhang, X.Z. Zhang, S.T. Zhao
    IHEP, Beijing, People's Republic of China
 
  A PrFeB cryo­genic per­ma­nent mag­net un­du­la­tor (CPMU) pro­to­type is under con­struc­tion for High En­ergy Pho­ton Source Test Fa­cil­ity (HEPS-TF) at IHEP. The de­vice is a full scale in-vac­uum un­du­la­tor with a mag­netic length of 2 me­ters and a pe­riod of 13.5 mm, and it will work at less than 85K. The whole de­sign scheme of pro­to­type is pre­sented and the spec­i­fi­ca­tions are given, where the con­sid­er­a­tion of in-vac­uum mag­netic mea­sure­ment bench is also in­cluded. The de­vel­op­ment progress is in­tro­duced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB066 Mechanical Design of a Cryogenic Permanent Magnet Undulator at IHEP vacuum, undulator, permanent-magnet, photon 1475
 
  • S.C. Sun, W. Chen, L. Gong, X.Y. Li, L.Z. Li, H.H. Lu, Y.J. Sun, Y.F. Yang, L. Zhang, X.Z. Zhang, S.T. Zhao
    IHEP, Beijing, People's Republic of China
 
  High En­ergy Pho­ton Source (HEPS) at In­sti­tute of High en­ergy Physics (IHEP) is a new 6 GeV third gen­er­a­tion elec­tron stor­age ring. In­ser­tion de­vices play a sig­nif­i­cant role in achiev­ing the high per­for­mance of the pho­ton source. A 13.5mm pe­riod-length Cryo­genic Per­ma­nent Mag­net Un­du­la­tor (CPMU) pro­to­type is de­signed and under con­struc­tion. The me­chan­i­cal struc­ture de­signed based on phys­i­cal re­quire­ments will be pre­sented.
Work supported by Project of High Energy Photon Source Test Facility,
email address: sunsc@ihep.ac.cn
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB068 Design of the CPMU Vacuum System at the HEPS vacuum, undulator, radiation, photon 1482
 
  • L. Zhang, H.H. Lu, S.C. Sun
    IHEP, Beijing, People's Republic of China
 
  The High En­ergy Pho­ton Source (HEPS) is a 3rd gen­er­a­tion syn­chro­tron ra­di­a­tion light source. Its beam en­ergy is 6 GeV and its emit­tance is less than 60 pm'rad, which can pro­vide high bril­liance hard X-rays to sev­eral tens of ex­per­i­men­tal sta­tions. The Cryo­genic Per­ma­nent Mag­net Un­du­la­tor (CPMU) is one of the key com­po­nents to achieve the high bril­liance. And its vac­uum sys­tem is nec­es­sary to pro­vide an ul­tra-high vac­uum en­vi­ron­ment for CPMU op­er­a­tion. To de­sign the CPMU vac­uum sys­tem, we do ex­per­i­ments to test the out­gassing rate, es­ti­mate the total gas load, cal­cu­late the ef­fec­tive pump­ing speed, de­sign the bak­ing pro­gram and se­lect all pumps and other vac­uum equip­ments. This paper pre­sents the de­sign spec­i­fi­ca­tions and the as­sem­blage sta­tus of the CPMU vac­uum sys­tem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB105 Field Measurement System for a Cryogenic Permanent Magnet Undulator in TPS undulator, vacuum, permanent-magnet, multipole 1559
 
  • C.K. Yang, C.H. Chang, T.Y. Chung, W.H. Hsieh, J.C. Huang, C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
 
