Keyword: accelerating-gradient
Paper Title Other Keywords Page
MOPVA055 Upgrade of the Capture Section of the S-DALINAC Injector cavity, SRF, electron, operation 993
 
  • D.B. Bazyl, H. De Gersem, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: This work is supported by the DFG through GRK 2128.
In order to reduce the energy spread of the recirculated beam, the injector of the S-DALINAC needs to be optimized, because the non-isochronous recirculation cannot correct for errors originating from the injector linac. For the S-DALINAC, spatial restrictions suggest the use of SRF technology for the capture section. In this work, we consider various SRF cavities with an operating frequency of 3 GHz for a possible upgrade of the capture section of the S-DALINAC. The first results of the RF and beam dynamics simulations for the proposed options are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA063 Vertical Tests of ESS Medium Beta Prototype Cavities at LASA cavity, vacuum, operation, radiation 1015
 
  • A. Bosotti, A. Bellandi, M. Bertucci, A. Bignami, J.F. Chen, C.G. Maiano, P. Michelato, L. Monaco, R. Paparella, P. Pierini, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • S. Pirani
    ESS, Lund, Sweden
 
  In the framework of the INFN activity related to the European Spallation Source collaboration, the LASA infrastructure has been renewed to allow the qualification, in its vertical cryostat, of the 704 MHz medium beta cavity prototypes. A new cryogenic insert has been realized, fully equipped with dedicated mechanical supports, vacuum, thermal sensors and quench diagnostic systems. The RF test station has been upgraded as well with a new PLL electronics rack. The first beta 0.67 cavity prototype designed and produced by INFN Milano has been successfully cold tested at 2.0 K temperature, outperforming the ESS specifications. The technical features of LASA infrastructure, the design of novel components and the experimental results of cavities cold-tests are thoroughly described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA082 PLASMA PROCESSING R&D OF THE 1.3 GHZ SINGLE-CELL SRF CAVITY AT IMP plasma, cavity, SRF, electromagnetic-fields 1055
 
  • L. Yang, L. Chen, Y. He, S.C. Huang, C.X. Li, C.L. Li, Y.M. Li, L. Lu, A. Shi, L.P. Sun, A.D. Wu, S.H. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
 
  The China-Accelerator Driven Sub-critical System (C-ADS) injector II has already commissioned with a CW 1 mA and a pulsed 10 mA proton beam. The beam energy achieved 10 MeV. The superconducting linac (SCL) is routinely operating at 4.7 MV/m average accelerating gradient in the low-beta cryomodules. Field emission and surface contaminants of the SCL limit the gradient in-crease in the beam commissioning. Hence, in order to increase the SCL accelerating gradient, reduce field emis-sion and remove surface pollutants, in-situ plasma pro-cessing R&D in a 1.3 GHz single-cell SRF cavity has being studied. In this paper, the current effort of plasma processing R&D in a 1.3 GHz single-cell SRF cavity will be presented in details and the future plan will be also reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA087 Low Betta Superconducting Cavity for the New Injector Linac for Nuclotron-NICA cavity, linac, simulation, multipactoring 1058
 
  • M. Gusarova, T.A. Bakhareva, M.V. Lalayan, S.V. Matsievskiy, N.P. Sobenin, D.V. Surkov, K.V. Taletskiy, V. Zvyagintsev
    MEPhI, Moscow, Russia
  • A.A. Bakinowskaya, V.S. Petrakovsky, A.I. Pokrovsky, D.A. Shparla
    Physical-Technical Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
  • A.V. Butenko, G.V. Trubnikov
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  The results of the RF, mechanical and multipactor discharge simulations of the 162 MHz quarter wave resonator (QWR) for New Superconducting Injector Linac for Nuclotron-NICA are presented. Cavity design in conjunction with manufacturing features is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA088 Medium Betta Superconducting Cavity for the New Injector Linac for Nuclotron-NICA cavity, simulation, linac, multipactoring 1061
 
