Keyword: network
Paper Title Other Keywords Page
MOPAB095 Development of the Simulation Software Package for the CBPM System simulation, cavity, FEL, experiment 349
 
  • J. Chen, L.W. Lai, Y.B. Leng, L.Y. Yu
    SINAP, Shanghai, People's Republic of China
  • N. Zhang
    SSRF, Shanghai, People's Republic of China
 
  In recent years, the development and construction of Free Electron Laser (FEL) facilities are in full swing. For FEL facilities, to generate coherent X-ray, cavity beam position monitor (CBPM) system which consist of cavity BPM, RF front-end and signal processor are employed to measure the transverse position in the undulator section. A generic simulation software package, with the S21 parameters of the real components, for the design of the RF front-end and the optimize of the CBPM system was developed. In this paper, the development of the generic simulation software package, and the experiment results with beam at Shanghai Deep ultraviolet (SDUV) FEL facility to verify the correctness of the simulation soft package will be introduced. The application in the design and optimize of the RF front-end for the Dalian Coherent Source (DCLS) will be addressed as well .  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB117 Online Bunch by Bunch Transverse Instability Detection in LHC operation, pick-up, feedback, injection 397
 
  • M.E. Söderén, G. Kotzian, M. Ojeda Sandonís, D. Valuch
    CERN, Geneva, Switzerland
 
  Reliable detection of developing transverse instabilities in the Large Hadron Collider is one of the main operational challenges of the LHC's high intensity proton run. A full machine snapshot provided from the moment of instability is a crucial input to develop and fine tune instability models. The transverse feedback system (ADT) is the only instrument in LHC, where a full rate bunch by bunch transverse position information is available. Together with a sub-micron resolution it makes it a perfect place to detect transverse beam motion. Very large amounts of data, at very high data rates (8 Gb/s) need to be processed on the fly to detect onset of transverse instability. A very powerful computer system (so called ADTObsBox) was developed and put into operation by the CERN RF group, which is capable of processing the full rate data streams from ADT and perform an on the fly instability detection. The output of this system is a timing event with a list of all bunches developing instability, which is then sent to the LHC-wide instability trigger network to freeze other observation instruments. The device also provides buffers with raw position data for offline analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB149 Design of LCLS-II ATCA BPM System linac, undulator, FEL, controls 477
 
  • A. Young, R. Claus, J.M. D'Ewart, J.C. Frisch, G. Haller, R.T. Herbst, S. L. Hoobler, U. Legat, J.J. Olsen, R. Ruckman, L. Sapozhnikov, S.R. Smith, T. Straumann, J.A. Vásquez, M. Weaver, E. Williams, C. Xu
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy under Contract Numbers DE-AC02-06CH11357
SLAC's LCLS-II is a next generation X-ray FEL that will use a CW 4 GeV superconducting linac with nominal bunch spacing of 1us will deliver both soft and hard x-ray FEL to users. In order to achieve the required performance, the SLAC Technical Innovation Directorate has developed a common hardware and firmware platform for beam instrumentation based on the ATCA crate format. We have designed a stripline and cavity BPM system based on this platform that is capable of measuring the beam position at full beam rate. The system will have a dynamic range between 1 pC to 300 pC. This paper will discuss the design of the BPM electronics, overall architecture and performance on LCLS-I.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA130 Development of Waveguide HOM Loads for BERLinPro and BESSY-VSR SRF Cavities HOM, cavity, simulation, SRF 1160
 
  • J. Guo, F. Fors, J. Henry, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
  • H.-W. Glock, A. Neumann, A.V. Tsakanian, A.V. Vélez
    HZB, Berlin, Germany
 
  Two ongoing accelerator projects at Helmholtz-Zentrum Berlin (HZB), BERLinPro and BESSY-VSR, need to design three different SRF cavities, a 1.3GHz cavity in BERLinPro and 1.5GHz/1.75GHz cavities in BESSY-VSR. These cavities have adopted waveguide HOM dampers in their design, with a few tens of watts HOM power in each load for BERLinPro and a few hundred watts for BESSY-VSR. JLab is collaborating with HZB prototyping these HOM loads. In this paper, we will report on the integrated RF-thermal-mechanical design of the loads, as well as the fabrication and testing results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA130  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB082 Research of L-Band Disk-Loaded Waveguides Travelling Wave Accelerating Structures for a High Power Linac cavity, bunching, electron, impedance 1506
 
