Keyword: polarization
Paper Title Other Keywords Page
MOPAB025 Measurement of the Polarisation of Coherent Smith-Purcell Radiation in the SOLEIL Linac radiation, detector, linac, experiment 129
 
  • N. Delerue, S. Jenzer, V. Khodnevych
    LAL, Orsay, France
  • N. Hubert, M. Labat, J.-P. Pollina, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Funding: CNRS/IN2P3, Université Paris-Sud and ANR (contract ANR-12-JS05-0003-01)
SPESO is an experiment installed in the Linac of Synchrotron SOLEIL to study the Coherent Smith-Purcell radiation produced when a grating is approached from the beam. The detectors used to measure this radiation are mounted on 3-translation axis and 2 rotation axis. This allows measurements of the radiation emission map around the grating. In addition a polarizer has been added in 2016 allowing to study the two polarization components of the radiation in this map. Preliminary results of this mapping will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB044 X-Band TDS Project electron, experiment, diagnostics, cavity 184
 
  • B. Marchetti, R.W. Aßmann, B. Beutner, J. Branlard, F. Christie, R.T.P. D'Arcy, W. Decking, U. Dorda, J. Herrmann, M. Hoffmann, M. Hüning, O. Krebs, G. Kube, S. Lederer, F. Ludwig, F. Marutzky, D. Marx, J. Osterhoff, I. Peperkorn, S. Pfeiffer, F. Poblotzki, J. Rönsch-Schulenburg, J. Rothenburg, H. Schlarb, M. Scholz, S. Schreiber, M. Vogt, A. Wagner, T. Wilksen, K. Wittenburg
    DESY, Hamburg, Germany
  • M. Bopp, H.-H. Braun, P. Craievich, M. Pedrozzi, E. Prat, S. Reiche, K. Rolli, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • N. Catalán Lasheras, A. Grudiev, G. McMonagle, W. Wuensch
    CERN, Geneva, Switzerland
 
  Based on the success of the X-Band Transverse Deflecting Structure (TDS) diagnostic at LCLS*, a collaboration between DESY, PSI and CERN has formed with the aim of developing and building an advanced modular X-Band TDS system. The designed TDS has the new feature of providing variable polarization of the deflecting field**. The possibility of changing the orientation of the streaking field of the TDS to an arbitrary azimuthal angle allows for 3D characterization of the phase space using tomographic methods***. Moreover the complete 6D characterization of the beam phase space is possible by combining this technique with quadrupole scans and a dipole spectrometer. As this new cavity design requires very high manufacturing precision to guarantee highest azimuthal symmetry of the structure to avoid the deterioration of the polarization of the streaking field, the high precision tuning-free assembly procedures developed at PSI for the SwissFEL C-band accelerating structures will be used for the manufacturing****. The high-power rf system is based on the CERN-based X-band test stands. We summarize in this work the status of the projects and its main technical parameters.
* C. Behrens et al. , Nat. Comm. 4762 (2014).
** A. Grudiev, CLIC-note-1067 (2016).
*** D. Marx et al., contribution to this conference proceedings.
**** U. Ellenberger et al., FEL 2013, TUPS017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB111 Diffraction Radiation for Non-Invasive, High-Resolution Beam Size Measurements in Future Linear Colliders target, radiation, simulation, collider 381
 
  • M. Bergamaschi, R. Kieffer, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • A. Aryshev, N. Terunuma
    KEK, Ibaraki, Japan
  • M. Bergamaschi, P. Karataev, K.O. Kruchinin
    JAI, Egham, Surrey, United Kingdom
  • M. Bergamaschi, P. Karataev, K.O. Kruchinin
    Royal Holloway, University of London, Surrey, United Kingdom
 
