Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPAB023 | ESS Emittance Measurements at INFN CATANIA | emittance, ion, simulation, proton | 123 |
|
|||
Beam characteristics at low energy are an absolute necessity for an acceptable injection in the next stage of a linear accelerator, and are also necessary to reduce beam loss and radiation inside the machine. CEA is taking part of ESS linac construction, by designing Emittance Measurement Units (EMU) for the Low Energy Beam Transport (LEBT). The EMU are designed to qualify the proton beam produced by the INFN Catania ion source. This measurement has been decided to be time resolved, allowing to follow the beam emittance reduction, during the pulse length. A 1Mhz acquisition board controlled by EPICS save raw datas to an archiver in order to be able to post process the measurements for time resolution. The design corresponds to an Allison's scanner, using entrance and exit slits, electrostatic plates and a faraday cup. The beamstopper protects the device and can be removable to fit to beam power. It has been manufactured by the CEA/LITEN with copper tungsten HIP technique. This article report the first measurements on the ESS injector at INFN CATANIA. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB023 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPIK032 | Commissioning of the AISHa Ion Source at INFN-LNS | ion, plasma, injection, operation | 570 |
|
|||
At INFN-LNS the commissioning of the AISHa superconducting ECRIS started in November 2016. Highly charged ion beams with low ripple, high stability and high reproducibility are the most important features for the ongoing commissioning. In this work, we will show the preliminary results of a parametric study on the extracted current/beam in order to minimize the emittance and increase the brightness taking advantage by its hybrid magnetic system and by a fine frequency tuning system. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPIK095 | Implementation Issues and First Results of the ESS Beam Current Monitor System | electronics, linac, interface, FPGA | 745 |
|
|||
The BCM system of the European Spallation Source needs to measure several beam parameters including pulse profile, charge, current, pulse width and repetition frequency. Moreover, it will measure differential beam currents using several ACCT pairs along the linac. This is particularly important at low beam energies where BLMs cannot be used for measuring beam losses. Due to the ESS-specific requirements, the BCM software and firmware will be customized. Also, parts of the electronics may need to be customized to be consistent with the ESS standard electronics platform, hence facilitate maintenance and maximize synergy with other systems. Technical challenges include maintaining signal integrity and a fast response despite large variations in the sensor cable length and ambient temperature, as well as minimizing the effect of the ground voltage fluctuations. This paper gives a general overview of the design and focuses on a few technical issues that are particularly important for satisfying the performance requirements. Also, BCM test results in laboratory conditions as well as preliminary results with the ESS ion source will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK095 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK002 | H-, D-, C2-: A Comparison of RF andFilament Powered Volume-Cusp Ion Sources | ion, electron, plasma, extraction | 1685 |
|
|||
Today's industrial ion source applications often require high beam currents with long source lifetime and low maintenance. Filament powered ion sources produce high beam currents but are limited by the short lifetime (~5000 mA*h) of the filament, while RF ion sources with external antennas do not require such maintenance. By changing the filament back plate of our TRIUMF licensed ion source to the ceramic window, planar coil antenna and 13.56 MHz RF amplifier of our University of Jyväskylä licensed ion source, we are able to directly compare the effect of the two technologies for powering sources on negative ion production in volume-cusp ion sources for the case of H-, D- and C2- using our ion source test facility. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK021 | Microwave Injection and Coupling Optimization in ECR and MDIS Ion Sources | plasma, ion, coupling, ECRIS | 1724 |
|
|||
The fundamental aspect of coupling between microwave and plasma of the Electron Cyclotron Resonance Ion Source (ECRIS) and Microwave Discharge Ion Source (MDIS) is hereinafter treated together with ad hoc microwave-based plasma diagnostics, as a key element for the next progress and variations with respect to the classical ECR heating mechanism. The future challenges for the production of higher-charge states, higher beam intensity, and high absolute ionization efficiency also demand for the exploration of new heating schemes and synergy between experiments and modeling. An overview concerning microwave transport and coupling issues in plasma-based ion sources for particle accelerator will be given in the paper, along with perspectives for the design of next generation sources. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPIK030 | Characterization of the AMIT Internal Ion Source With a Devoted DC Extraction Test Bench | ion, cathode, electron, cyclotron | 1740 |
|
|||