  • Y.M. Zhang
    USTC, SNST, Anhui, People's Republic of China
  • Y.J. Pei, L.S. Sheng, Y. Song
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  L-band Electron Accelerator is widely used for industrial irradiation. This paper describes a constant-impedance, disk-loaded structure operating on the 2Pi/3 mode. The design details of L-band travelling wave accelerating structures are presented. All RF parameters in metal disk-loaded waveguides and fields were calculated. The SUPERFISH code was used to design the bunching and accelerating cavities. At the same time, we also calculated the beam dynamics. Some model cavities have been fabricated and experimental studies were carried on. In this study, some valuable results were obtained, which can provide a beneficial datum for the design and manufacture of L-band travelling-wave accelerating structures of 50MeV LINAC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB132 A Novel Dual-Mode Dual-Frequency Linac Design impedance, operation, cavity, distributed 1634
 
  • M.H. Nasr, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  In this paper we will present a new type of accelerator structure that operates simultaneously at two accelerating modes with two frequencies. The frequencies are not harmonically related, but rather have a common sub-harmonic. This design will use a recently developed parallel-feeding network that feeds every cavity cell independently using a distributed feeding network. This will overcome many of the practical complications of coupled cell structure. We will provide the theoretical background for our dual-mode design as well as present our optimized design that operates at C and X bands simultaneously and provides enhanced gradient and efficiency compared to single-mode designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB132  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK065 A Software for Smoothing Magnet Track in Particle Accelerator* software, interface, alignment, storage-ring 1842
 
  • Q. Zhang, X.Y. He, G. Liu, W. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  This article describes a software for smoothing magnet track in particle accelerator. This paper introduces the development process of the software from the aspects of interface design, algorithm analysis, parameter meaning and so on. Magnet track smoothing means that under the conditions of meeting absolute accuracy, if the relative position error of the adjacent magnet is too large, it will cause the loss of beam, we call the track curve is not smooth enough. Smooth analysis can find these magnet components, the curve is smooth after a reasonable ad-justment. The software is based on the least square method. The software is tested by using the data of HLS storage ring, the results meet the needs of the work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK098 Micrometric Propagation of Error Using Overlapping Streched Wires for the CLIC Pre-Alignment simulation, alignment, linac, collider 1935
 
  • H. Mainaud Durand
    CERN, Geneva, Switzerland
  • J. Pfingstner
    University of Oslo, Oslo, Norway
  • V. Rude
    ESGT-CNAM, Le Mans, France
 
  The geodetic network for the Compact LInear collider (CLIC) will consist of a combination of overlapping wires stretched in parallel and Wire Positioning Sensors (WPS). Such a configuration will limit the propagation of errors (maximum deviation w.r.t. a fit line) below 10 micrometres over 200 metres. These first results were obtained through simulations in 2009, with hypotheses remaining to be validated. New experimental results have been obtained allowing to reconsider the precision and accuracy of WPS sensors and the knowledge of stretched wires. This paper presents the experimental results obtained on dedicated calibration benches and on a facility made of three overlapping stretched wires over a length of 140 metres including WPS sensors measurements. It confirms the possibility to have a propagation of error below 10 micrometres using overlapping stretched wires combined with WPS sensors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK109 Accelerators and Their Ghosts database, operation, target, proton 1975
 
  • M. Reščič, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • W. Blokland
    ORNL, Oak Ridge, Tennessee, USA
 
