Keyword: synchrotron-radiation
Paper Title Other Keywords Page
MOPAB042 Two-Dimensional Synchrotron Radiation Interferometry at PETRA III synchrotron, radiation, emittance, operation 177
 
  • A.I. Novokshonov, A. Potylitsyn
    TPU, Tomsk, Russia
  • G. Kube
    DESY, Hamburg, Germany
 
  Synchrotron radiation interferometry is widely used at modern 3rd generation light sources in order to measure transverse electron beam sizes. The technique is based on probing of the spatial coherency of synchrotron radiation in the visible spectral region. The light source PETRA III at DESY (Hamburg, Germany) is using this type of interferometer since several years in order to resolve vertical emittances of about 10 pm.rad. In order to overcome some inherent disadvantages in this setup, a new optical diagnostics beamline was recently commissioned with a two-dimensional interferometer, thus allowing to measure beam sizes in both transverse planes simultaneously. This contribution summarizes the status of the interferometer with first operational experience and describes systematical studies concerning the stability and possibilities to increase the sensitivity on small beam sizes using an intensity imbalance technique.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB090 Wavefront Distortion Measurement at SSRF simulation, experiment, radiation, synchrotron 332
 
  • B. Gao, H.J. Chen, J. Chen, Y.B. Leng, K.R. Ye
    SINAP, Shanghai, People's Republic of China
  • B. Gao
    University of Chinese Academy of Sciences, Beijing, People's Republic of China
  • N. Zhang
    SSRF, Shanghai, People's Republic of China
 
  The Synchrotron Radiation Monitor (SRM) system has been designed and constructed at the Shanghai synchrotron radiation Facility (SSRF) for several years and runs good. However, the monitor extraction mirror deformation is quite common at different facilities, and other reflecting mirrors in the optic path also have surface error and angle error. As we decide to upgrade the SR monitor system at SSRF, this issue is also one of the most import thing what we should overcome. In order to verify the feasibility and evaluate the accuracy, simulations based on SRW code have been done. In this simulation, a dedicated algorithm was developed to reconstruct wavefront. The result and the algorithm is very useful for our experiment and upgrade program. In this paper, the algorithm and the experiments based on Shark-Hartmann wavefront sensor will be presented detailed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB152 Precise Synchronous Phase Measurements storage-ring, synchrotron, radiation, impedance 487
 
  • W.X. Cheng, B. Bacha, K. Ha, O. Singh
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE contract No: DE-SC0012704
Precise measurements of storage ring synchronous phase helps to understand the machine impedance and improve the high current performance. We present different methods tested at NSLS-II, including the streak camera measurement, relative phase measurement from a high sampling frequency oscilloscope by comparing the beam signal and reference signal. Both streak camera and scope method have high precision to measure the synchronous phase (<1ps). Other methods to measure the synchronous phase include the I-Q detection from BPM electronics, FPM scope have been tested as well. We have used these systems to study the synchronous phase shift at different beam current, RF voltages and ID gaps. Recent results will be presented and discussed in the paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB152  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA011 Comparing Behaviour of Simulated Proton Synchrotron Radiation in the Arcs of the LHC with Measurements photon, simulation, synchrotron, radiation 2059
 
  • G. Guillermo Cantón, M. Ady, R. Kersevan, F. Zimmermann
    CERN, Geneva, Switzerland
  • M. Angelucci, R. Cimino, E. La Francesca
    INFN/LNF, Frascati (Roma), Italy
  • D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: EuCARD2 CONACyT
In previous work it was shown that at high proton-beam energies, synchrotron radiation is an important source of beam-screen heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can contribute to electron cloud formation. We have used the Synrad3D code developed at Cornell to simulate the photon distributions in the arcs of the LHC, HL-LHC, and FCC-hh. Specifically, for the LHC we studied the effect of the sawtooth chamber. In this paper specific results of the Synrad3D simulations are compared with simulations in Synrad+, developed at CERN; and later on compared with experimental data for actual LHC vacuum-chamber samples.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB040 Upgrade Plan of Synchrotron Radiation Source at Hiroshima Synchrotron Center, Hiroshima University storage-ring, synchrotron, emittance, radiation 2670
 
  • K. Kawase, S. Matsuba
    HSRC, Higashi-Hiroshima, Japan
 
  Hiroshima Synchrotron Radiation Center belonging to Hiroshima University is a user facility of the synchrotron radiation with the wavelength of ultraviolet range for natural science especially including materials and biological sciences. The kely apparatus is an electron storage ring with energy of 700 MeV. This machine is a racetrack shape with large two bending magnets and the injection energy is 150 MeV. It is a very compact size with the circumstance of 30 m, but it has only 2 insertion section and the emittance is much larger than the modern synchrotron radiation sources. Therefore, all of users is eager to upgrade the radiation source with several straight sections and low emittance beam keeping compactness. To meet these requests, we are designing the storage ring based on MAX-III. In this conference, we show the present design of the storage ring and its injector.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB041 Status Report of Hiroshima Synchrotron Radiation Center Hiroshima University undulator, synchrotron, radiation, photon 2672
 