  Next generation linear colliders such as the Compact Linear Collider (CLIC) or the International Linear Collider (ILC) will accelerate particle beams with extremely small emittance. The high current and small size of the beam (micron-scale) due to such small emittance require non-invasive, high-resolution techniques for beam diagnostics. Diffraction Radiation (DR), a polarization radiation that appears when a charged particle moves in the vicinity of a medium, is an ideal candidate being non-invasive and allowing beams as small as a few tens of microns to be measured. Since DR is sensitive to beam parameters other than the transverse profile (e.g. its divergence and position), preparatory simulations have been performed with realistic beam parameters. A new dedicated instrument was installed in the KEK-ATF2 beam line in February 2016. At present DR is observed in the visible wavelength range, with an upgrade to the ultraviolet (200nm) planned for spring 2017 to optimize sensitivity to smaller beam sizes. Presented here are the latest results of these DR beam size measurements and simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB128 The Design of a Non-Destructive Single-Shot Longitudinal Bunch Profile Monitor using Smith-Purcell Radiation radiation, detector, background, experiment 433
 
  • H. Harrison, G. Doucas, I.V. Konoplev, A.J. Lancaster, H. Zhang
    JAI, Oxford, United Kingdom
  • A. Aryshev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by the: the STFC UK, the Leverhulme Trust, the JAI (University of Oxford) and the Photon and Quantum Basic Research Coordinated Development (Japan).
The conceptual design for a single-shot longitudinal bunch profile monitor using coherent Smith-Purcell radiation (cSPr) has recently been completed. The exploitation of the directionality and the polarization of cSPr to reduce the length of the monitor and to eliminate background radiation are discussed. The linear polarization of cSPr will be used to separate the signal from background radiation and experiments to test this design will be presented. Alongside the conceptual design an investigation to optimize the number of detection channels needed to produce high quality longitudinal bunch profile reconstructions has been carried out. It has been determined that the number of detection channels can be reduced compared to previous experiments if measurement uncertainty and background radiation are minimized effectively.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK011 Electron Beam Generation From InGaN/GaN Superlattice Photocathode electron, laser, gun, brightness 522
 
  • N. Yamamoto
    KEK, Ibaraki, Japan
  • M. Hosaka, A. Mano, T. Miyauchi, Y. Takashima
    Nagoya University, Nagoya, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
 
  GaAs-type photocathode (PC) has been used as electron spin polarization (ESP) sources for various applications. Recently, by using a strain-compensated technique for GaAs/GaAsP, the super lattice (SL) thickness of up to 720 nm could be manufactured and the quantum efficiency (QE) improvements with the thickness increases was observed. In the experiments, the ESP degradation was also observed for the thicker thickness samples than 194nm and we considered that electron spin relaxation during diffusion process in the PC caused the degradation. Therefore, we propose developing fcc-GaN based PCs instead of GaAs because a factor of ten longer spin relaxation time compared with GaAs/GaAsP SL was reported. However an fcc-GaN sample with adequate dimensions for PC applications is not available at present due to manufacturing difficulties. Then at the start of GaN-type PC development, an hcp-GaN sample has been studied. In the study, NEA-activation was made for an InGaN/GaN SL sample and QE, surface lifetime and ESP were measured. The QE and ESP values were 1.3% and 2.1% at the pump laser wavelength of 405nm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK110 Update on Bmad Simulations From Target to Storage Ring for the New Muon G-2 Experiment at Fermilab storage-ring, proton, experiment, target 791
 
  • M. Korostelev, I.R. Bailey, A.T. Herrod, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • A.T. Herrod, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • D. Stratakis
    Fermilab, Batavia, Illinois, USA
  • V. Tishchenko
    BNL, Upton, Long Island, New York, USA
 
  The new muon g-2 experiment at Fermilab (E989) aims to measure the anomalous magnetic moment of the muon to an uncertainty of 140 ppb. The existing accelerator facility at Fermilab is being adapted to the requirements of the g-2 experiment and the baseline lattice design is now established. This paper presents the results of beam simulations and spin tracking carried out using the Bmad software package for the g-2 beam transport system, including a variant which bypasses the delivery ring as proposed for the beam commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA002 Initial Stage of Self Amplified Radiation Emission From Electron Bunches in Crystal: Linear Response Theory radiation, electron, brightness, undulator 848
 