  Short pe­riod in-vac­uum, per­ma­nent mag­net un­du­la­tors op­er­at­ing at cryo­genic tem­per­a­tures are being de­vel­oped world­wide to serve as bril­liant and co­her­ent light sources for medium en­ergy stor­age rings. A hy­brid cryo­genic per­ma­nent mag­net un­du­la­tor (CU) with PrFeB mag­nets has now been de­signed and con­structed at NSRRC [1]. To char­ac­ter­ize the per­for­mance and to de­ter­mine mag­netic field er­rors after cool down poses some tech­ni­cal chal-lenges com­pared to room tem­per­a­ture un­du­la­tors. A new sys­tem com­bin­ing a Hall probe and a stretched wire has been de­signed to mea­sure the field in­te­grals, tra­jec­tory, phase er­rors, and K value under low tem­per­a­ture and vac­uum con­di­tions. Field mea­sure­ments in this cryo­genic un­du­la­tor will be per­formed around 77 K as well as at room tem­per­a­ture, mak­ing tem­per­a­ture de­pen­dent cal­i­bra-tion of the Hall probes nec­es­sary. The main fea­tures and im­prove­ment of the mea­sure­ment and cal­i­bra­tion sys­tem are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB106 Development of a Cryogenic Permanent Magnet Undulator for the TPS undulator, vacuum, permanent-magnet, radiation 1562
 
  • J.C. Huang, C.H. Chang, T.Y. Chung, C.-S. Hwang, J.C. Jan, C.S. Yang, C.K. Yang
    NSRRC, Hsinchu, Taiwan
  • H. Kitamura
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  De­vel­op­ment of a cryo­genic per­ma­nent mag­net undu-la­tor (CPMU) at the Tai­wan Pho­ton Source (TPS) is the most re­cent ac­tiv­ity to­ward a new light source for the Phase-II beam­lines. A hy­brid-type CPMU with a pe­riod length of 15 mm is under con­struc­tion with PrFeB per­ma­nent-mag­net ma­te­ri­als. A max­i­mum ef­fec­tive mag­netic field of 1.77 T at a gap of 3 mm is ex­pected when the mag­nets (PMs) are cooled down around 77 K. The fea­tures de­sired for the TPS CPMU are low-in­trin­sic-phase-er­ror char­ac­ter­is­tics and high ther­mal bud­get for var­i­ous kinds of heat loads. The de­sign of the TPS CPMU is dis­cussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB115 Impact of Electron Beam Heating on Insertion Devices at Diamond Light Source electron, wiggler, insertion-device, insertion 1588
 
  • E.C.M. Rial, Z. Patel
    DLS, Oxfordshire, United Kingdom
 
  Elec­tron beam heat­ing is a widely ob­served phe­nom­e­non at syn­chro­tron fa­cil­i­ties around the world, and has a large im­pact par­tic­u­larly on cryo­genic in­ser­tion de­vices, but also on room tem­per­a­ture de­vices. This paper seeks to out­line elec­tron beam heat­ing mea­sure­ments taken at Di­a­mond Light Source (DLS) and pro­duces an em­pir­i­cal heat load re­la­tion­ship that matches the form of heat­ing through the anom­alous skin ef­fect, al­though gives an order of mag­ni­tude higher than that pre­dicted by the­ory. Re­sis­tive wall heat­ing should vary in­versely with the gap of in­stalled cryo­genic and per­ma­nent mag­net in­ser­tion de­vices. This is also ex­am­ined in this paper and the re­sults pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB127 A Cryogenically Cooled High Voltage DC Photogun gun, electron, vacuum, cathode 1618
 
  • H. Lee, I.V. Bazarov, L. Cultrera
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  A DC high volt­age pho­to­gun with cryo­geni­cally cool­ing of the elec­trode has been newly built at Cor­nell Uni­ver­sity. This gun is de­signed to pro­vide a DC high volt­age and a pho­to­cath­ode in this gun can be cooled down to a cryo­genic tem­per­a­ture. A pho­to­cath­ode puck de­sign from INFN/DESY/LBNL is used, so we will be able to run a pho­to­cath­ode from other in­sti­tu­tions as well. This paper de­scribes the me­chan­i­cal, ther­mal, and high volt­age de­sign of this gun. We also pre­sent data of high volt­age con­di­tion­ing and the ther­mal pro­file along the elec­trode struc­ture.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB128 Single Photoemitter Tips in a DC Gun: Limiting Aberration-induced Emittance emittance, electron, cathode, laser 1622
 