  • M. Gusarova, M.V. Lalayan, N.P. Sobenin, D.V. Surkov, K.V. Taletskiy
    MEPhI, Moscow, Russia
  • A.A. Bakinowskaya, V.S. Petrakovsky, A.I. Pokrovsky, D.A. Shparla
    Physical-Technical Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
  • A.V. Butenko, G.V. Trubnikov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The results of the electrodynamical and multipactor discharge simulations of the medium betta superconducting cavity for New Superconducting Injector Linac for Nuclotron-NICA are presented. Different designs of CH and Spoke cavities are compared and the optimal one is chosen.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA116 Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour Diffusion cavity, radio-frequency, monitoring, niobium 1119
 
  • D.L. Hall, M. Liepe, J.T. Maniscalco, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • P. Cueva, D. Liarte, D.A. Muller, J.P. Sethna
    Cornell University, Ithaca, New York, USA
 
  The superconductor Nb3Sn is known to have a superheating field, Hsh, of approximately 400 mT. This critical field represents the ultimate achievable gradient in a superconducting cavity, and is equivalent to an accelerating gradient of 90 MV/m in an ILC single-cell cavity for this value of Hsh. However, the currently best performing Nb3Sn single-cell cavities remain limited to accelerating gradients of 17-18 MV/m, translating to a peak surface magnetic field of approx. 70 mT. In this paper, we consider theoretical models of candidate quench mechanisms, and compare them to experimental data from surface analysis and cavity tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA128 RF Performance of Nitrogen-Doped Production SRF Cavities for LCLS-II cavity, SRF, niobium, operation 1156
 
  • D. Gonnella, A. Burrill, M.C. Ross
    SLAC, Menlo Park, California, USA
  • S. Aderhold, A. Grassellino, C.J. Grimm, T.N. Khabiboulline, O.S. Melnychuk, S. Posen, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • E. Daly, G.K. Davis, F. Marhauser, K.M. Wilson
    JLab, Newport News, Virginia, USA
 
  Funding: DOE and the LCLS-II Project
The Linac Coherent Light Source II (LCLS-II) requires 280 9-cell superconducting RF cavities for operation in continuous wave mode. Two vendors have previously been selected to produce the cavities, Research Instruments GmbH and Ettore Zanon S.p.a. Here we present results from manufacturing and cavity preparation for the cavities constructed at these two vendors for LCLS-II. We show how the cavity preparation method has been changed mid-production in order to improve flux expulsion in the cavities and maintain high performance in realistic magnetic field environments (~5 mG). Additionally, we show that the nitrogen-doping process has been carried out successfully and repeatedly on over 70 cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB006 Achievement of Stable Pulsed Operation at 31 MV/m in the STF-2 Cryomodule for the ILC cavity, cryomodule, operation, radiation 1308
 
  • Y. Yamamoto, T. Dohmae, M. Egi, K. Hara, T. Honma, E. Kako, Y. Kojima, T. Konomi, N. Kota, T. Kubo, T. Matsumoto, T. Miura, H. Nakai, K. Nakanishi, G.-T. Park, T. Saeki, H. Shimizu, T. Shishido, T. Takenaka, K. Umemori
    KEK, Ibaraki, Japan
 
  In the Superconducting RF Test Facility (STF) in KEK, the cooldown test for the STF-2 cryomodule with 12 cavities has been done totally three times since 2014. In 2016, the 3rd cooldown test for the STF-2 cryomodule including the capture cryomodule with 2 cavities, which was used for Quantum Beam Project in 2012, was successfully done. The main purpose is the vector-sum operation with 8 cavities at average accelerating gradient of 31 MV/m as the ILC specification, and the others are the measurement for Lorenz Force Detuning (LFD) and unloaded Q value, and Low Level RF (LLRF) study, etc. During 8 cavities operation, piezo actuators were used for the compensation of LFD, and the feed-forward and vector-sum control system by LLRF worked perfectly for keeping the lowest forward power and the stable flat-top of accelerating gradient. In this paper, the result for the STF-2 cryomodule in the 3rd cooldown test will be presented in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB070 S-Band Accelerating Structure for High-Gradient Upgrade of TTX electron, impedance, simulation, linac 1485
 
  • D.Z. Cao, H.B. Chen, Y.-C. Du, W. Gai, W.-H. Huang, X.C. Meng, J. Shi, C.-X. Tang, X.W. Wu, H. Zha
    TUB, Beijing, People's Republic of China
 