  The issue of particle accelerator reliability is a problem that currently is not fully defined, understood nor addressed. Conventional approaches to reliability (e.g. RBDs) struggle due to a lack of data about specific component/system reliability and failure. There is a large body of beam current data retrievable from operating accelerators that contains detailed information about the accelerator behaviour, both before and after a machine trip has occurred. Analysing this data could provide insight and help develop a new approach to address accelerator reliability. In this paper, we propose a data-driven approach to detecting emergent behaviour in particle accelerators. Instead of attempting to identify every possible failure of a machine we propose an alternative approach based around a change in perspective, to knowing the normal default operational behaviour of a machine. Taking action when a ghost in the machine emerges that causes accelerator wide aberrant changes to normal machine behaviour.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK087 Measurement and Characterization of Cable Losses for High Voltage Coaxial Cables Used in Kicker Systems impedance, kicker, simulation, injection 3131
 
  • A. Ferrero Colomo, L. Ducimetière, T. Kramer, L. Sermeus
    CERN, Geneva, Switzerland
 
  In the framework of CERN's LHC Injector Upgrade, simulation models for kicker pulse generators have been improved. A key element in the conventional pulse generators, among many others, are the high voltage coaxial cables. Since they can have significant impact on the waveform characteristics, an accurate cable model for simulation is crucial for reliable results during development. For this purpose, precise measurements of scatter parameters have been carried out in order to improve existing simulation models. Specialized high voltage cables, sometimes SF6 gas filled, used in various CERN kicker systems are usually large, heavy, not very flexible and often only one end is easy accessible. In addition, the impedance of these cables is rarely of 50 Ohms, which presents an extra difficulty. This paper describes the methods that have been defined and used to measure any kind of coaxial structures relying on S11 parameters exclusively. Measurements for various specialized cable types are presented and compared with their improved models. The implications for overall kicker system performance are briefly discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB113 Time Synchronization for Distant IOCs of the SuperKEKB Accelerators timing, EPICS, operation, linac 3982
 
  • H. Kaji, T. Naito, S. Sasaki
    KEK, Ibaraki, Japan
  • Y. Iitsuka
    EJIT, Hitachi, Ibaraki, Japan
 
  The time synchronization for multi CPU system is always a problem to be worried. The control system of accelerator is no exception since it consists of a lot of CPUs located among large area distantly. The problem appears conspicuously when the beam is aborted. Usually, several hardware show abort signals in one beam abort event. However it is difficult to know which is the source of beam abort and which issues an abort signal under the influence of original failure. We introduce the time synchronization system of the SuperKEKB collider which choose EPICS as the control software. The system utilize Event Timing System and synchronizes the EPICS general time for I/O controllers located distantly. The accuracy of synchronization is around 10ns. It is the excellent performance in terms of synchronization of CPU time. The all abort channels of SuperKEKB are synchronized their issued time. Besides they synchronize with also the injector linac which is operated with the different control system in different network.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB118 Stabilization of Timing System Operation of J-PARC Linac and RCS timing, operation, linac, software 4000
 
  • H. Takahashi, N. Hayashi
    JAEA/J-PARC, Tokai-mura, Japan
  • Y.I. Itoh
    Total Support Systems Corporation, Tokai-mura, Naka-gun, Ibaraki, Japan
  • M. Kawase, Y. Sawabe
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  At the timing system for J-PARC Linac and Rapid Cycling Synchrotron (RCS), the distribution of timing information (beam tag, type, etc.) and the monitoring and control of timing system are performed via the reflective memory (RFM). The more 10 years elapsed after operation start of J-PARC. Therefore, it is concerned about the occurrence of malfunctions due to time-related deterioration of the devices of timing system. Especially, the malfunctions of a management computer to monitor and control the all timing devices and RFMs to configure the timing system data network have a significant impact. Then, the management computer was renewed and PCI-Express RFMs are installed instead of PCI RFMs. However, after renewal computer, the trouble by data corruption of RFM network was happened anew. In this paper, the contents and the results our cause investigation of data corruption and those of the measures employed for stabilizing the timing system operation are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK057 Development of a High-Power X-Band RF Rotary Joint simulation, linac, insertion, scattering 4224
 
  • J. Liu, H.B. Chen, J. Shi, X.W. Wu, H. Zha
    TUB, Beijing, People's Republic of China
 
