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Abstract

Coherent synchrotron radiation (CSR) is an essential is-

sue in modern accelerators. We propose a new method to

examine CSR in the time domain using an unstructured Dis-

continuous Galerkin (DG) method. The method uses a 2D

spatial discretization in the longitudinal and transverse co-

ordinates (Z,X) with a Fourier series decomposition in the

transverse coordinate Y and computes the fields modally.

Additionally, by alignment of mesh element interfaces along

a source reference orbit, DG methods can naturally handle

discontinuous or thin sources in the transverse X direction.

We present an overview of the method, illustrate it by calcu-

lating wake potentials in a model problem, and in a bunch

compressor.

STATEMENT OF PROBLEM

In this work, we examine the generation of CSR by an

ultra-relativistic electron bunch in a vacuum chamber of

rectangular cross-section. We restrict motion of the bunch

to a planar orbit with Cartesian coordinates (Z, X,Y ) in the

midplane Y = 0. Additionally, we only consider vacuum

chambers with planar horizontal boundaries at Y = ±h/2

where h is the height of the chamber. For our work, we con-

sider only perfectly electrically conducting (PEC) boundary

conditions on the chamber walls. An example of a chamber

with a planar orbit is shown in Fig. 1, which models  the

bunch compressor DESY BC0.

Figure 1: DESY BC0 vacuum chamber domain in (Z, X)

(top) or (s, x) (bottom) coordinates with reference orbit (red

dashed). The entrance region is the same in both systems.

To study CSR wake fields, we aim to time-evolve the

Maxwell field equations for E and H inside the chamber:

∂E

∂τ
= Z0∇ × H − Z0j,

∂H

∂τ
= −

1

Z0

∇ × E, (1)

∗ Work supported by DESY.
† bizzozero@temf.tu-darmstadt.de

where τ = ct, with speed of light c, vacuum impedance Z0,

and current density j.

Given a smooth reference orbit parametrized by arc length

Rr (s) = (Zr (s), Xr (s), 0), we transform the (Z, X,Y ) coordi-

nate system to a curvilinear system (s, x, y) with the inverse

transformation of:

Z(s, x) = Zr (s) − xX ′
r (s),

X(s, x) = Xr (s) + xZ ′
r (s),

(2)

with the coordinate Y = y unchanged. It is also useful to

define the signed curvature κ(s) = Z ′′
r (s)X

′
r (s)−Z ′

r (s)X
′′
r (s)

and length scale factor η(s, x) = 1 + xκ(s). In the (s, x, y)

coordinate system, the reference orbit is the straight line

(x, y) = (0, 0). Furthermore, this coordinate mapping is

well-defined if η > 0 throughout the domain; where the

transformation is unique.

In the (s, x, y) coordinate frame, we assume a current

density of the form: j = (qcλ(s − τ)δ(x)G(y), 0, 0) with

Gaussian longitudinal and transverse distributions λ and G,

and a Dirac distribution in the x-coordinate. We choose σy ,

the RMS width of G, such that σy ≪ h so that G(±h/2) = 0

to machine precision. Similarly, we choose σs, the RMS

bunch length, such that the bunch is compactly supported in

the entrance region to machine precision.

We next use the parallel plate geometry of y = ±h/2 to

introduce a Fourier decomposition in y:

f (s, x, y, τ) =

∞∑

p=1

fp(s, x, τ)φ
(
αp(y + h/2)

)
,

fp(s, x, τ) =
2

h

∫ h/2

−h/2

f (s, x, y, τ)φ
(
αp(y + h/2)

)
dy,

(3)

with αp = πp/h, f representing Es, Ex, Ey,Hs,Hx,Hy or G,

and φ(·) is sin(·) for Es, Ex,Hy,G and cos(·) for Ey,Hs,Hx .

If the initial fields and G(y) is symmetric about y = 0, then

even p modes for all fields vanish. We denote the Fourier

series modes with the subscript p.

Due to numerical difficulties in handling the singularity

at x = 0 in the current j term on the right-hand-side of (1),

we apply an additional transformation on the Hyp field com-

ponent: H̃yp = Hyp − qcGpλ(s − τ)Θ(x) where Θ(x) is the

Heaviside function. Additional transformations can be made

to transform the source to arbitrary degree of smoothness [1];

however, for a DG method with element edges which align

along the discontinuity, this is not required.

