TUPIK063

Proceedings of IPAC2017, Copenhagen, Denmark

THE CONFIGURABLE SOFTWARE INTERLOCK SYSTEM FOR HLS-IT*
Y. Song, K. Xuan, G. Liu", NSRL, USTC, Hefei, Anhui 230029, China

Abstract

The interlock system is an essential component for an
accelerator facility. A configurable software interlock sys-
tem(SIS) is designed for Hefei Light Source II (HLS-II),
which complements the hardware interlock system to ensure
equipment and operators’ safety. The system is developed us-
ing Python under the EPICS framework with the method of
separating the configuration file from the interlock program.
The interlock logic is completely determined by the configu-
ration file and its nested tree structure is easy to expand. The
test results indicate that the new software interlock system is
reliable, flexible and convenient to operate. This paper will
describe the design and the construction of HLS-II SIS.

INTRODUCTION

The Hefei Light Source (HLS) is the first dedicated syn-
chrotron radiation facility in China. HLS was upgraded from
2010 to 2015 to improve its performance. The upgraded light
source is renamed as Hefei Light Source IT (HLS-II) [1]. The
HLS-II was fully open to users in January 2016. The control
system of the HLS-II is a distributed system based on EPICS.
The interlock system is one of the critical components of
the control system. The main purpose of an interlock sys-
tem is to protect the machine and enhance safety during the
accelerator operation.

In general, the interlock system consist of two parts: the
hardware interlock system (HIS) and the software interlock
system (SIS). The HIS usually uses PLC and FPGA tech-
nologies [2, 3]. It is designed to response within a few mi-
croseconds. The SIS is not a hard real-time system and the
response time amounts to several seconds [4,5]. So it’s
used as the necessary complement of the hardware inter-
lock system when there is no strict requirement for response
time, but easier to implement complex logic among different
subsystems.

The original SIS of HLS-II was developed by the State
Notation Language (SNL) running in the EPICS IOC. The
code has to be rewrote and compiled after the interlock logic
is updated, which is not convenient enough in the operation
and maintenance. The new HLS-II SIS is developed using
Python under the EPICS framework. The system adopts
the method of separating the configuration file from the
interlock program, the interlock logic can be updated by
modifying the configuration file simply. The interlock logic
is completely determined by the JSON configuration file and
its nested tree structure is easy to expand. The system was
put into operation in February 2017. When a fault occurs,
the interlock actions are triggered, the alarm information is
sent to operators and the interlock event is logged.

* Work supported by National Natural Science Foundation of China
(No.11375186)
T Corresponding author, gfliu@ustc.edu.cn

ISBN 978-3-95450-182-3
1836

HLS-II SIS ARCHITECTURE

Figure 1 shows the overall structure the HLS-II SIS, which
is divided into two layers, the SIS core and pyEPICS. The
SIS core is composed of a list of interlock trees. Each tree,
which is associated with a subsystem, has a similar structure
and is an independent logical unit. There are two types of
nodes in the tree structure: the leaf node and trunk node. The
structure of the interlock tree is determined by an external
configuration file (config.json).

The SIS core is connected with IOCs through the
PyEPICS extension interface [6]. Through this interface,
the SIS core reads / writes the process variable (PV) to mon-
itor / control the devices. The SIS program processes each
interlock tree recursively to achieve interlock protection.
________________ PyEPICS

LAN |

Figure 1: Architecture of the HLS-II SIS.

SIS core

Trunk Node E
|

Leaf Node

Leaf Node

The leaf node is the lowest node in the interlock tree, and
is directly related to the controlled device. The leaf node
detects the state of the controlled device and provides an
interlock signal for the whole system. The state will be
tested based on the compare_operator and design_value
pre-defined in the leaf node. If the device is in a normal
state, the test is successful and he state value of the leaf
node is FALSE by default. However, when a fault occurs,
the test is not successful, the state value of the leaf node is
TRUE and an interlock event is generated in the leaf node
and processed by the upper nodes. The usual operators are
supported, including <, >, <=, >=,==,! = etc.