  RF rotary joints allow the independent movement be-tween the RF power source and the accelerating tube of a linear accelerator (linac). In this paper, the design of a compact X-band (9.3 GHz) high-power RF rotary joint is presented. Simulation results illustrate that RF parameters (the scattering matrix) of this rotary joint keep stable in the arbitrary rotation angle. The maximum return loss is about -30 dB, the insert loss is less than 0.11 dB, and the variance of output phase shifts is below 1 degree while rotating the joint. RF measurement on the rotary joint using Vector-Network analyser is also conducted and presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK060 Tuning of an S-Band 10 MeV Traveling-Wave Accelerating Structure with a Non-uniform Section impedance, electron, cavity, collider 4233
 
  • J.H. Shao, H.B. Chen, C. Gong, J. Shi, X.W. Wu, S.X. Zheng
    TUB, Beijing, People's Republic of China
 
  A tuning method of nonuniform travelling wave structures has been developed based on non-resonant perturbation measurement at Tsinghua University. The filed distribution is normalized with the shunt impedance and attenuation of each cell. Then their internal reflection can be deduced and corrected by cavity deforming. This method has been applied to an S-band 10 MeV travelling wave structure successfully. In this paper, the detailed tuning method and cold test results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK081 Design and Construction of a High-Gradient RF Lab at IFIC-Valencia klystron, linac, vacuum, diagnostics 4272
 
  • A. Vnuchenko, T. Argyropoulos, C. Blanch Gutiérrez, D. Esperante Pereira, A. Faus-Golfe, J. Giner Navarro
    IFIC, Valencia, Spain
  • N. Catalán Lasheras, G. McMonagle, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
 
  The IFIC High-Gradient (HG) Radio Frequency (RF) laboratory is designed to host a high-power infrastructure for testing HG S-band normal-conducting RF accelerating structures and has been under construction since 2016. The main objective of the facility is to develop HG S-band accelerating structures and to contribute to the study of HG phenomena. A particular focus is RF structures for medical hadron therapy applications. The design of the laboratory has been made through collaboration between the IFIC and the CLIC RF group at CERN. The layout is inspired by the scheme of the Xbox-3 test facility at CERN, and it has been adapted to S-band frequency. In this paper we describe the design and construction status of such a facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK088 A Compact 10 kW Solid-State RF Power Amplifier at 352 MHz operation, impedance, insertion, linac 4292
 
  • D.S. Dancila, A. Rydberg
    Uppsala University, Department of Engineering Sciences, Uppsala, Sweden
  • A.E.T. Hjort, L. Hoang Duc, M.H. Holmberg, M. Jobs, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
 
  A compact 10 kW RF power amplifier at 352 MHz was developed at FREIA for the European Spallation Source, ESS. The specifications of ESS for the conception of amplifiers are related to its pulsed operation: 3.5 ms pulse length and a duty cycle of 5\%. The realized amplifier is composed of eight kilowatt level modules, combined using a planar Gysel 8-way combiner. The combiner has a low insertion loss of only 0.2 dB, measured at 10 kW peak power. Each module is built around a commercially available LDMOS transistor in a single-ended architecture. During the final measurements, a total output peak power of 10.5 kW was measured.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK095 High Power X-Band Generation Using Multiple Klystrons and Pulse Compression klystron, controls, vacuum, detector 4311
 
  • B.J. Woolley, T. Argyropoulos, N. Catalán Lasheras, G. McMonagle, S.F. Rey, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • D. Esperante Pereira
    IFIC, Valencia, Spain
  • J. Tagg
    National Instruments Switzerland, Ennetbaden, Switzerland
  • M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
 
