Paper |
Title |
Other Keywords |
Page |
WEPVA110 |
Analysis and Operational Feedback on the New Design of the High Energy Beam Dump in the CERN SPS |
vacuum, operation, simulation, shielding |
3524 |
|
- P. Rios Rodriguez, J.A. Briz Monago, M. Calviani, K. Cornelis, S. De Man, R. Esposito, S.S. Gilardoni, B. Goddard, J.L. Grenard, D. Grenier, M. Grieco, J. Humbert, V. Kain, F.M. Leaux, C. Pasquino, A. Perillo-Marcone, J.R.F. Poujol, S. Sgobba, D. Steyart, F.M. Velotti, V. Vlachoudis
CERN, Geneva, Switzerland
|
|
|
CERN's Super Proton Synchrotron (SPS) high-energy internal dump (Target Internal Dump Vertical Graphite, known as TIDVG) is required to intercept beams from 102 to 450 GeV. The equipment installed in 2014 (TIDVG#3) featured an absorbing core composed of different materials surrounded by a water-cooled copper jacket, which hold the UHV of the machine. An inspection of a previous equipment (TIDVG#2) in 2013 revealed significant beam induced damage to the aluminium section of the dump, which required imposing operational limitations to minimise the risk of reproducing this phenomenon. Additionally, in 2016 a vacuum leak was detected in the dump assembly, which imposed further limitations, i.e. a reduction of the beam intensity that could be dumped per SPS supercycle. This paper presents a new design (TIDVG#4), which focuses on improving the operational robustness of the device. Moreover, thanks to the added instrumentation, a careful analysis of its performance (both experimentally and during operation) will be possible. These studies will help validating technical solutions for the design of the future SPS dump to be installed during CERN's Long Shutdown 2 in 2020 (TIDVG#5).
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA110
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPAB134 |
Latest Development of the ALBA DLLRF |
cavity, LLRF, beam-loading, rf-amplifier |
4034 |
|
- A. Salom, B. Bravo, M. Broseta, E. Morales, J.R. Ocampo, F. Pérez, P. Solans
ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
|
|
|
The Digital LLRF of ALBA has been implemented using commercial cPCI boards with Virtex-4 FPGA, fast ADCs and fast DACs. The firmware of the FPGA is based on IQ demodulation technique and the main feed-back loops adjust the phase and amplitude of the cavity voltage and also the resonance frequency of the cavity. This paper summarizes the latest LLRF developments done to improve performance of the RF systems and beam stability, including feed-forward loops based on phase modulation to compensate disturbances due to RF trip, beam loading compensation and Power Unbalance Compensation Loop for RF amplifiers Combination.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB134
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPAB135 |
Digital LLRF for MAX IV |
cavity, LLRF, FPGA, vacuum |
4037 |
|
- A. Salom, F. Pérez
ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
- Å. Andersson, R. Lindvall, L. Malmgren, A.M. Milan, A.M. Mitrovic
MAX IV Laboratory, Lund University, Lund, Sweden
|
|
|
The MAX IV facility consists of a 3 GeV Storage Ring(SR), a 1.5 GeV SR, and a linear accelerator (fed by two guns) that serves as a full-energy injector to the rings, but also as a driver for the Short Pulse Facility. The RF systems of the two SRs work at 100MHz. There are 6 normal conducting capacity loaded accelerating cavities and three Landau passive cavities in the 3GeV SR. In the 1.5GeV SR there are two accelerating cavities and two Landau cavities with the same characteristics. Each of these cavities is fed by a modular 60kW SSA. In the 3 GeV SR the power will be doubled by adding a second SSA when required. A digital Low Level RF system has been developed using commercial uTCA boards, with a Virtex-6 FPGA mother board (Perseus 601X) and two double stack FMC boards with fast ADCs and DACs. The large capabilities of state-of-the-art FPGAs allowed including the control of two normal conducing cavities and two landau cavities in one single LLRF system, reducing the development costs. Other utilities like the handling of fast interlocks and post-mortem analysis were also added to this system. This paper summarizes the main capabilities and performance of this DLLRF.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB135
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|