Keyword: status
Paper Title Other Keywords Page
MOPAB080 The Development of Tune Measurement System Based on FPGA at HLSII Storage Ring FPGA, storage-ring, experiment, synchrotron 305
 
  • Q.M. Duan, Y.L. Yang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  A tune measurement system based on FPGA development board is developed at HLS II. The FPGA development board based on Zynq SOC, have ADC and DAC on board. The FPGA can provide two kinds of signal for exciting the beam: parametric frequency sweep signal and bandwidth limited white noise signal. The FFT algorithms and calculation of tune are running in the ARM CPU. In order to compare performance with the original system which is based on spectrum analyzer, we did experiments with new system based FPGA and original system respectively. The experiments on HLSII storage ring show that the tune measuring accuracy have reached 0.0006 / 0.0001 in horizontal and vertical direction based on sweep frequency of FPGA-based system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB132 Beam Size Measurement Using High Aspect Ratio LIGA Apertures in an X-Ray Pinhole Camera electron, radiation, synchrotron, emittance 445
 
  • L.M. Bobb, G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  For optimal brilliance third generation light sources operate at a low emittance and low coupling. Commonly, transverse beam profile measurements are provided by direct imaging of the electron beam using X-ray pinhole cameras. From these beam size measurements and given knowledge of the lattice parameters the emittance, coupling and energy spread are calculated. Ideally, the pinhole aperture should be formed in an infinitely thin screen. However, due to the penetration of X-rays in the keV spectral range, stacked tungsten blades are often used to form the pinhole aperture. In this arrangement the absolute size of the pinhole aperture is unknown and cannot be directly measured, which affects the spatial resolution of the imaging system. Here we investigate the use of X-ray Lithography, Electroplating and Moulding (commonly known as LIGA) to fabricate high aspect ratio pinhole apertures in a gold screen of approximately 1 mm thickness.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB132  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK128 Integrated Project Planning as a Central Steering Tool for the Large Scale Multi Project FAIR experiment, project-management, site, controls 842
 
  • N. Winters, F. Becker, M.V. Ricciardi
    GSI, Darmstadt, Germany
 
  The Facility for Antiproton and Ion Research (FAIR) is a large scale multi project comprising 10 subprojects in the field of accelerators (pLINAC, SIS100, SuperFRS, p-bar, CR, HESR), experiments (CBM, APPA, NUSTAR, PANDA) and civil construction. This contribution describes the fundamental revamp of FAIR integrated project planning. Main objective is to preserve the advantages of a bottom-up planning topology with the actual and detailed level of information keeping the ~400 work package leader's central role as plan owners in their field of responsibility. Simultaneously different project phases (e.g. civil construction, procurement, installation, commissioning) need to be excluded from detailed plans while being re-integrated in the level-1 project master schedule. Additional cost profiles and resource assignment by name allow a progress tracking and flexible project steering.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA131 Status of the LCLS-II Accelerating Cavity Production cavity, controls, linac, target 1164
 
  • F. Marhauser, E. Daly, J.A. Fitzpatrick, A.D. Palczewski, J.P. Preble, K.M. Wilson
    JLab, Newport News, Virginia, USA
  • A. Burrill, D. Gonnella
    SLAC, Menlo Park, California, USA
  • C.J. Grimm
    Fermilab, Batavia, Illinois, USA
 
  Funding: Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 with supplemental funding from the LCLS-II Project U.S. DOE Contract No. DE-AC02-76SF00515.
Cavity serial production for the LCLS-II 4 GeV CM SRF linac has started. A quantity of 266 accelerating cavities has been ordered from two industrial vendors. Jefferson Laboratory leads the cavity procurement activities for the project and has successfully transferred the Nitrogen-Doping process to the industrial partners in the initial phase, which is now being applied for the production cavities. We report on the results from vendor qualification and the status of the cavity production for LCLS-II.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA131  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB039 Installation Management for the European XFEL Main Accelerator Ethernet, cryogenics, controls, electron 1409
 
  • M. Bousonville, S. Choroba, F. Eints
    DESY, Hamburg, Germany
 
  By end of 2016, the main accelerator of the European XFEL was completed. To build this complex machine in a minimum of time, certain management methods were introduced in mid 2015, which accelerated the installation process substantially. In the following 64 weeks additional 84 % of the main accelerator were set up. This was possible due to an improved planning, the reinforcement of two teams as well as a permanent controlling and optimizing of the installation process. In this paper, the installation process from July 2015 to end 2016 and the measures which speeded up the workflow are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB124 Development of the Manufacturing and QA Processes for the Magnetic Modules of the LCLS-II Soft X-Ray Undulators undulator, simulation, laser, free-electron-laser 1609
 