  CERN has constructed and is operating a new X-band test stand containing two pairs of 12 GHz, 6 MW klystrons. By power combination through hybrid couplers and the use of pulse compressors, up to 45 MW of peak power can be sent to any of 4 test slots at pulse repetition rates up to 400 Hz. The test stand is dedicated to RF conditioning and testing of high gradient accelerating structures for the CLIC study and also future X-band FELs. Operations have been ongoing for a few months, with initial operation dedicated to control algorithm development. Significant progress has been made in understanding the unique challenges of high power RF combination and phase switching using RF hybrids.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK117 High Efficiency High Power Resonant Cavity Amplifier for Accelerator Applications cavity, operation, coupling, impedance 4374
 
  • M.P.J. Gaudreau, D.B. Cope, E.G. Johnson, M.K. Kempkes, J. Kinross-Wright, R.E. Simpson
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  Funding: Work supported by US Department of Energy under contract DE-SC0015780
Diversified Technologies, Inc. (DTI) has designed and built a unique integrated resonant-cavity combined solid-state amplifier. The design radically simplifies solid-state transmitters to create favorable and straightforward scaling to high power levels. A crucial innovation is demonstration of an inherently reliable soft-failure mode of operation; a failure in one or several of these myriad combined transistors has negligible performance impact. In addition, this design couples the transistor drains directly to the cavity without first transforming to 50 Ohms, avoiding the otherwise-necessary multitude of circulators, cables, and connectors. A conventional amplifier has a complete set of electrical and cooling connections for every stage, resulting in many hundreds of connections for a high power transmitter'in some DTI designs, there are as few as four. This construction both reduces the cost and increases the power level at which it is cost-effective to employ a solid-state transmitter. The prototype has demonstrated multiple-transistor combining from 300 MHz to 1300 MHz, at powers up to 5 kW. This prototype is scalable to several hundred kW at these frequencies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA041 Progress in the Bunch-to-Bucket Transfer Implementation for FAIR synchrotron, proton, Ethernet, ion 4525
 
  • T. Ferrand, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Bachmann
    TU Darmstadt, Darmstadt, Germany
  • J.N. Bai, H. Klingbeil
    GSI, Darmstadt, Germany
  • H. Damerau
    CERN, Geneva, Switzerland
 
  The transfer of bunched ion beams between various synchrotrons is required for the multi-accelerator complex FAIR, presently under construction at GSI. To avoid a dedicated distribution infrastructure for radiofrequency (RF) signals between each source and destination synchrotron, a new approach has been developed to transmit bunch and bucket phase information using synchronous Ethernet. This allows to locally regenerate all reference signals needed for the RF synchronization prior to a bunch-to-bucket transfer, as well as the triggers to the kickers. The modular and configurable hardware implementation based on the White Rabbit network progresses towards a proof-of-principle demonstrator. Besides the synchronization of revolution and RF frequencies, the bunches in the source accelerator must be aligned in azimuth with respect to the buckets in the receiving synchrotron. To validate the feasibility of this azimuthal steering, measurements have been performed with protons in the CERN PS to evaluate the longitudinal emittance growth. They are complemented with tracking simulations using the BLonD code.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA057 The Primary Control Network of HLS II controls, laser, synchrotron, linac 4573
 
  • W. Wang, L. Lin, F.F. Wu, Q. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  To meet the accuracy requirement of alignment and installation of HLS', the high accuracy control network is necessary. The high accuracy primary control network will provides reliable reference to the local control network. After optimization design that using Monte-Carlo method, according to the structure characteristic of HLS', the primary control network is measured by several different instruments, such as: Laser tracker, Total station and plummet. The accuracy of actual primary control network meets the design requirements, it provides strong foundation for subsequent project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA138 Optimization of Medical Accelerators within the OMA Project proton, ion, medical-accelerators, detector 4787
 
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 675265.
Although significant progress has been made in the use of particle beams for cancer treatment, an extensive research and development program is still needed to maximize the healthcare benefits from these therapies. The Optimization of Medical Accelerators (OMA) is the aim of a new European Network. OMA joins universities, research centers and clinical facilities with industry partners to address the challenges in treatment facility design and optimization, numerical simulations for the development of advanced treatment schemes, and in beam imaging and treatment monitoring. This contribution gives an overview of the 15 R&D projects that are covered within the project and reports on initial results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA138  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)