  Thomson scattering x-ray source is an indispensable scientific X-ray imaging tool in various research fields. The 3-meter S-band linac in Tsinghua Thomson scatter-ing X-ray source (TTX) has been running at an accelerat-ing gradient of 15 MV/m so far. The gradient will be upgraded to 30MV/m by replacing the old structure with a shorter linac. Detailed optimization of the RF design of the new S-band linac structure is presented in this paper. Finally, further research on energy upgrade with X-band structures are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB138 Prototyping High-Gradient mm-Wave Accelerating Structures interface, experiment, cavity, RF-structure 2902
 
  • E.A. Nanni, V.A. Dolgashev, A.A. Haase, J. Neilson, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • S.C. Schaub
    MIT, Cambridge, Massachusetts, USA
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
  • R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
 
  We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are pi-mode standing-wave cavities fed with a TM01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Qo of 2800, approaching the theoretical design value of 3300. The geometry of these accelerating structures are as close as practical to single-cell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. The structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow us to reach an accelerating gradient of 400 MeV/m.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB138  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA019 Group Velocity Matching in Dielectric-Lined Waveguides and its Role in Electron-THz Interaction electron, acceleration, simulation, interface 3296
 
  • A.L. Healy, G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • D.M. Graham
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
  • S.P. Jamison
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Terahertz(THz)-driven dielectric-lined waveguides have applications in electron manipulation, particularly acceleration, as the use of dielectric allows for phase velocities below the speed of light. However matching a single frequency to the correct velocity does not maximise electron-THz interaction; waveguide dispersion typically results in an unmatched group velocity and so the pulse envelope of a short THz pulse changes along the length of the structure. This reduces field amplitude and therefore accelerating gradient as the envelope propagates at a different velocity to the electron. Presented here is an analysis of the effect of waveguide dispersion on THz-electron interaction and its influence on structure dimensions and choice of THz pulse generation. This effect on net acceleration is demonstrated via an example of a structure excited by a single-cycle THz pulse, with a comparison of multi-cycle, lower intensity THz pulses on net acceleration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA020 Dual-Grating Dielectric Accelerators Driven by A Pulse-Front-Tilted Laser laser, electron, simulation, vacuum 3299
 
  • Y. Wei, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M.M. Dehler, E. Ferrari, N. Hiller, R. Ischebeck
    PSI, Villigen PSI, Switzerland
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Dual-grating Dielectric Laser-driven Accelerators (DLAs) are considered to be one of the most promising technologies to miniaturize future particle accelerators. Accelerating gradients in the GV/m range seem accessible and 690 MV/m has been demonstrated in fused silica structures. However, the increase in beam energy is limited by the short interaction length between the laser pulses and the electron bunch. In this contribution, a pulse-front-tilt operation for a laser beam is studied to extend the interaction length, resulting in a greater energy gain for a dual-grating DLA. The VSIM code is used to compare this new scheme with the commonly used approach of a normally incident laser beam and advantages are summarized.
[1]T. Plettner, et al., Phys. Rev. ST Accel. Beams 9, 111301 (2006)
[2]K. P. Wootton, et al., Opt. Lett., 41, 2696 (2016).
[3]E. A. Peralta, et al., Nature 503, 91 (2013)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA022 RECENT TWO-BEAM ACCELERATION ACTIVITIES AT ARGONNE WAKEFIELD ACCELERATOR FACILITY acceleration, experiment, wakefield, impedance 3305
 
  • J.H. Shao, S.P. Antipov, M.E. Conde, W. Gai, Q. Gao, G. Ha, W. Liu, N.R. Neveu, J.G. Power, Y.R. Wang, E.E. Wisniewski, L.M. Zheng
    ANL, Argonne, Illinois, USA
  • C.-J. Jing, J.Q. Qiu
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • J. Shi, D. Wang
    TUB, Beijing, People's Republic of China
 