  • K.L. Ray, D. Arbelaez, A.J. Band, D. Bianculli, A.P. Brown, J.N. Corlett, A.J. DeMello, J.R. Dougherty, L. Garcia Fajardo, K. Hanzel, D.E. Humphries, J.-Y. Jung, D. Leitner, M. Leitner, S. Marks, K.A. McCombs, D.V. Munson, D.A. Sadlier, D. Schlueter, E.J. Wallén, V. Waring, A. Zikmund
    LBNL, Berkeley, California, USA
  • D.E. Bruch, A.L. Callen, G. Janša, D.S. Martinez-Galarce, H.-D. Nuhn, E. Ortiz, Ž. Oven, M. Rowen, Z.R. Wolf
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
A new free electron laser being built at SLAC National Accelerator Laboratory, the Linear Coherent Light Source II (LCLS-II), will use 21 soft x-ray undulators (SXR) and 32 hard x-ray undulators (HGVPU). Lawrence Berkeley National Laboratory (LBNL) is responsible for the design and manufacturing of all variable-gap, hybrid permanent-magnet undulators. The physics requirements for the undulators specify a longitudinal pole misalignment maximum rms error of 25 μm and a vertical pole misalignment maximum error of 50 μm. In addition, magnet positioning critically influences the gap-dependent field properties due to saturation effects at the smallest operational gaps. This paper discusses the manufacturing and QA methods developed to carefully control the longitudinal and vertical pole and magnet positions during undulator production. Inspection results are discussed based on data gathered during construction of a prototype as well as pre-production soft x-ray undulator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK101 Development and Construction of Safety and Control Systems for the TPS Front End Interlock controls, vacuum, photon, radiation 1947
 
  • J. -Y. Chuang, C.K. Chan, Y.M. Hsiao, C.K. Kuan, Y.Z. Lin, I.C. Sheng, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
  • C.S. Lin
    NPUST, Pingtung, Taiwan
 
  The Taiwan photon source (TPS) at NSRRC (National Taiwan Photon Source) is a 3rd generation, 3 GeV storage ring with designed current of 500 mA. In phase-I, six insertion device beamlines have been available to users after the safety interlock systems were commissioned and reviewed. National Instrument (NI) compact RIO 9030 is used for the front end interlock control system, and both scan and FPGA modes are activated in a hybrid mode to enhance the safety reliability. The personnel and machine protection system as well as EPICS communications of the TPS control system are presented in this paper as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK107 Upgrade of the Existing PID Controller and Oxygen Detection Alarm System for SRF Modules Operating in the Taiwan Light Source SRF, controls, electronics, operation 1968
 
  • F.-T. Chung, F.Y. Chang, L.-H. Chang, M.H. Chang, L.J. Chen, M.-C. Lin, Z.K. Liu, C.H. Lo, C.L. Tsai, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  A Cornell-type superconducting RF cavity module was installed in the Taiwan Light Source (TLS) in 2004. New control electronics for the existing SRF modules have been designed, based on the original designs. In addition to the functions for operation, this SRF electronics system in the TLS also provides protection for the SRF modules and cryogenic system. This paper presents the SRF electronics modifications, which will enhance machine protection and make it easy to adjust and optimize operational parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA052 The SARAF-LINAC Project 2017 Status linac, cryomodule, diagnostics, controls 2194
 
  • N. Pichoff, N. Bazin, D. Chirpaz-Cerbat, R. Cubizolles, J. Dumas, R.D. Duperrier, G. Ferrand, B. Gastineau, P. Gastinel, F. Gougnaud, M. Jacquemet, C. Madec, L. Napoly, P.A.P. Nghiem, F. Senée, D. Uriot
    CEA/IRFU, Gif-sur-Yvette, France
  • D. Berkovits
    Soreq NRC, Yavne, Israel
  • M. Di Giacomo
    GANIL, Caen, France
 
  SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the superconducting linac (SARAF-LINAC Project). This paper presents to the accelerator community the status at March 2017 of the SARAF-LINAC Project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCB3 The Radiation Damage in Accelerator Target Environments (RaDIATE) Collaboration R&D Program - Status and Future Activities target, proton, radiation, experiment 2550
 
  • P. Hurh
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments), founded in 2012, has grown to over 50 participants and 14 institutions globally. The primary objective is to harness existing expertise in nuclear materials and accelerator targets to generate new and useful materials data for application within the accelerator and fission/fusion communities. Current activities include post-irradiation examination of materials taken from existing beamlines (such as the NuMI beryllium primary beam window and graphite target fins from Fermilab) as well as new irradiations of candidate target materials at low energy and high energy beam facilities (such as titanium and aluminum alloys, glassy carbon, TZM and tungsten). In addition, the program includes thermal shock experiments utilizing high intensity proton beam pulses available at the HiRadMat facility at CERN. Status of current RaDIATE activities as well as future plans will be discussed, including highlights of preliminary results from various ongoing RaDIATE activities and the high level plan to explore the high-power accelerator target relevant thermal shock and radiation damage parameter space.
 