  • I.V. Bazarov, L. Cultrera, C.M. Gulliford, H. Lee
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • H.K. Fung
    Cornell University, Ithaca, New York, USA
  • J.M. Maxson
    UCLA, Los Angeles, California, USA
 
  Ul­tra­fast elec­tron dif­frac­tion (UED) of­fers unique ad­van­tages over x-ray dif­frac­tion, like stronger scat­ter­ing cross-sec­tion, ver­sa­til­ity in sam­ple types and abil­ity to offer smaller ap­pa­ra­tus foot print. There is a grow­ing need to in­crease bright­ness of elec­tron beams es­pe­cially for sin­gle-shot UED ap­pli­ca­tions. We ex­plore the uti­liza­tion of field en­hance­ment from a mi­cron-scale sin­gle tip in­side a DC gun to ob­tain brighter sub-pC elec­tron beams using a nom­i­nal cath­ode elec­tric field of sev­eral MV/m. The ad­di­tional field en­hance­ment can place mod­er­ate volt­age sources on par with the high­est gra­di­ent de­vices and allow im­proved per­for­mance presently not pos­si­ble in the ex­ist­ing pho­toe­mis­sion guns.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK067 Online Monitoring of the ADS Test Cryostat Cold Mass With WPM cryomodule, alignment, vacuum, monitoring 1848
 
  • H.Y. Zhu
    Institute of High Energy Physics (IHEP), People's Republic of China
  • L. Dong, L.L. Men, Z. Wang
    IHEP, Beijing, People's Republic of China
  • B. Li
    CSNS, Guangdong Province, People's Republic of China
 
  Su­per­con­duct­ing de­vices in par­ti­cle ac­cel­er­a­tor de­mand strict op­er­at­ing en­vi­ron­ment: cryo­stat with ultra high vac­uum and al­most ab­solute zero tem­per­a­ture 2K-4K. This brings a big prob­lem to sur­vey and align­ment work: how to pre­serve the mag­nets align­ment pre­ci­sion in the cryo­stat, es­pe­cially after such a big range tem­per­a­ture change. The com­pli­cate struc­ture of mag­net girder and cryo­genic pipes make it dif­fi­cult to do pre­cise con­trac­tion sim­u­la­tion. So wire po­si­tion mon­i­tor (WPM) is de­signed to mea­sure the de­vice con­trac­tion in cry­omod­ule. Ac­cel­er­a­tor Dri­ven Sys­tem (ADS) In­jec­tor-I is a pro­ton Linac, WPM sys­tem was as­sem­bled in its first cy­omod­ule TCM. WPM is pre­cisely cal­i­brated, as­sem­bled at the same height as mag­nets. Sys­tem noise, con­trac­tion sta­bil­ity and re­peata­bil­ity are an­a­lyzed in de­tail. Con­trac­tion co­ef­fi­cient of girder sys­tem is cal­cu­lated by con­trac­tion data and tem­per­a­ture data, the re­sult matches with the ther­mal co­ef­fi­cient of stain­less steel very well. After com­mis­sion­ing, two ther­mal cy­cles were recorded, av­er­age con­trac­tion value was 1.35mm. The com­mis­sion­ing data shows about 0.2mm con­trac­tion dif­fer­ence with the same girder struc­ture.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK078 Machine Protection Risk Management of the ESS Target System target, proton, timing, operation 1876
 
  • R. Andersson, E. Bargalló, L.S. Emås, J. Harborn, A. Lundgren, U. Odén, J. Ringnér, K. Sjögreen
    ESS, Lund, Sweden
 