  • A.I. Benediktovitch, I. Lobach
    BSU, Minsk, Belarus, Belarus
 
  Self amplified spontaneous emission (SASE) is a key process in X-ray free electron lasers' operation. In this case the spontaneous emission is undulator radiation emission, the radiation in X-ray range being possible from electrons in GeV energy range. In the case of interaction of electrons with properly aligned crystal the channeling radiation results in X-rays from electrons with energies in tens MeV energy range. In this situation for high current densities the SASE process may take place that potentially could lead to construction of a compact bright X-ray source. In present contribution the first principle theoretical description is outlined and first order perturbation theory is used to model the initial stage of SASE. The transition from spontaneous to SASE regime is described, the requirements for bunch current and emittance are determined. By means of dispersion equation analysis and boundary condition application the intensity radiated from crystal slab is calculated and it is shown that Bragg diffraction could enhance self amplification. A numerical example for Si (001) illustrates the model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA047 Investigation of Trapped Magnetic Flux in Superconducting Niobium Samples with Polarized Neutron Radiography neutron, niobium, detector, experiment 964
 
  • O. Kugeler, J. Knobloch, M.M. Krzyzagorski, J.M. Köszegi, L. Riik, W. Treimer, R.F. Ziesche
    HZB, Berlin, Germany
 
  The dynamics of flux expulsion during superconducting transition and the influence of external AC magnetic fields on expulsion of trapped fields in Nb samples has been investigated with radiography using polarized neu-trons. Results of these experiments are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB104 Optimized Undulator to Generate Low Energy Photons From Medium to High Energy Accelerators photon, optics, undulator, radiation 1556
 
  • T.Y. Chung, M.-S. Chiu, J.C. Huang, C.-S. Hwang, J.C. Jan, C.K. Yang
    NSRRC, Hsinchu, Taiwan
  • H.W. Luo
    NTHU, Hsinchu, Taiwan
 
  While emitting low energy photons from a medium or high energy storage ring, the on-axis heat load on the beam line optics can become a critical issue. In addition, the heat load in the bending magnet chamber, especially in the vertical and circular polarization mode of operation may cause some concern. In this work, we compare the heat loads for the APPLE-II and the Knot-APPLE, both optimized to emit 10 eV photons from the 3 GeV TPS. Under this constraint the heat load analysis, synchrotron radiation performance and features in various polarization modes are presented. Additional consideration is given to beam dynamics effect.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB136 Coupling and Polarization Control in a mm-wave Undulator undulator, coupling, controls, electron 1647
 
  • F. Toufexis, J. Neilson, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This project was funded by U.S. Department of Energy under Contract No. DE-AC02-76SF00515, and the National Science Foundation under Contract No. PHY-1415437.
To reduce the linac energy required for an FEL radiating at a given wavelength, and hence its size, a smaller undulator period with sufficient field strength is needed. Previous work from our group successfully demonstrated a microwave undulator at 11.424 GHz using a corrugated cylindrical waveguide operating in the HE11 mode. Scaling down the undulator period using this technology poses the challenge of confining and coupling the electromagnetic fields while maintaining overmoded features for power handling capability and electron beam wakefield mitigation. We have designed a mm-wave undulator cavity at 91.392 GHz*. This undulator requires approximately 1.4 MW for sub-microsecond pulses to generate an equivalent K value of 0.1. Transferring such amounts of power in mm-wave frequencies requires overmoded corrugated waveguides, and coupling through irises creates excessive pulsed heating. We have designed a novel mode launcher that allows coupling power from a highly overmoded corrugated waveguide to the undulator through the beam pipe. Additionally, this mode launcher can be used along with grating polarizers to control the polarization of the produced light.
* F. Toufexis and S.G. Tantawi, A 1.75 mm Period RF-Driven Undulator, these proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA049 Re-Visiting RHIC Snakes and Spin Orbit injection, proton, collider, dipole 2184
 