slides icon Slides WEOCB3 [10.635 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOCB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA084 Performance of the PAL-XFEL High Precision Magnet Power Supplies controls, operation, power-supply, site 3452
 
  • S.-H. Jeong, J.H. Han, Y.G. Jung, H.-S. Kang, D.E. Kim, H.-G. Lee, S.B. Lee, B.G. Oh, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  In the PAL-XFEL, 632 magnet power supplies (MPS) have been operated since 2016. High current unipolar MPSs(>100A) were configured buck mode with single power stack or two. The corrector MPSs for low current were the H-bridge type for bipolar current driving. The nine different types of MPS were installed for beam dy-namics in the PAL-XFEL machine. All MPSs had been tested and confirmed their performances before installa-tion. We described here the status of the MPS operation after installation on 2016.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA128 The Data Acquisition System and Inspection Equipment on Vibration Evaluation for Deionized and Cooling Water Pumps in TPS coupling, operation, data-acquisition, alignment 3568
 
  • Y.-H. Liu, Y.-C. Chung, C.K. Kuan, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  The purpose of this paper is to evaluate the vibration amplitude and spectrum for TPS water pump systems. The utility systems operate continuously since 2014, some of deionized and cooling water pumps produced higher vibration amplitude and noise during operation. The possibly reason could be poor system accuracy, inappropriate installation and commission adjustment. The data acquisition system on vibration evaluation for deionizes water pumps was established in 2016. Accord-ing to the long-tern vibration amplitude recording, the system operational status could be clarified. After vibra-tion test for several months, the bearing of booster deion-ized water pump was found abrasive since coupling be-tween motor and pump misaligned. Besides, the founda-tion of copper deionized water pump system was broken and observed by rapidly increase vibration amplitude in short term. The water pump systems were repaired and maintained base on vibration evaluation. There is still some remain problems for deionized and cooling water pump systems. The utility systems could prevent mal-function through regular vibration inspection and daily data acquisition.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB104 Engineering Documentation and Asset Management for the European XFEL Accelerator operation, database, interface, SRF 3960
 
  • L. Hagge, J.A. Dammann, T.T. Hongisto, J. Kreutzkamp, D. Käfer, B. List, S. Rohwedder, S. Sühl, N. Welle
    DESY, Hamburg, Germany
  • A. Frank
    European XFEL, Schenefeld, Germany
 
  At the European XFEL, extensive technical documentation has been created during design and construction of the accelerator. It is based on a configuration database (the DESY EDMS), which provides an inventory of major accelerator systems. The configuration database registers components and their used materials, tracks component design and fabrication history, and contains engineering documents and drawings, and work and inspection records. Technical documentation can be accessed through intuitive reports and navigational tree structures, representing specific beamline sections or areas of the facility. Access on mobile devices in the accelerator tunnel is supported by component tags with QR codes. A dedicated front-end has been developed for automatically uploading and cross-linking documents to the configuration database, reducing documentation efforts in the project teams. The configuration database now serves as a foundation for upcoming technical operation and maintenance activities. The paper provides an overview of the available engineering documentation and its access methods, and discusses its expected role and benefits in future maintenance processes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB136 Kameleon - a Behavior-Rich, Non-Memoryless and Time-Aware Generic Simulator EPICS, controls, power-supply, simulation 4040
 
  • R.N. Fernandes
    ESS, Lund, Sweden
  • N. Senaud
    CEA/DRF/IRFU, Gif-sur-Yvette, France
 
  At ESS, thousands of devices will be used to control both the machine and end-station instruments. To enable ongoing development when access to these devices is not possible (for whatever the reason), Kameleon was implemented. It is a behavior-rich, non-memoryless and time-aware generic simulator that handles clients through a TCP/IP connection. An instance of this client is an EPICS IOC or a Tango Device Server. Kameleon consumes a user-defined file that describes the commands received from a client and, optionally, the reaction to these through statuses sent back to the client. Key features are: 1) Ubiquitous (runs in disparate platforms such as Windows and Linux). 2) Behavior-rich (predefined behaviors as well as user-defined). 3) Non-memoryless (the state of the simulation can be preserved between events and/or elapsed time). 4) Time-aware (statuses can be sent to the client either event-based or time-based). 5) Flexible (commands and statuses are described in a simple user-defined file - nothing is hard-coded in Kameleon). Kameleon will be used in a myriad of scenarios at ESS such as development of EPICS devices support, IOCs, OPI screens, testing of IOCs and alarm workflows.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB145 CERN Accelerators Topology Configuration: Facing the Next Long Shutdown hardware, database, operation, alignment 4066
 