  • S. Matsuba, K. Goto, K. Kawase
    HSRC, Higashi-Hiroshima, Japan
 
  The Hiroshima Synchrotron Radiation Center (HSRC) at Hiroshima University was established in 1996 for the research of solid state physics. The HSRC equips a 700 MeV electron storage ring nicknamed HiSOR. Recently, we are considering upgrade of the instrumentation beamline for the optical monitoring. In this paper, we report the present status of HSRC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB048 Present Status of Accelerators in Aichi Synchrotron Radiation Center synchrotron, operation, radiation, storage-ring 2691
 
  • M. Hosaka, T. Ishida, A. Mano, A. Mochihashi, Y. Takashima
    Nagoya University, Nagoya, Japan
  • Y. Hori, N. Yamamoto
    KEK, Ibaraki, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
  • S. Koda
    SAGA, Tosu, Japan
  • H. Ohkuma, S. Sasaki
    JASRI/SPring-8, Hyogo-ken, Japan
 
  Aichi Synchrotron Radiation Center is a synchrotron radiation facility in operation since 2013. The electron energy of the storage ring is 1.2 GeV and the circumference is 72 m. In spite of the compact size of the storage ring, synchrotron radiation up to hard X-ray region (~20 keV) is available from the 5 T super conducting bending magnets. Presently (Dec. 2016), 8 beamlines (5 hard X-ray and 3 soft X-ray) are in operation and 2 new hard X-ray beamlines are under commissioning. This contribution reports on the present status as well as machine studies to improve the performance of the accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB063 Considerations on Developing a Dedicated Terahertz Light Source Based on the HLS-II Storage Ring radiation, storage-ring, synchrotron, electron 2716
 
  • S.W. Wang, J.Y. Li, W.B. Wu, W. Xu, K. Xuan, X. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  There is an increasing interest in generating terahertz radiation for different kinds of researches. A high-power terahertz light source can be realized through coherent synchrotron radiation from a storage ring. The radiation power of coherent synchrotron radiation is proportional to square of the number of electrons in a bunch. To generate coherent synchrotron radiation, the electron bunch length should be shorter than its radiation wavelength. This paper presents our preliminary study on developing a terahertz light source based on Hefei Light Source. We will introduce the status of Hefei Light Source (HLS) and discusses the approach to change it to a dedicated Terahertz light source using coherent synchrotron radiation. Several schemes are proposed to shorten the electron bunch length in the storage ring, including using a low alpha lattice, adopting a magnetic chicane and upgrading the RF system with much higher frequency. The related beam instabilities are also analyzed to predict the beam current threshold.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK021 MDI Issues in CEPC Double Ring quadrupole, radiation, detector, synchrotron 2965
 
  • B. Sha, J. Gao, Y. Wang, C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  With the discovery of the higgs boson at around 125GeV, a circular higgs factory design with high luminosity (L ~ 1034 cm-2 s-1) is becoming more popular in the accelerator world. The CEPC project in China is one of them. Machine Detector Interface (MDI) is the key research area in electron-positron colliders, especially in CEPC, it is one of the criteria to measure the accelerator and detector design performance. Because of the limitation from the existing tunnel, many equipment including magnets, beam diagnostic instruments, masks, vacuum pumps, and components of the detector must coexist in a very small region. In this paper, some important MDI issues will be reported for the Interaction Region (IR) design, e.g. the final doublet quadrupoles physics design parameters, beam-stay-clear region and beam pipe, synchrotron radiation power and critical energy are also calculated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK023 Sawtooth Effect in CEPC synchrotron, radiation, lattice, closed-orbit 2971
 
  • H. Geng, J. Gao, B. Sha, D. Wang, Y. Wang, C.H. Yu, Y. Zhang
    IHEP, Beijing, People's Republic of China
 
  Funding: This work was supported by National Natural Science Foundation of China, under contract NO. 11405188.
CEPC is a circular electron and positron machine designed to study the property of the Higgs boson. The beam energy for CEPC is thus chosen to be 120GeV. At such a high energy, synchrotron radiation has pronounced effect on the beam behavior. In this paper, we will show the synchrotron radiation effect in the CEPC single ring design, namely, the closed orbit, linear optics and dynamic aperture. Analytical analysis will be given trying to explain the phenomenon.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK024 HTS-Coated Beam Screen for SPPC Bending Magnets synchrotron, radiation, proton, cryogenics 2974
 
  • P.P. Gan, Q. Fu, H.P. Li, Y.R. Lu, K. Zhu
    PKU, Beijing, People's Republic of China
  • Y.D. Liu, J.Y. Tang, Q.J. Xu
    IHEP, Beijing, People's Republic of China
 