  • F. Méot, R.C. Gupta, H. Huang, A. Marusic, V.H. Ranjbar, G. Robert-Demolaize
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Recent analyses of RHIC run12 to run15 proton-carbon polarimeter measurements have shown significant tilt of the polarization vector from vertical, at high energy essentially. This is confirmed by extensive measurements performed in the present Run 17. Possible origins of such large tilt may reside in snake spin rotation angle or orbit defects, to mention just two. Dedicated simulations have been undertaken to investigate possible causes, they are presented and discussed, they include the computation and use of 3-D field maps of RHIC siberian snakes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA050 RHIC Polarized Proton Operation for 2017 resonance, lattice, injection, luminosity 2188
 
  • V.H. Ranjbar, P. Adams, Z. Altinbas, E.C. Aschenauer, G. Atoian, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, M.R. Costanzo, T. D'Ottavio, K.A. Drees, P.S. Dyer, A.V. Fedotov, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, C.E. Harper, M. Harvey, T. Hayes, J. Hock, H. Huang, R.L. Hulsart, J.P. Jamilkowski, T. Kanesue, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J. Morris, G. Narayan, C. Naylor, S. Nemesure, P. Oddo, M. Okamura, S. Perez, A.I. Pikin, A. Poblaguev, S. Polizzo, V. Ptitsyn, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, Z. Sorrell, D. Steski, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, W. Zhang, B. van Kuik
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract number DE-SC0012704
The 2017 operation of the Relativistic Heavy Ion Collider (RHIC) involved the running of only a single experiment at STAR with PHENIX offline in the process of the upgrade to sPHENIX. For this run there were several notable changes to machine operations. These included, transverse polarization, luminosity leveling, a new approach to machine protection and the development of new store and ramped lattices. The new 255 GeV store lattice was designed to both accommodate the necessary phase advance between the e-lens and IP8 for testing and to maximize dynamic aperture. The new lattices on the ramp were designed to maximize polarization transmission during the three strong intrinsic spin resonances crossings. Finally we are also commissioning new 9 MHz RF cavities during this run.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA112 Acceleration of Polarized Proton and Deuteron Beams in Nuclotron at JINR resonance, proton, acceleration, betatron 2349
 
  • Y. Filatov, A.V. Butenko, A.D. Kovalenko, V.A. Mikhaylov
    JINR, Dubna, Moscow Region, Russia
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  The superconducting synchrotron Nuclotron allows one to accelerate proton and deuteron beams up to 13.5 GeV/c. The beam depolarization occurs at the crossing of spin resonances. For deuterons, the vertical polarization is preserved almost to the maximum momentum. Tens of spin resonances are crossing during the proton acceleration. The proton polarization will be preserved by a solenoidal 5% snake up to 3.4 GeV/c at the field ramp rate of 1 T/s. It is planned to use a partial 50% snake to eliminate the resonant depolarization of the proton beam in the total momentum range of the accelerator. The results of simulations and experimental data are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA149 AGS Polarized Proton Operation Experience in RHIC Run17 emittance, booster, timing, proton 2452
 
  • H. Huang, P. Adams, J. Beebe-Wang, M. Blaskiewicz, K.A. Brown, C.J. Gardner, C.E. Harper, C. Liu, F. Méot, J. Morris, A. Poblaguev, V.H. Ranjbar, D. Raparia, T. Roser, V. Schoefer, S. Tepikian, N. Tsoupas, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Imperfection and vertical intrinsic depolarizing resonances have been overcome by the two partial Siberian snakes in the Alternating Gradient Synchrotron (AGS). The relatively weak but numerous horizontal resonances are overcome by a pair of horizontal tune jump quads. 70% proton polarization has been achieved for 2·1011 intensity. Further gain can come from maintaining smaller transverse emittance with same beam intensity. The main efforts now are to reduce the transverse emittance in the AGS and Booster, as well as robust jump quads timing generation scheme. This paper summarizes the operation results in the injectors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB072 Apple II Undulator and Front End Design for the New LOREA Beamline at ALBA undulator, vacuum, dipole, wiggler 2747
 