Funding: Work partially funded under the Resolution of the Spanish Ministery of Economy, Industry and Competitiveness dated May 24 th, 2016 and project FIS2013-40860-R With the main aim of a compact machine for 18F and 11C radioisotope production, AMIT cyclotron relies on a superconducting 4T magnet with an internal cold cathode PIG ion source for H− production. Given the limited access to the ion source in the cyclotron as well the reduced number of beam diagnostics, an experimental facility was proposed for the commissioning of such ion source. The versatility of this test bench, which includes a movable puller, gives us the opportunity to validate and characterize the ion source behavior as well as to optimize the H− production. In a first stage, the discharge characteristics of the ion source has been studied in the CIEMAT IST facilities. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA090 | Performance and Status of the J-PARC Accelerators | operation, linac, klystron, extraction | 2290 |
|
|||
The J-PARC is a high intensity proton facility and the accelerator consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a Main Ring Synchrotron (MR). We have taken many hardware upgrades. The beam powers for the neutrino experiment and hadron experiment from the MR have been steadily increased by tuning and reducing beam losses. The designed 1 MW equivalent beam was demonstrated and user program was performed at 500 kW from the RCS to the neutron and muon experiments. We have experienced many failures and troubles, however, to impede full potential and high availability. In this report, operational performance and status of the J-PARC accelerators are presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA090 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA105 | Development Progress of the 7MeV Linac Injector for the 200MeV Synchrotron of Xi'an Proton Application Facility | rfq, linac, DTL, ion | 2336 |
|
|||
We present, in this paper, the development progress of the 7MeV Linac for the 200MeV synchrotron of the Xi'an Proton Application Facility (XiPAF). The 7 MeV linac injector is composed of the 50 keV negative hydrogen ion source, Low Energy Beam Transport line (LEBT), 3 MeV four-vane type Radio Frequency Quadrupole (RFQ) accelerator, 7 MeV Alvarez-type Drift Tube Linac (DTL), and the corresponding RF power source system. The 2.45 GHz microwave-driven Cesium-free Electron Cyclotron Resonance (ECR) source and LEBT will be commissioned in this year, and the peak current of the extracted H− beam at the exit of the LEBT is expected to be 6 mA, with the output energy of 50 keV, maximum repetition rate of 0.5 Hz, beam pulse width of 10~40 microseconds and normalized RMS emittance of less than 0.2 PI mm mrad. Furthermore, the construction status of the RFQ accelerator and DTL accelerator will be presented in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA105 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA108 | Development of 1 MeV/n RFQ for Ion Beam Irradiation | rfq, ion, cavity, vacuum | 2343 |
|
|||
Funding: This work has been supported through KOMAC (Korea Multi-purpose Accelerator Complex) operation fund of KAERI by MSIP (Ministry of Science, ICT and Future Planning). For the purpose of the ion beam irradiation, especially for helium beam application to semiconductor industry, an ion beam RFQ is under development at KOMAC (Korea Multi-purpose Accelerator Complex). The output energy of the RFQ is determined to be 1 MeV/n, which corresponds to 4 MeV in helium beam case, in consideration of the penetration depth in the silicon substrate. The RFQ is a four-vane type and will be fabricated through vacuum brazing technique. The RF power of 130 kW at 200 MHz will be provided to the RFQ by using a solid-state RF amplifier through two coaxial RF couplers with coaxial RF windows. The details of the RFQ development including some design features and fabrication methods will be given in this paper. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA108 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA111 | Design of the Secondary Particle Production Beam Line at KOMAC | target, ion, proton, neutron | 2346 |
|
|||
Funding: This work was supported by the Ministry of Science, ICT & Future Planning of the Korean Government. A 100-MeV proton linac is under operation since 2013 at KOMAC (Korea Multi-purpose Accelerator Complex) and provides the accelerated proton beam to various users from the research institutes, universities and industries. To expand the utilization fields of the accelerator, we are planning to develop a target ion source to produce a secondary particle such as Li-8 based on the existing linac. A test beam line was designed to supply proton beam to target ion source. Details on the beam line design are presented. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA111 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA113 | The Feature of Magnetic Field Formation of Multi-Purpose Isochronous Cyclotron DC280 | cyclotron, acceleration, ion, extraction | 2352 |
|
|||
At the present time the activities on creation of the new heavy-ion isochronous cyclotron DC280 are carried out at Joint Institute for Nuclear Research. The isochronous cyclotron DC-280 will produce accelerated beam of ions A/Z= 4 - 7 with a smooth variation of the beam energy W= 4 ' 8 MeV/n. The variation of energy is provided by the wide range of the magnetic field levels from 0.64T till 1.32T and usage of the 11 radial and 4 pairs of harmonic correcting coils. In the work the results of calculations and final measurements of the magnetic field are presented. The magnetic field of cyclotron DC-280 is formed in a good conformity with results of computer modeling. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA113 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA114 | Nuclotron New Beam Channels for Applied Researches | ion, target, heavy-ion, radiation | 2355 |