  The Two-Beam Acceleration (TBA) is a modified approach to the structure-based wakefield acceleration which may meet the luminosity, efficiency, and cost requirement of a future linear collider. Recently, various TBA experiments have been carried out at the Argonne Wakefield Accelerator Facility (AWA). With X-band metallic power extractors and accelerators, a 70 MeV/m average accelerating gradient has been demonstrated in two stages while a 150 MeV/m gradient as well as 300 MW extracted power have been achieved in a single stage. In addition, low cost K-band dielectric power extractor and accelerator have also been developed. The preliminary results show power extraction of 55 MW and an average accelerating gradient of 28 MeV/m.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBB3 ESS SRF Linear Accelerator Components Preliminary Results and Integration cavity, SRF, cryomodule, linac 3666
 
  • C. Darve, N. Elias, C.G. Maiano, F. Schlander
    ESS, Lund, Sweden
  • C. Arcambal, G. Devanz, F. Peauger
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • E. Cenni
    CEA/IRFU, Gif-sur-Yvette, France
  • G. Costanza
    Lund University, Lund, Sweden
  • P. Duthil, G. Olry, D. Reynet
    IPN, Orsay, France
  • L. Hermansson
    Uppsala University, Uppsala, Sweden
  • P. Michelato, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  The European Spallation Source (ESS) is a pan-European project and one of world's largest research infrastructures based on neutron sources. This collaborative project is funded by a collaboration of 17 European countries and is under construction in Lund, Sweden. The 5 MW, 2.86 ms long pulse proton accelerator has a repetition frequency of 14 Hz (4 % duty cycle), and a beam current of 62.5 mA. The Superconducting Radio-Frequency (SRF) linac is composed of three families of Superconducting Radio-Frequency (SRF) cavities, which are being prototyped, counting the spoke resonators with a geometric beta of 0.5, medium-beta elliptical cavities (betag=0.67) and high-beta elliptical cavities (betag=0.86). After a description of the ESS linear accelerator layout, this article will focus on the recent progress towards integration of the first test results of the main critical components to be assembled in cryomodules, then in the ESS tunnel.  
slides icon Slides THOBB3 [25.611 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THOBB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK070 Localization of RF Breakdown Point in a Coaxially Loaded LINAC Cavity linac, cavity, electron, operation 4254
 
  • Q.S. Chen, T. Hu, B. Qin
    HUST, Wuhan, People's Republic of China
  • Y.J. Pei
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Here we report how the RF breakdown point (RFBP) can be localized in a coaxially loaded linac cavity with just the forward and the reflected power signal. The cavity uses 4 load cells instead of output coupler to absorb remanent power, so no transmitted power signal could be recorded. We propose two methods to analyze the measured signals and localize the RFBP. One method focuses on the time delay of the two signals while the other one focuses on the amplitude. Quantitative analysis showed the two methods were well consistent with each other and indicated the RFBP located at the end of the linac cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK125 Ultra High Gradient Breakdown Rates in X-Band Cryogenic Normal Conducting Rf Accelerating Cavities cryogenics, cavity, experiment, electron 4395
 
  • A.D. Cahill, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • V.A. Dolgashev, S.G. Tantawi, S.P. Weathersby
    SLAC, Menlo Park, California, USA
 
  Funding: Work Supported by DOE/SU Contract DE-AC02-76-SF00515, US NSF Award PHY-1549132, the Center for Bright Beams, and DOE SCGSR Fellowship.
RF breakdown is one of the major factors limiting the operating accelerating gradient in rf particle accelerators. We conjecture that the breakdown rate is linked to the movements of crystal defects induced by periodic mechanical stress. Pulsed surface heating possibly creates a major part of this stress. By decreasing crystal mobility and increasing yield strength we hope to reduce the breakdown rate for the same accelerating gradient. We can achieve these properties by cooling a copper accelerating cavity to cryogenic temperatures. We tested an 11.4 GHz cryogenic copper accelerating cavity at high power and observed that the rf and dark current signals are consistent with Q0 changing during rf pulses. To take this change in Q0 into account, we created a non-linear circuit model in which the Q0 is allowed to vary inside the pulse. We used this model to process the data obtained from the high power test of the cryogenic accelerating structure. We present the results of measurements with low rf breakdown rates for surface electric fields near 500 MV/m for a shaped rf pulse with 150 ns of flat gradient.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)