  The Eu­ro­pean Spal­la­tion Source tar­get sys­tem is, to­gether with the pro­ton linac, the main com­po­nent in the spal­la­tion process. ESS will use a 4-ton, he­lium-cooled, ro­tat­ing tung­sten tar­get for this pur­pose, and its pro­tec­tion and avail­abil­ity is para­mount to the suc­cess of ESS. High de­mands are placed on all of the tar­get equip­ment, in­clud­ing cool­ing, move­ment, ro­ta­tion, and tim­ing, in order to reach the fa­cil­ity-wide 95% avail­abil­ity goal for neu­tron pro­duc­tion. Ma­chine pro­tec­tion has de­fined a set of pro­tec­tion func­tions that are to be im­ple­mented for the tar­get sys­tem. This paper de­scribes the de­vel­op­ment of these pro­tec­tion func­tions through the use of clas­sic HA­ZOPs com­bined with mod­ern safety stan­dard life­cy­cle man­age­ment. The im­ple­men­ta­tion of these func­tions is car­ried out through close col­lab­o­ra­tion be­tween the tar­get sys­tem own­ers and the ma­chine pro­tec­tion group at ESS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA019 Impact and Mitigation of Electron Cloud Effects in the Operation of the Large Hadron Collider electron, operation, injection, impedance 2085
 
  • G. Iadarola, B. Bradu, P. Dijkstal, L. Mether, G. Rumolo
    CERN, Geneva, Switzerland
 
  In 2015 and in 2016 the Large Hadron Col­lider has been rou­tinely op­er­ated with 25 ns bunch spac­ing. With this beam con­fig­u­ra­tion elec­tron clouds de­velop in a large frac­tion of the beam cham­bers, in spite of a very large elec­tron dose ac­cu­mu­lated on the sur­faces. This posed sev­eral chal­lenges to dif­fer­ent as­pects of the beam op­er­a­tion. In par­tic­u­lar, the ma­chine set­tings had to be op­ti­mized in order to mit­i­gate co­her­ent and in­co­her­ent ef­fects of the elec­tron cloud on the beam dy­nam­ics while a specif­i­cally de­signed feed-for­ward con­trol had to be im­ple­mented and op­ti­mized in order to dy­nam­i­cally adapt the reg­u­la­tions of the cryo­genic sys­tem to the strong heat load de­posited by the elec­tron cloud on the beam screens of the cryo­genic mag­nets. At the same time, the data col­lected from the dif­fer­ent ac­cel­er­a­tor sub­sys­tems (heat loads, vac­uum pres­sures, evo­lu­tion of the bunch by bunch beam pa­ra­me­ters) al­lowed to sig­nif­i­cantly im­prove our mod­els and un­der­stand­ing on these phe­nom­ena.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA077 The Phase Slip Factor of the Electrostatic Cryogenic Storage Ring CSR ion, storage-ring, quadrupole, simulation 2255
 
  • M. Grieser, R. Hahn, S. Vogel, A. Wolf
    MPI-K, Heidelberg, Germany
 
  For the de­ter­mi­na­tion of the mo­men­tum spread of an ion beam from the mea­sur­able rev­o­lu­tion fre­quency dis­tri­b­u­tion the knowl­edge of the phase slip fac­tor of the stor­age ring is nec­es­sary. At var­i­ous work­ing points of the cryo­genic stor­age ring CSR in­stalled at the MPI for Nu­clear Physics in Hei­del­berg the slip fac­tor was sim­u­lated and com­pared with mea­sure­ments. The pre­dicted func­tional re­la­tion­ship of the slip fac­tor and the hor­i­zon­tal tune de­pends on the dif­fer­ent is­lands of sta­bil­ity, which has been ex­per­i­men­tally ver­i­fied. This be­hav­ior of the slip fac­tor is in clear con­trast to mag­netic stor­age rings. In the paper we com­pare the re­sults of the sim­u­la­tions with the mea­sure­ments  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA129 Energy Efficiency and Saving Potential Analysis of the High Intensity Proton Accelerator HIPA at PSI cyclotron, proton, cavity, neutron 2399
 