  For studying new physics beyond the Standard Model, Supper proton-proton Collider (SPPC) with a circumfer-ence of 100 km and a centre mass energy of 100 TeV is proposed and under study in China. Due to the high particle energies and 16 T high magnet field, the synchrotron radiation power emitted from the proton beams reaches 48.5 W/m in the bending magnets, two orders of magnitude higher than that of LHC. A novel beam screen is anticipated to screen cold chamber walls from the massive synchrotron radiation power and transfer the heat load to cryogenic cooling fluid. For drastically reducing resistive wall impedance and saving refrigerator power, we have studied high temperature superconductor (HTS) coated beam screen operating in liquid nitrogen temperature area. Singly from the point of temperature, the feasibility of HTS-coated beam screen is demonstrated by steady-state thermal analysis. Two kinds of potential HTS material are also discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK062 UNDUMAG - A New Computer Code to Calculate the Magnetic Properties of Undulators undulator, synchrotron, damping, radiation 3071
 
  • M. Scheer
    HZB, Berlin, Germany
 
  A new code for the magnetic design of undulators is under development at the Helmholtz-Zentrum Berlin (BESSY). The program reads in the geometry and material properties of the undulator magnets and iron poles. Magnetic fields, forces and torques, as well as trajectories and synchrotron radiation can be calculated. The code is a stand-alone FORTRAN program, thus, only a FORTRAN compiler is needed to install it. Build-in graphic routines allows to write postscript files to visualize the geometry and the fields. Other results like 3D field maps, field integrals etc. are written to ASCII files for later use. The code will be published under the GNU general public license. First results and comparison to other codes are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA123 Beam Cleaning of the Vacuum System of the TPS Storage Ring without Baking in Situ vacuum, injection, storage-ring, synchrotron 3561
 
  • C.K. Chan, C.-C. Chang, B.Y. Chen, C.M. Cheng, Y.T. Cheng, J. -Y. Chuang, Y.M. Hsiao, Y.T. Huang, I.C. Sheng, C. Shueh, L.H. Wu, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  A maintenance procedure without baking in situ has been successfully developed and applied to maintain and upgrade the TPS storage ring vacuum system to shorten the machine downtime. The data of photon-stimulated desorption(PSD) reveal that no obvious discrepancy between the in-situ baked and the non-in-situ baked vacuum systems. A beam conditioning dose of extent only 11.8 A·h is required to recover rapidly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA2 Coherent Synchrotron Radiation and Wake Fields With Discontinuous Galerkin Time Domain Methods vacuum, wakefield, synchrotron, radiation 3649
 
  • D. A. Bizzozero, H. De Gersem, E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: This work is supported by DESY, Hamburg.
Coherent synchrotron radiation (CSR) is an essential issue in modern accelerators. We propose a new method to examine CSR in the time domain using an unstructured Discontinuous Galerkin (DG) method. The method uses a 2D spatial discretization in the longitudinal and transverse coordinates (Z,X) with a Fourier series decomposition in the transverse coordinate Y and computes the fields modally. Additionally, by alignment of mesh element interfaces along a source reference orbit, DG methods can naturally handle discontinuous or thin sources in the transverse X direction. We present an overview of the method, illustrate it by calculating wake potentials in a model problem, and in a bunch compressor.
 
slides icon Slides THOBA2 [2.526 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THOBA2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB060 pyAT: A Python Build of Accelerator Toolbox lattice, interface, synchrotron, radiation 3855
 
  • W.A.H. Rogers
    DLS, Oxfordshire, United Kingdom
  • N. Carmignani, L. Farvacque, B. Nash
    ESRF, Grenoble, France
 
  Accelerator Toolbox* (AT) is a particle accelerator modelling tool originally written in MATLAB. It is used at many accelerator facilities, particularly synchrotron light sources, as an on-line model and is also used for off-line beam dynamics studies. For speed of execution, the tracking engine of AT was written in C and compiled for use in MATLAB. The C-based implementation allowed re-use of of the tracking engine compiled against the core Python libraries to create a Python version of AT. For additional purposes of speed, the C interface to the integration routines has been modified allowing equal speeds for both MATLAB and Python interfaces, with an increase in speed relative to the original MATLAB version. This paper describes the adaptation process, including adapting the MATLAB build, creating the Python build and laying the foundations for the additional Python library implementation. Speed benchmarks are included with comparison to other tracking codes Elegant and MADX.
* A. Terebilo, Accelerator Toolbox for MATLAB, SLAC-PUB-8732 (2001)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB076 Coherent Synchrotron Radiation Simulations for Off-Axis Beams Using the Bmad Toolkit lattice, radiation, simulation, synchrotron 3887
 
  • D. Sagan, C.E. Mayes
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Coherent synchrotron radiation (CSR) potentially limits operation accelerators with high bunch charges and/or short bunch lengths by increasing energy spread, and by Except at the lowest beam energies, the one dimensional treatment of coherent synchrotron radiation (CSR) originally developed by Saldin is an efficient and reasonably accurate way to simulate the effects of CSR on a particle beam. A possible problem with standard implementations of the 1D CSR formalism is that these implementations assume that the beam centroid is close to the reference trajectory that defines the lattice. In this paper, the one dimensional treatment is extended to take into account beams whose centroid is far from the reference trajectory and an example using the Cornell-BNL Fixed Field Alternating Gradient (FFAG) accelerator CBETA is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)