  • J. Campmany, L.G.O. Garcia-Orta, J. Marcos, V. Massana
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA synchrotron has started the construction of a new beamline LOREA, for Low-Energy Ultra-High-Resolution Angular Photoemission for Complex Materials. It will operate in the range of 10 to 1500 eV and will use polarized light. In order to produce the light to be used in this beamline, several options have been studied, and finally an Apple II design has been chosen. The device can operate as an undulator at low energies and as a wiggler at high energies, reaching a wide energy range. The high demanding characteristics of the beamline in terms of energies lead to a device providing high power and wide beam in some working modes. This situation has been a challenge for the Front End design, especially for the vertically polarized mode, with some changes with respect to standard ALBA front ends. In this paper we present the magnetic design and expected performances of the device, that currently is being built by KYMA, as well as the Front End design, that currently is being built by RMP and TVP.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB097 Modelling Two-Colour FEL with Wide Wavelength Separation and Individual Polarisation Tuning FEL, undulator, simulation, electron 2808
 
  • D. Bultrini, N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R.J. Allan
    The Hartree Centre, Science and Technology Facilities Council (STFC/DL), Warrington, United Kingdom
  • L.T. Campbell, B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  Free electron lasers (FELs) are currently enabling cutting edge research in chemistry, biology and physics. We use simulations to assess a new FEL capability that would add to the impressive repertoire of experiments made possible by the technology: a two-colour independent polarization mode, which allows for light pulses with variable temporal separation, individually tuneable polarisation, and widely separated wavelength. Simulations are carried out using the broad bandwidth FEL code Puffin, the results of which are used to discuss the radiation properties of the output. This scheme is applicable to existing and proposed facilities which feature undulators with variable ellipticity and gap.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK038 Acceleration of Polarized Protons and Deuterons in the Ion Collider Ring of JLEIC collider, ion, resonance, proton 3014
 
  • V.S. Morozov, Y.S. Derbenev, F. Lin, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of interference peaks. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stabil-ity of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK049 Overview of the eRHIC Ring-Ring Design electron, luminosity, proton, storage-ring 3035
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, W. Fischer, W. Guo, Y. Hao, A. Hershcovitch, Y. Luo, F. Méot, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Seletskiy, T.V. Shaftan, V.V. Smaluk, S. Tepikian, D. Trbojevic, E. Wang, F.J. Willeke, H. Witte, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The ring-ring electron-ion collider eRHIC aims at an electron-ion luminosity in the range from 1032 to 1033cm-2sec-1 over a center-of-mass energy range from 20 to 140GeV. To minimize the technical risk the design is based on existing technologies and beam parameters that have already been achieved routinely in hadron-hadron collisions at RHIC, and in electron-positron collisions elsewhere. This design has evolved considerably over the last two years, and a high level of maturity has been achieved. We will present the latest design status and give an overview of studies towards evaluating the feasibility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK053 Studies of Delta-Type Undulators for Sirius undulator, storage-ring, lattice, dynamic-aperture 3045
 
  • L.N.P. Vilela, L. Liu, X.R. Resende, F.H. de Sá
    LNLS, Campinas, Brazil
 
  In this work we present the studies of the effects of Delta-type undulators in the storage ring beam dynamics of Sirius. The undulators were included in the ring model as kick maps and their effects on tune shift, dynamic aperture and beam lifetime were evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK114 Study of Electron Polarization Dynamics in the JLEIC at JLab electron, collider, simulation, synchrotron 3218
 