  • A. Kovach, J. Grillenberger, A.S. Parfenova, M. Seidel
    PSI, Villigen PSI, Switzerland
 
  High power pro­ton ma­chines con­sume a large amount of en­ergy. Thus, the en­ergy ef­fi­ciency of grid to beam power con­ver­sion is par­tic­u­larly im­por­tant for the over­all power con­sump­tion of such fa­cil­i­ties. In this study, we analyse the en­ergy ef­fi­ciency of PSI's cy­clotron-based HIPA fa­cil­ity, which presently de­liv­ers a max­i­mum of 1.4 MW beam power. The total power con­sump­tion of the en­tire fa­cil­ity is 12.5 MW at 2.2 mA beam cur­rent (1.3 MW). Main power con­sumers are: RF sys­tems, elec­tro­mag­nets, water cool­ing and aux­il­iary sys­tems in­clud­ing in­fra­struc­ture, each con­sum­ing 5.3 MW, 3.6 MW, 1.65 MW and 1.95 MW, re­spec­tively. HIPA's grid to beam ef­fi­ciency is 18.3% when con­sid­er­ing only those parts of any sub­sys­tems (RF com­po­nents, mag­nets, cool­ing, and aux­il­iary sys­tems), which are min­i­mally re­quired to pro­duce a full 1.3 MW beam. The de­pen­dency of in­di­vid­ual sub­sys­tems on beam power was also stud­ied. These find­ings serve as a basis for fur­ther op­ti­miza­tions of the HIPA fa­cil­ity and give a ref­er­ence of the ef­fi­ciency es­ti­mate for the cy­clotron-based high power ma­chines.
* https://www.psi.ch/enefficient/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAA2 Status of Radioactive Ion Beam Post-Acceleration at CERN-ISOLDE linac, cryomodule, experiment, operation 2466
 
  • Y. Kadi, W. Andreazza, J. Bauche, A. Behrens, A.P. Bernardes, J.A. Ferreira Somoza, F. Formenti, M.A. Fraser, M.J. Garcia Borge, N. Guillotin, K. Johnston, G. Kautzmann, Y. Leclercq, M. Martino, A. Miyazaki, R. Mompo, A. Papageorgiou Koufidou, O. Pirotte, J.A. Rodriguez, S. Sadovich, E. Siesling, M. Therasse, D. Valuch, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
 
  Funding: We acknowledge funding from the Belgian Big Science program of the FWO (Research Foundation Flanders) and the Research Council K.U. Leuven.
The HIE-ISOLDE pro­ject* (High In­ten­sity and En­ergy ISOLDE) reached an im­por­tant mile­stone in Sep­tem­ber 2016 when the first physics run was car­ried out with ra­dioac­tive beams at 6 MV/m. This is the first stage in the up­grade of the REX post-ac­cel­er­a­tor, whereby the en­ergy of the ra­dioac­tive ion beams was in­creased from 3 to 5.5 MeV per nu­cleon. The fa­cil­ity will ul­ti­mately be equipped with four high-beta cry­omod­ule that will ac­cel­er­ate the beams up to 10 MeV per nu­cleon for the heav­i­est iso­topes avail­able at ISOLDE. The first 2 cry­omod­ules of the new linac, host­ing each five su­per­con­duct­ing cav­i­ties and one so­le­noid, were com­mis­sioned in Au­gust 2016. Be­sides demon­strat­ing the ex­per­i­men­tal ca­pa­bil­i­ties of the fa­cil­ity, this suc­cess­ful first run val­i­dated the tech­ni­cal choices of the HIE ISOLDE team and pro­vided a fit­ting re­ward for eight years of rig­or­ous R&D ef­forts. At the start of 2018, HIE-ISOLDE is ex­pected to com­plete the en­ergy up­grade, reach­ing 10 MeV/u and be­com­ing an at­trac­tive fa­cil­ity for a wide va­ri­ety of ex­per­i­ments. This con­tri­bu­tion will focus on the re­sults of the com­mis­sion­ing and on the main tech­ni­cal is­sues that were high­lighted.
* M.J.G. Borge and K. Riisager (2016), HIE-ISOLDE, the project and the physics opportunities, European Physical Journal A 52: 334, DOI: 10.1140/epja/i2016-16334-4
 
slides icon Slides WEOAA2 [7.659 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOAA2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK024 HTS-Coated Beam Screen for SPPC Bending Magnets synchrotron, radiation, proton, synchrotron-radiation 2974
 