Trunk Node

The other nodes above the leaf nodes are all trunk nodes
in the interlock tree. Each trunk node collects all the state
values of its sub-nodes, and use these values to calculate
the its own state value according to the pre-defined logic
expression. Logic expressions support a variety of operators,
including AND, OR, NOT, >, <, etc., to implement complex
interlock logic. The trunk node can be configured with a
action list. The actions in the action list are triggered when

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T23 Machine Protection

Proceedings of IPAC2017, Copenhagen, Denmark

the state value is True. If the parent nodes exist, the state
value is also collected by the upper nodes.

Action List

The trunk node can be linked with an action list when
necessary. The action list contains a series of actions which
are executed in sequence when the linked trunk node value
equals "True". At the present time, two types of actions,
the "set" and "delay" are supported. The "set" action set
the value "set_point" to the designed PV, and the "delay"
action delays for "delay_time" seconds. The action type is
extensible, more actions will be supported in the future.

Interlock Masking

A boolean value can be defined in every node and action
unit of the interlock tree, which is called the interlock mask.
The masking mechanism is designed to shield the interlock
signal from the lower children branches and allow opera-
tors to ignore its interlock event. This mechanism makes it
convenient for the operators to maintain the machine.

HLS-II SIS SOFTWARE DEVELOPMENT

The SIS is developed using Python. The interlock logic
is defined in the JSON configuration file. JSON’s nested
syntax makes it easier to define interlock trees and each node
is expressed as an object.

(Start)

[
I

| read configuration file l

I

[initialize the monitor PV list |

Initialization

Main loop

| process every interlock tree in the list |
T

|

| process every node in the tree recursively |

Figure 2: Flow chart of HLS-II SIS.

Figure 2 shows the flow chart of the SIS program. The
program enters the initialization part first after it starts. The
configuration file is read by the program and constructed
to a list consisting of multiple interlock trees. At the same
time, the PVs defined in the leaf nodes are parsed and the
program begins to monitor the PVs’ values.

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T23 Machine Protection

TUPIK063

Then the system enters the main loop part and processes
each interlock tree one by one recursively. If the mask is O,
the program ignores the node and processes the next node.
The PV value is used as an input signal iexn the leaf node.
The state value of the upper node is determined by the lower
nodes. If the state value is True, the action list will be exe-
cuted.

HLS-II SIS TEST

In order to verify the SIS function and measure the re-
sponse time, a test system is set up. Figure 3 is a logic
diagram for SIS test, which contains only one interlock logic
tree. The white rectangles represent the leaf nodes, and the
values of PV_IN_1 - PV_IN_4 are monitored in the leaf
node. The gray rectangles represent the trunk nodes and
logical expressions, such as AND, fault_count >= 2, are
defined in them. The dashed rectangles represent the action
lists.

SETPV_OUT 20 |
| DELAY 5 |
| SETPV_OUT 30 |

PV_IN_1==0

PV_IN_2>=0

fault_count >= 2

[PV_IN_3<=-2
PV IN_4>=3

Figure 3: The logic diagram for SIS Test.

The logic in Fig. 3 can be transformed into the JSON
configuration file shown in Fig. 4. The "node_type" key
identifies two node types: trunk_node and leaf_node. The
"mask" key for each node defines the mask value and the de-
fault value is 1. The "compare_operator" and "design_value"
are set in the leaf node. Within the trunk node, the "child"
key contains the list of all child nodes and the "expression"
key defines the expression which is used to calculate the state
values of the current node. The two action types, "set_point"
and "delay_time", are defined in the action key.

Using the striptool to monitor the values of the PVs, we
get the operation result of the SIS test as shown in Fig. 5.
When the interlock condition is satisfied, the actions are
triggered according to the predefined action list. Multiple
measurement results show that the response time of the SIS
is in the order of 100 ms.

OPERATION

The HLS-II SIS has been put into operation to protect
the machine and enhance safety. At present, HLS-II SIS
consists four parts: the vacuum interlock of the storage ring,
the power supply interlock of the correction magnet, the
magnet gap interlock of the insertion device and the injection
interlock. Each part represents an independent interlock tree
in the configuration file.