  • F. Lin, Y.S. Derbenev, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
  • D.P. Barber
    DESY, Hamburg, Germany
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The design of an electron polarization scheme in the Jefferson Lab Electron-Ion Collider (JLEIC) aims to attain a high longitudinal electron polarization (over 70%) at collision points as required by the nuclear physics program. Comprehensive strategies for achieving this goal have been considered and developed including injection of highly polarized electrons from CEBAF, mechanisms for manipulation and preservation of the polarization in the JLEIC collider ring and measurement of the electron polarization. In particular, maintaining a sufficiently long polarization lifetime is crucial for accumulation of adequate experimental statistics. The chosen electron polarization configuration, based on the unique figure-8 geometry of the ring, removes the electron spin-tune energy dependence. This significantly simplifies the control of the electron polarization and suppresses the synchrotron sideband resonances. This paper reports recent studies and simulations of the electron polarization dynamics in the JLEIC electron collider ring.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK120 Simulated performance of the Production Target for the Muon g-2 Experiment at Fermilab target, experiment, proton, storage-ring 3234
 
  • D. Stratakis, M.E. Convery, J.P. Morgan, D.A. Still, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • V. Tishchenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
The Muon g-2 Experiment plans to use the Fermilab Recycler Ring for forming the proton bunches that hit its production target. The proposed scheme uses one RF system, 80 kV of 2.5 MHz RF. In order to avoid bunch rotations in a mismatched bucket, the 2.5 MHz is ramped adiabatically from 3 to 80 kV in 90 ms. In this study, the interaction of the primary proton beam with the production target for the Muon g-2 Experiment is numerically examined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB119 Study on a Time-Domain Spectroscopy System for Coherent Terahertz Pulse Spectrum Measurement from 5 MeV Electron Beam laser, radiation, electron, detector 4003
 
  • R. Yanagisawa, T. Toida
    Waseda University, Tokyo, Japan
  • K. Kan
    ISIR, Osaka, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • M. Washio
    RISE, Tokyo, Japan
 
  Funding: This work was supported by a research granted from The Murata Science Foundation and JSPS KAKENHI 26286083.
Terahertz wave, expected to apply spectral analysis and imaging, has recently developed both source and detector components. For the terahertz source, the coherent radiation from electron linac is expected to be the high power terahertz source. At Waseda University, we have been studying high quality electron beam generation using Cs-Te photocathode RF-Gun and its application. We tried to generate terahertz wave by the coherent radiation and to measure its spectrum by a time-domain spectroscopy (TDS) technique. Adopting this technique, ultra-short laser pulse is needed as probe light. A terahertz waveform appears by delaying the timing of probe pulse. A spectrum of terahertz wave is also led by the waveform, by using the Fourier transform. We succeeded in constructing the probe laser system operating at 119 MHz repetition rate. The pulse duration was compressed down to 190 fs (FWHM) by using pulse compressor. We also succeeded in measuring a terahertz radiation from a photoconductive antenna. In this conference, we will report the outline of our terahertz TDS system, recent progress of our laser system, and terahertz wave generation and detection, with the future prospects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA017 Integer Spin Resonance Crossing With Preserving Beam Polarization on VEPP-4M resonance, acceleration, solenoid, experiment 4451
 
  • A.K. Barladyan, A.Yu. Barnyakov, S.A. Glukhov, S.E. Karnaev, E.B. Levichev, S.A. Nikitin, I.B. Nikolaev, I.N. Okunev, P.A. Piminov, A.G. Shamov, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
 
  The method to preserve the electron beam polarization on the VEPP-4M storage ring during acceleration with crossing the integer spin resonance energy E=1763 MeV is described. It is based on the use of the non-compensated longitudinal magnetic field of the KEDR detector. This method has been successfully applied for the needs of the R measurement experiment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)