  • P.P. Gan, Q. Fu, H.P. Li, Y.R. Lu, K. Zhu
    PKU, Beijing, People's Republic of China
  • Y.D. Liu, J.Y. Tang, Q.J. Xu
    IHEP, Beijing, People's Republic of China
 
  For study­ing new physics be­yond the Stan­dard Model, Sup­per pro­ton-pro­ton Col­lider (SPPC) with a cir­cum­fer-ence of 100 km and a cen­tre mass en­ergy of 100 TeV is pro­posed and under study in China. Due to the high par­ti­cle en­er­gies and 16 T high mag­net field, the syn­chro­tron ra­di­a­tion power emit­ted from the pro­ton beams reaches 48.5 W/m in the bend­ing mag­nets, two or­ders of mag­ni­tude higher than that of LHC. A novel beam screen is an­tic­i­pated to screen cold cham­ber walls from the mas­sive syn­chro­tron ra­di­a­tion power and trans­fer the heat load to cryo­genic cool­ing fluid. For dras­ti­cally re­duc­ing re­sis­tive wall im­ped­ance and sav­ing re­frig­er­a­tor power, we have stud­ied high tem­per­a­ture su­per­con­duc­tor (HTS) coated beam screen op­er­at­ing in liq­uid ni­tro­gen tem­per­a­ture area. Singly from the point of tem­per­a­ture, the fea­si­bil­ity of HTS-coated beam screen is demon­strated by steady-state ther­mal analy­sis. Two kinds of po­ten­tial HTS ma­te­r­ial are also dis­cussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA030 FAIR SIS100 - Features and Status of Realisation operation, ion, dipole, synchrotron 3320
 
  • P.J. Spiller, U. Blell, L.H.J. Bozyk, T. Eisel, E.S. Fischer, J. Henschel, P. Hülsmann, H. Klingbeil, H.G. König, H. Kollmus, P. Kowina, J.P. Meier, A. Mierau, C. Mühle, C. Omet, D. Ondreka, V.P. Plyusnin, I. Pongrac, N. Pyka, P. Rottländer, C. Roux, J. Stadlmann, B. Streicher, St. Wilfert
    GSI, Darmstadt, Germany
 
  SIS100 is a unique heavy ion syn­chro­tron de­signed for the gen­er­a­tion of high in­ten­sity heavy ion and Pro­ton beams. New fea­tures and so­lu­tions are im­ple­mented to en­able op­er­a­tion with low charge state heavy ions and to min­i­mize ion­iza­tion beam loss dri­ven by col­li­sions with the resid­ual gas. SIS100 aims for new fron­tier and world wide lead­ing Ura­nium bam in­ten­si­ties. A huge ef­fort is taken to sta­bi­lized the dy­nam­ics of the resid­ual gas pres­sure and to sup­press ion in­duced des­orp­tion. Fast ramped su­per­con­duct­ing mag­nets have been de­vel­oped and are in pro­duc­tion with high­est pre­ci­sion in en­gi­neer­ing and field qual­ity, match­ing the re­quire­ments from beams with high space charge. A pow­er­ful equip­ment with Rf sta­tions for fast ac­cel­er­a­tion, pre- and final com­pres­sion, for the gen­er­a­tion of bar­rier buck­ets and pro­vi­sion of lon­gi­tu­di­nal feed-back shall allow a flex­i­ble han­dling of the ion bunches for the match­ing to var­i­ous user re­quire­ments. Re­sults ob­tained with FOS (first of se­ries) de­vices, sta­tus of re­al­i­sa­tion and tech­ni­cal chal­lenges re­sult­ing from the de­mand­ing goals, will be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA088 Testing of SC-Magnets of NICA booster synchrotron booster, dipole, synchrotron, quadrupole 3461
 