Applying the curvilinear coordinate transformation in (2),

the Fourier series decomposition in (3), and the transforma-

Proceedings of IPAC2017, Copenhagen, Denmark THOBA2

05 Beam Dynamics and Electromagnetic Fields
D03 Calculations of EM Fields - Theory and Code Developments

ISBN 978-3-95450-182-3
3649 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



tion for Hyp , to (1) yields:

1

Z0

∂Esp

∂τ
=

∂H̃yp

∂x
+ αpHxp, (4a)

1

Z0

∂Exp

∂τ
= −αpHsp −

1

η

∂H̃yp

∂s
+ SE, (4b)

1

Z0

∂Eyp

∂τ
=

1

η

∂Hxp

∂s
−
∂Hsp

∂x
−
κ

η
Hsp, (4c)

Z0

∂Hsp

∂τ
= αpExp −

∂Eyp

∂x
, (4d)

Z0

∂Hxp

∂τ
=

1

η

∂Eyp

∂s
− αpEsp, (4e)

Z0

∂H̃yp

∂τ
=

∂Esp

∂x
+

κ

η
Esp −

1

η

∂Exp

∂s
+ SH, (4f)

where the source terms SE = −qcGpλ
′(s − τ)Θ(x)/η(s, x)

and SH = qZ0cGpλ
′(s − τ)Θ(x) arise from j after the Hyp

transformation.

To initialize the time-evolution of the system in (4) we

consider all fields inside the vacuum chamber to be zero

initially except for the entrance region. In this region, where

the reference orbit is a straight line in (Z, X,Y ) with κ =

0, η = 1; we derive a solution for a centered beam about

x = 0 with total width 2d satisfying the PEC boundary

conditions:

Esp0 = 0, Hsp0 = 0,

Exp0 = −qZ0cGpλ(s)Φ(x), Hxp0 = −Eyp0/Z0, (5)

Eyp0 = −qcZ0Gpλ(s)Ψ(x), Hyp0 = Exp0/Z0,

Φ(x) =
sinh(αpd)

sinh(2αpd)
cosh

(
αp (x − d)

)
− cosh(αpx)Θ(x),

Ψ(x) =
sinh(αpd)

sinh(2αpd)
sinh

(
αp (x − d)

)
− sinh(αpx)Θ(x).

Lastly, the open port boundaries in the s-coordinate are

also set with PEC conditions since the simulation is set to

halt once the electron bunch reaches midway into the exit

region of the chamber. If longer wake field simulations are

desired, this exit region may be extended with little addi-

tional computational effort since the cross-sectional width

is small. An earlier version of this method was presented

in [2] and applied to an accelerator structure at the Canadian

Light Source, Saskatoon, Canada [3].

DISCONTINUOUS GALERKIN METHOD

In this section we outline the DG scheme used for our

time-evolution of (4). Our approach follows the nodal DG

foundation given in [4]. To begin, we partition the vacuum

chamber domain in (s, x) into K triangular elements, with

curved elements along the boundary as needed. Additionally,

we impose that the reference orbit x = 0 lie strictly along

interfaces of elements and not bisect any element. For a

given element Dk , for k ∈ {1, ...,K}, we approximate each

field by a Lagrange polynomial of Nth order denoted by

ℓk
j
(s, x) with Np = (N + 1)(N + 2)/2 nodes: (sk

i
, xk

i
) where

ℓk
j
(sk

i
, xk

i
) = δi j , for i, j ∈ {1, ..., Np}. For a field component

u on element Dk , its polynomial approximation is given by:

uk(s, x, τ) =

Np∑

i=1

uk
i (τ)ℓ

k
i (s, x). (6)

We next construct residuals Rk for each of the fields uk

from (4) which each have the form:

Rk(s, x, τ) =
∂uk

∂τ
− a
∂vk

∂s
− b
∂wk

∂x
− cwk − f . (7)

For example, for equation (4c): u = Eyp , v = H̃xp , w = Hsp ,

a = Z0/η, b = −Z0, c = −Z0κ/η, and f = 0. For a

Galerkin scheme, we require the residuals to be orthogonal

to the same polynomial space spanned by ℓk
j

on the element.

However, a numerical flux must be introduced to couple

the elements together along their edges. This flux term is

derived by first integrating Rk with each test function ℓk
j

over the element Dk by parts, then adjusting the boundary

term to incorporate information from elements neighboring

Dk , and lastly integrating by parts back to arrive at:

∫

Dk

Rk(s, x, τ)ℓkj (s, x)dsdx =

−

∫

∂Dk

n · [avk − (av)∗, bwk − (bw)∗]ℓkj (s, x)dl,

(8)

where n = [ns, nx] denotes the outward normal unit vector

along the boundary of Dk , and (·)∗ denotes the numerical

flux: a single-valued function depending on interior and

exterior values along the interface. We choose an upwind

flux for our hyperbolic system of equations (4).