Taking the vacuum interlock as an example, 20 vacuum
measuring points are distributed on the storage ring and each
measurement point corresponds to a PV in EPICS control
system. The SIS monitors the value of these PVs. The

ISBN 978-3-95450-182-3
1837

TUPIK063

{

Proceedings of IPAC2017, Copenhagen, Denmark

"demo": {
"node_type":"trunk node","mask" : 1,"expression":"fault count>=2",
"child": [
{
"node_type":"trunk node","mask":1,"expression":"and",
“child": [
{ "node_type":"leaf node","mask":1,"pv_name":"PV_IN 1", “compare operator":"==","design value":0},
{ "node_type":"leaf node", "mask":1, "pv_name":"PV IN 2", "compare operator":">=", "design value":1}
1.
"action list" : [
{ "mask" : 1, "action type":"set", "pv_name" : "PV OUT 1", "set point" : 6}
1
},
{ "node_type":"leaf node","mask" : 1,"pv_name":"PV_IN 3", "compare operator":"<=",6 "design value":-2},

{ "node_type":"leaf node","mask" :
1

"action list" : [

1,"pv_name":"PV IN 4", "compare operator":">=", "design value":3}

{"mask" : 1,"action_type":"set", "pv_name" : "PV OUT 2","set point" : @ },
{ "mask" : 1, "action_type":"delay", "delay time" : 5},
{ "mask" : 1, "action_type":"set", "pv_name" : "PV OUT 3", "set point" : 0 }
1
}
}
Figure 4: The configuration file of SIS test.
o S
3, 3) VAL
J T B e |(73"’"3-)1':,-;L:3 The vacuum system has failed
10:20:24.773 [__pvoui2 | (level 1), and the beam is
B . removed. [FEFRFRAKF]

3, 3) VAL=0

second action at
10:20:30.223

first action at
10:20:25.220

24

8 B a “A0:20:32

{Seconds)

Figure 5: Test result of SIS. An interlock event occurs at
10:20:24.773, and two actions are executed in sequence at
10:20:25:220 and 10:20:30:223.

vacuum pressure value of the storage ring is less than 1 x
107%Pa in normal state. When the fault occurs, the pressure
value changes significantly. Depending on the severity level
of the fault, different interlock actions are triggered. Figure 6
shows the SMS screenshots received by the operators.

SUMMARY

In order to improve the performance of HLS-II SIS, we
developed a new software interlock system using the method
of separating the configuration file from the interlock pro-
gram. The interlock logic is completely determined by the
configuration file. Multiple measurement results show that
the response time of the SIS is in the order of 100 ms, which
achieves the current interlock needs. The test results indicate
that the new software interlock system is reliable, flexible
and convenient to operate. The system was put into operation
in February 2017.

ISBN 978-3-95450-182-3
1838

The vacuum system has failed
(level 2), and the vacuum valve is

closed. [FREIRIEFRHAKAF]

The vacuum system has failed
(level 3), and the vacuum gauge
is closed. [FRERFHEAKFE]

Figure 6: SMS screenshots received by operators.

ACKNOWLEDGEMENT

The authors would like to thank Prof. Jingyi Li of the
National Synchrotron Radiation Laboratory for his help.

REFERENCES

J.Y. Li, W. Xu, K. Xuan et al., “Operational Status of HLS-II",
Proc. IPAC’ 16, paper THPOY 028, p. 2664.

W.J. Chou, D.Y. Zhou, J.G. Chen et al., “Machine Interlock
and Protection System based on PLC for the SSRF Linac”,
Nuclear Techniques, Vol. 31, No. 7, 2008, p. 506.

(1]

(2]

[3] M. Kago, T. Matsushita, N. Nariyama et al., “Design of the
Accelerator Safety Interlock System for XFEL in Spring-8~,

Proc. ICALEPCS’09, paper WEP096, p. 588.

[4] J. Wozniak, V. Baggiolini, D. Garcia Quintas, et al., “Software
Interlocks System”, Proc. ICALEPCS’07, paper WPPBO3, p.

403.

J. Wozniak, M. Polnik, and G. Kruk, “Groovy as Domain-
Specific Language in the Software Interlock System”, Proc.
ICALEPCS’13, paper MOPPC142, p. 443.

EPICS Channel Access for Python, http://cars9.
uchicago.edu/software/python/pyepics3/

(5]

(6]

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T23 Machine Protection