  • S.A. Kostromin, V.V. Borisov, A.M. Donyagin, A.R. Galimov, O. Golubitsky, H.G. Khodzhibagiyan, B.Yu. Kondratiev, S.A. Korovkin, A.V. Kudashkin, G.L. Kuznetsov, D. Nikiforov, A.V. Shemchuk, A.Y. Starikov, A. Tikhomirov
    JINR, Dubna, Moscow Region, Russia
  • T.E. Serochkina
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  Se­r­ial tests of sc-mag­nets of NICA Booster started at the ded­i­cated fa­cil­ity of LHEP JINR. Mag­nets' as­sem­bly and test­ing work­flow are pre­sented. Main steps of the mag­net prepa­ra­tion to the cryo­gen­ics tests are de­scribed. First re­sults of se­r­ial tests are pre­sented and dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA112 Characterisation of the Mechanical Behaviour of Superconducting Cables Used in High Field Magnets From Room Temperature Down to 77K dipole, collider, luminosity, superconducting-magnet 3532
 
  • O. Sacristan De Frutos, M. Daly, P. Ferracin, C. Fichera, M. Guinchard, T. Mikkola, F. Savary, G. Vallone
    CERN, Geneva, Switzerland
 
  A com­pre­hen­sive knowl­edge of the me­chan­i­cal prop­er­ties of the su­per­con­duct­ing cable used in high-field mag­nets is of para­mount im­por­tance to study and model the be­hav­iour of the mag­net coil from as­sem­bly to the op­er­a­tional con­di­tions at cryo­genic tem­per­a­ture. The me­chan­i­cal char­ac­ter­i­sa­tion of such kind of ma­te­ri­als pre­sents prac­ti­cal chal­lenges as­so­ci­ated with the het­ero­gene­ity of the ma­te­ri­als, the geom­e­try, size and qual­ity of the sam­ples that can be pro­duced out of ac­tual ca­bles. These con­straints im­pose the un­der­tak­ing of such mea­sure­ments from a non­stan­dard ap­proach, and hence the de­vel­op­ment of tai­lor-made tool­ing. An ex­ten­sive char­ac­ter­i­sa­tion cam­paign for the de­ter­mi­na­tion of the me­chan­i­cal prop­er­ties of the su­per­con­duct­ing cable at room and cryo­genic tem­per­a­ture was launched at CERN in order to de­ter­mine the most rel­e­vant me­chan­i­cal prop­er­ties of the su­per­con­duct­ing ca­bles used in the MQXF and 11T mag­nets. This paper de­scribes the de­sign of the tool­ing de­vel­oped for this spe­cific ap­pli­ca­tion as well as the ex­per­i­men­tal set-up used for the tests, and dis­cusses the out­comes of the ma­trix of tests per­formed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA143 Cooling-down and Cooling of Superconducting Magnets at 4.5K with Very Little Liquid Helium using Coolers* cyclotron, superconducting-magnet, solenoid, factory 3606
 