In implementing the DG scheme outlined above, we build

the discrete Np ×Np matrix operators: Mk , Dk
s , Dk

x so that:

Dk
s = [Mk]−1Sk

s , [Mk]i j =

∫

Dk

ℓki (s, x)ℓ
k
j (s, x)dsdx,

Dk
x = [Mk]−1Sk

x , [Sk
s;x]i j =

∫

Dk

ℓki (s, x)
∂ℓk

j
(s, x)

∂s; x
dsdx.

Combining these operators with the residual formulation

from (7) with (8) yields Np semi-discrete equations for each

field. In the example for equation (4c), these semi-discrete

equations are (with the superscript k suppressed):

1

Z0

dĒyp

dτ
=

1

η̄
◦ (DsH̄xp) − Dx H̄sp −

κ̄

η̄
◦ H̄sp−

1

2
(JM)−1

[ns

η
◦ [[Hxp]] − nx ◦ [[Hsp]] +

1

Z0

[[Eyp]]
]
,

(9)

where an upper bar ¯ denotes the vector of Np nodal weights

on element k, a lower bar _ denotes the vector of 3(N + 1)

boundary nodes for each element (shared with a neighboring

element), ◦ denotes a Hadamard (element-wise) product, and

[[u]] = uint − uext denotes the jump in field values along the
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interface. The surface integral operator (JM)−1 is of size

Np × 3(N + 1). A thorough derivation of (9) is given in [2]

with DG constructions detailed in [4].

The PEC boundary conditions are imposed by setting the

jumps for the tangential component of E to twice its value on

the boundary such that the mean vanishes. In the example

for (4c), this is imposed by setting [[Eyp]] = 2Eyp along the

boundary, since the y unit-vector is orthogonal to the domain.

Although, analytic expressions for the initial fields (5) are

known, we initialize the DG fields with a DG Helmholtz

equation solver outlined in [4] to reduce parasitic charge

remaining in the entrance region.

With equations similar to (9) for (4a)-(4f), and combining

all K elements, we obtain a system of 6NpK equations. We

evolve these equations in τ with a fourth-order low-storage

explicit Runge-Kutta scheme [5].

SIMULATIONS AND RESULTS

We present simulation results for computing the longitu-

dinal wake field by integrating Es along the reference orbit.

We define the longitudinal wake function on the orbit by:

ws(z) =
−1

q

∫ T

0

Es(τ − z, 0, 0, τ)dτ

=

−1

q

pmax∑

p=1

sin
( πp

2

) ∫ T

0

Esp(τ − z, 0, τ)dτ.

(10)

We denote z as the distance with respect to the center of the

bunch along the reference orbit, not the Cartesian coordinate

Z . Evaluation of Esp is done while time-stepping (4a) by

averaging the field along x = 0 using the elements’ DG

Nth-order polynomial representation as in (6). We set T/c

to be time when the bunch is midway into the exit region.

In our first test, we consider a straight orbit such that

(s, x) = (Z, X) where the bunch passes through a rectangular

taper. While no CSR is generated, the narrowing width of the

chamber generates  a  longitudinal wake  in  Fig. 2. This test

is used to compare wake fields to CST Particle StudioTM [6]

which cannot prescribe curved particle trajectories.

In our second test, we use the full DESY BC0 geometry

as shown in Fig. 1. In Fig. 3, we plot the longitudinal wake

wake generated by CSR and the geometry after the bunch

travels along the chicane orbit comprised of straights and

arcs of circles with constant curvature κ = 1 m−1.

CONCLUSION AND FUTURE WORK

In this study, we computed CSR generated in a bunch com-

pressor vacuum chamber using DG finite elements in the

time domain. While our approach works well for bunches

of small transverse dimensions, modeling very thin longi-

tudinal distributions becomes exceedingly costly as the DG

mesh must resolve features smaller than σs .

Our next application of this DG method will study the

evolution of particle distributions by importing wake poten-

tials with ASTRA [7]. We also will compare our results to

paraxial frequency-domain methods [8].

Figure 2: Wake function ws(z) for the test tapered chamber

with a comparison result from CST Particle StudioTM with

the direct wake solver. The thin dashed line shows the bunch

profile λ(z) scaled to ws(z).

Figure 3: Wake function ws(z) shown using only the p = 1

mode for the DESY BC0 vacuum chamber. The thin dashed

line shows the bunch profile λ(z) scaled to ws(z).
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