|
|||
Three new experimental areas are organized for applied physics researches in frame of realization of the accelerator facility NICA. New beamlines are under development for applied researches on Nuclotron accelerator. The ion beams with energy of 250-800 MeV/n extracted from Nuclotron will be used for the radio-biological and materials research and modeling of the cosmic rays interactions with microchips. The equipment of two experimental stations is designed by JINR-ITEP collaboration for these applied researches. The design of the magnetic system, the beam diagnostic equipment, the target stations are developed in frame of this project. The design and construction of these beamlines and experimental stations are planned in 2017-2020. Low ion energy station will be installed in 2021-2023 inside the transportation channel from heavy ion linac HILAC. Two new stations for applied researches will be constructed in 2021-2023 with ion beams at energy up 4.5 GeV/u. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA114 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA116 | Commissioning of the New Heavy Ion Linac at the NICA Project | rfq, ion, linac, heavy-ion | 2362 |
|
|||
The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is now under development and construction at JINR, Dubna. This complex is assumed to operate using two injectors: modernized old Alvarez-type linac LU-20 as the injector of light polarized ions and a new Heavy Ion Linear Accelerator HILAc - injector of heavy ions beams. The new heavy ion linac accelerate ions with q/A values above 0.16 to 3.2 MeV/u is under commissioning. The main components are 4-Rod-RFQ and two IH drift tube cavities is operated at 100.6 MHz. Main results of the HILAc commissioning with carbon beam from the laser ion source are discussed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA116 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA138 | Status of the Warm Front End of PIP-II Injector Test | rfq, kicker, ion, linac | 2421 |
|
|||
Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the United States Department of Energy The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H− SRF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10 mA DC, 30 keV H− ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the warm front end. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA138 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA139 | Characterization of the Beam from the RFQ of the PIP-II Injector Test | rfq, emittance, quadrupole, ion | 2425 |
|
|||
Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the United States Department of Energy A 2.1 MeV, 10 mA CW RFQ has been installed and commissioned at the Fermilab's test accelerator known as PIP-II Injector Test. This report describes the measurements of the beam properties after acceleration in the RFQ, including the energy and emittance. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA139 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPVA145 | Commissioning of the New SNS RFQ and 2.5MeV Beam Test Facility | rfq, emittance, target, ion | 2438 |
|
|||
Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS injector uses a four-vane 402.5MHz RFQ for accelerating the H− beam with 38mA peak current and 7% duty factor to 2.5MeV. The original RFQ, commissioned in 2002, has been able to support SNS operation up to the design average beam power of 1.4MW. However, several problems have developed over almost fifteen years of operation. A new RFQ with design changes addressing the known problems has been built and commissioned up to the design beam power at the new SNS Beam Test Facility (BTF). The BTF consists of a 65 keV H− ion source, a 2.5MeV RFQ, a beam line with advanced transverse and longitudinal beam diagnostics and a 6 kW beam dump. This presentation provides results of the RFQ commissioning and the BTF beam instrumentation commissioning. We also discuss progress of the ongoing multidimensional phase space characterization experiment and future beam dynamics study planned at the SNS BTF. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA145 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOBB2 | Beam Commissioning of the High Intensity Proton Source Developed at INFN-LNS for the European Spallation Source | proton, emittance, ion, plasma | 2530 |
|
|||
At the Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund. | |||
![]() |
Slides WEOBB2 [2.457 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOBB2 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOCB1 | HTS Magnets for Accelerator Applications | dipole, operation, target, power-supply | 2543 |
|
|||
We have developed HTS magnets using the first generation wires for 15 years. HTS materials have larger temperature margin than LTS materials. Magnets can be operated around 20 K or higher temperature and can be conduction-cooled by cryocoolers. The cooling structure becomes simpler and the cooling power of a cooler is high. We expect to excite HTS magnets by AC or pulsed currents without quenching. After successful performance tests of prototype magnets, we fabricated two magnets for practical use, an air-core cylindrical magnet and a super-ferric dipole magnet. The former one is used to polarize ultra-cold neutrons and the latter is a switching dipole magnet to deliver accelerated beams to two target stations by time sharing. Their design and operational performance are presented | |||