  • M.A. Green, S. Chouhan
    FRIB, East Lansing, USA
 
  Funding: This work is supported in part by a grant from the National Science Foundation. The Michigan State University grant number is PHY0958726.
Be­cause liq­uid he­lium is often in short sup­ply, it is often dif­fi­cult to get he­lium for cool­ing su­per­con­duct­ing mag­nets that are too large to be cryo­gen free mag­nets. Grade A he­lium is often avail­able in high-pres­sure bot­tles, but not in large quan­ti­ties. This re­port de­scribes how one can cool-down and main­tain a con­stant tem­per­a­ture of ~4.5 K in a su­per­con­duct­ing mag­net that has less than 5 L of liq­uid in the cryo­stat once it has been filled with liq­uid he­lium. One can do this with ei­ther GM cool­ers in the drop-in mode with pulsed tube cool­ers. The num­ber of cool­ers needed to cool the mag­net de­pends to the heat load at 4.5 K and the de­sired cool-down time for the mag­net sys­tem. This type of cool­ing sys­tem is suit­able for mag­nets that are away from a con­ven­tional large he­lium re­frig­er­a­tion sys­tem. Ex­am­ples are S/C in­ser­tion (wig­glers and un­du­la­tors), spec­trom­e­ter mag­nets, and ECR ion source mag­nets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA143  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK124 Using Conductive Nanoparticles to Reduce the Surface Charging of Ceramics electron, experiment, vacuum, cavity 4392
 
  • M.L. Neubauer, A. Dudas
    Muons, Inc, Illinois, USA
  • F. Marhauser
    JLab, Newport News, Virginia, USA
 
  Beam pipe ce­ram­ics used for var­i­ous pur­poses suf­fer from the prob­lem of sur­face charg­ing in the pres­ence of an elec­tron beam. A novel tech­nique has been pro­posed for a method for re­duc­ing the charg­ing ef­fects by fill­ing nano sized pores in the ce­ramic with a con­duc­tive medium. Pores in ce­ram­ics can be formed in a chain with vary­ing depths de­pend­ing on sin­ter­ing tem­per­a­tures and meth­ods for cre­at­ing the pores. In the pre-formed con­di­tion of these novel ce­ram­ics, a nanopar­ti­cle slurry is in­fused by cap­il­lary ac­tion into the ce­ramic and fired at tem­per­a­tures and at­mos­pheres to sta­bi­lize the con­duc­tive medium in­side the ce­ramic. The mi­crowave char­ac­ter­is­tics of these ce­ram­ics will be in­ves­ti­gated in a Phase I pro­gram with the de­sign of a com­plete beam pipe lossy ce­ramic in a Phase II.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK125 Ultra High Gradient Breakdown Rates in X-Band Cryogenic Normal Conducting Rf Accelerating Cavities accelerating-gradient, cavity, experiment, electron 4395
 
  • A.D. Cahill, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • V.A. Dolgashev, S.G. Tantawi, S.P. Weathersby
    SLAC, Menlo Park, California, USA
 
  Funding: Work Supported by DOE/SU Contract DE-AC02-76-SF00515, US NSF Award PHY-1549132, the Center for Bright Beams, and DOE SCGSR Fellowship.
RF break­down is one of the major fac­tors lim­it­ing the op­er­at­ing ac­cel­er­at­ing gra­di­ent in rf par­ti­cle ac­cel­er­a­tors. We con­jec­ture that the break­down rate is linked to the move­ments of crys­tal de­fects in­duced by pe­ri­odic me­chan­i­cal stress. Pulsed sur­face heat­ing pos­si­bly cre­ates a major part of this stress. By de­creas­ing crys­tal mo­bil­ity and in­creas­ing yield strength we hope to re­duce the break­down rate for the same ac­cel­er­at­ing gra­di­ent. We can achieve these prop­er­ties by cool­ing a cop­per ac­cel­er­at­ing cav­ity to cryo­genic tem­per­a­tures. We tested an 11.4 GHz cryo­genic cop­per ac­cel­er­at­ing cav­ity at high power and ob­served that the rf and dark cur­rent sig­nals are con­sis­tent with Q0 chang­ing dur­ing rf pulses. To take this change in Q0 into ac­count, we cre­ated a non-lin­ear cir­cuit model in which the Q0 is al­lowed to vary in­side the pulse. We used this model to process the data ob­tained from the high power test of the cryo­genic ac­cel­er­at­ing struc­ture. We pre­sent the re­sults of mea­sure­ments with low rf break­down rates for sur­face elec­tric fields near 500 MV/m for a shaped rf pulse with 150 ns of flat gra­di­ent.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)