  • S. Bartolome-Jimenez, T.W. Birtwistle, S. Chemli, N. Gilbert, A.-L. Perrot, J. Piar, V. Simetka, B. Vazquez de Prada Planas
    CERN, Geneva, Switzerland
 
  The Configuration and Layout (CL) team at CERN ensures that there is a clear and coherent representation of the status of the CERN underground facilities (about 60 km of equipment) and main accelerator projects at a given point in time. In view of the major equipment changes to be carried out during the extended end of year technical stop (EYETS), the next Long Shutdown (LS2), and to facilitate the associated preparatory work of multiple CERN groups, the CL team has developed an immersive visualisation tool, displaying 360 degree panoramic images of CERN underground facilities. In addition, the CL team is launching a process to manage future layout configurations inside the CERN Layout database in parallel to the current configuration. This paper presents the 360 degree panorama visualisation tool and the parallel configuration process, to view the past, current and future status of the CERN accelerator complex. It highlights their added value for the CERN groups in the preparatory phase for upgrade and consolidation modifications and discusses the potential future improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK016 Status of the SIS100 RF Systems cavity, feedback, synchrotron, power-supply 4136
 
  • H. Klingbeil, R. Balß, M. Frey, P. Hülsmann, A. Klaus, H.G. König, U. Laier, D.E.M. Lens, K.-P. Ningel
    GSI, Darmstadt, Germany
 
  Four different types of RF cavities are realized for the heavy-ion synchrotron SIS100 which is built in the scope of the FAIR (Facility for Antiproton and Ion Research) project. The standard acceleration is performed by ferrite cavities. Barrier bucket cavities will allow a pre-compression of the beam by means of moving barriers. Bunch compressor cavities are used to realize a rotation in longitudinal phase space by 90 degrees, thereby reducing the bunch length. Finally, a longitudinal feedback system reduces undesired beam oscillations. In contrast to the ferrite-loaded accelerating cavities, the last-mentioned three cavity types are based on magnetic alloy (MA) material. Depending on the type of the cavity system, the realization is done by - or in close collaboration with - different industrial companies and institutions. In this contribution, the realization status of all these synchrotron RF systems is summarized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK101 Quarter Wavelength Combiner for an 8.5kW Solid-State Amplifier and Conceptual Study of Hybrid Combiners operation, insertion, distributed, synchrotron 4324
 
  • T.-C. Yu, F.Y. Chang, L.-H. Chang, M.H. Chang, L.J. Chen, F.-T. Chung, M.-C. Lin, Z.K. Liu, C.H. Lo, C.L. Tsai, Ch. Wang, M.-S. Yeh
    NSRRC, Hsinchu, Taiwan
 
  Experimental results to combine ten 900 W solid-state amplifier modules based on typical quarter wavelength 10-way combiners are described for a total of 8.5 kW RF power output at 500 MHz. The power gain and phase distribution among the ten modules are measured and calculated to sense the combination efficiency. The combination efficiency of 100 modules differing in power gain and phase distribution is theoretically analysed. Groups of 5, 10, 25, 50 and 100 units are used in 4, 3, 2, and 1-stage power combination for total 100 units and the characteristics are calculated and investigated, including bandwidth, efficiency and even redundancy under various output VSWR levels. To simplify combining complexity and to eliminate the drawbacks of single stage combiners, a multi-way 2-stage coaxial to waveguide combiner is thus proposed as an expandable power combiner.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK103 Six Months of Operation of the New RF Cavity System of SLRI cavity, operation, storage-ring, radiation 4331
 
  • N. Juntong, Ch. Dhammatong, P. Sudmuang, N. Suradet
    SLRI, Nakhon Ratchasima, Thailand
 
  The new RF cavity system has been installed in the storage ring of SIAM Photon Source (SPS) since August 2016. The RF cavity was designed base on the MAX-IV laboratory capacitive loaded type cavity. The solid-state technology was implemented in the RF high power transmitter. The low-level RF system utilized the digital technology. The system has been successfully commissioned and run with a capability to compensate an energy lost from a full capacity run of insertion devices since August 2016. This paper summarizes the problems and actions of the new RF system and presents an overview of six months of operation of the new RF system in the storage ring of SPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA053 Design of the Girder Control System for HEPS-TF controls, hardware, photon, interface 4560
 
  • S.J. Li, C. H. Li, J. Liu, H. Wang, Z. Wang
    IHEP, Beijing, People's Republic of China
 
  To make the alignment become easier, the HEPS-TF (High Energy Photon Source-Test Facility) magnet girder, which is different from the conventional one, is designed to achieve the goal of adjusting the girder's position and orientation online. The control system is one of the key sub-part. This Paper will describe the control system design, especially on the hardware configuration, software programming as well as user interface design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)