![]() |
Slides WEOCB1 [2.946 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOCB1 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPVA034 | ELENA - From Installation to Commissioning | antiproton, injection, experiment, ion | 3327 |
|
|||
ELENA (Extra Low ENergy Antiproton ring) is an upgrade project at the CERN AD (Antiproton Decelerator). The smaller ELENA ring will further decelerate 5.3 MeV antiprotons from the AD ring down to 100 keV using electron cooling to obtain good deceleration efficiency and dense beams. An increase of up to two orders of magnitude in trapping efficiency is expected at the AD experiments. This paper will report on the current status of ELENA where beam commissioning of the ring is now taking place. Phase one of the project installation has been completed with ring and injection lines in place, while phase two will finalize the project with installation of 100 keV transfer lines connecting the experiments to ELENA and is planned to take place in 2019/2020. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAB035 | Central Region Design of the Hust SCC250 Superconducting Cyclotron | cyclotron, proton, injection, cathode | 3778 |
|
|||
Recently, the development of a 250 MeV cyclotron for advanced cancer therapy has been carried out by Huazhong University of Science and Technology(HUST) . It has four sector magnet and RF cavity which resonance frequency is 74.69 MHz. The internal ion source was adopted and the central region was designed to accommodate the starting beam. In this paper, the design of the central region to optimize the initial circumstances for H¬+ beam were described. The electric and magnetic field distribution were designed by electrostatic and magnetic solver in OPERA-3D TOSCA. The beam characteristics including the beam orbit, motion of the center of orbit, energy gain was investigated for central region was simulated by means of computer code Z3CYCLONE. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA096 | Development of 11C+ Ion Source for Reacceleration With HIMAC for Real-Time Observation of Dose Distribution | ion, cyclotron, proton, dipole | 4686 |
|
|||
In order to improve the precision of dose distribution in a patient's body in the case of carbon therapy, realtime measurement of the dose distribution with the use of the so called OPEN PET is desirable. For realization of such a treatment, usage of isotope separator online scheme based on target fragment might be inevitable to keep the needed S/N ratio. From the above requirement, we have been developing 1+ ion source of positron emitting 11C+ ions*, which will be charge breeded before injection into the injector LINAC of the HIMAC. 11C+ ion is to be produced by a high intensity proton beam from a cyclotron. In the real process, a small cyclotron like HM20 might provide the proton beam, but at the development stage, we are planning investigation utilizing proton beam from the AVF cyclotron existing at NIRS with K-number of 110. In the present paper, the total scheme of radioactive ion re-acceleration will be described together with the recent ion source development.
* K. Katagiri et al., Review of Scientific Instruments 87, 02B509 (2016) |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA096 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA103 | Design of Injector for Carbon Cancer Therapy | DTL, rfq, ion, linac | 4704 |
|
|||
An Injector which consisted of a Radio Frequency Quadrupole (RFQ) and Drift Tube Linacs (DTLs) were designed for carbon cancer therapy system. An extraction energy of RFQ was 0.6 MeV/u, an extraction energy of DTLs was 4 MeV/u, frequency is 200MHz. To apply a compact solid-state power amplifier system, we designed one high-Q RFQ and two high-Q DTLs which had a triplet Quadrupole magnet between DTLs. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA103 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPVA111 | Central Region Design for a Superconducting Cyclotron in the HUST Proton Therapy Facility | proton, ion, cyclotron, extraction | 4716 |
|
|||
A 250 MeV isochronous superconducting cyclotron was adopted in the HUST proton therapy facility. Since the proton beam quality is often limited by the parameters of the central region, special care is given to the design and optimization of the central region to obtain a qualified proton beam using for treatment. An internal proton PIG source with constant arc current is adopted to meet the stability requirements of the beam. Furthermore, a puller followed by an adjustable slit and a fixed vertical collimator are installed to maintain a good centering and vertical focusing beam with maximum intensity. In order to meet the requirement of the intensity modulated proton therapy (IMPT), a vertical kicker is used just followed the puller. The central region structure is optimized iteratively with the simulation results of the OPERA3D and the CYCLONE code. An optimum central region structure has been obtained with RF phase acceptance is around 24°. This paper presents the design parameters of the central region and the results of the proton beam simulation. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA111 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||