Keyword: niobium
Paper Title Other Keywords Page
MOOCA2 First Results From New Single-Cell Nb3Sn Cavities Coated at Cornell University cavity, factory, radio-frequency, SRF 40
 
  • D.L. Hall, J.J. Kaufman, M. Liepe, R.D. Porter, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cav­i­ties coated with Nb3Sn at Cor­nell Uni­ver­sity demon­strate qual­ity fac­tors of >1010 at 4.2 K, out­per­form­ing equiv­a­lent nio­bium cav­i­ties by a fac­tor of >30 at these bath tem­per­a­tures. These qual­ity fac­tors have been main­tained up to fields of 17-18 MV/m with­out sig­nif­i­cant Q-slope. Re­cently, new sin­gle-cell cav­i­ties have been added to the Cor­nell Nb3Sn pro­gramme in an ef­fort to im­prove sta­tis­tics and allow fur­ther ex­plo­ration of the avail­able pa­ra­me­ter space. In this paper we re­port on the first re­sults of these new cav­i­ties, as well as the lat­est per­for­mance from other cav­i­ties al­ready in use on the pro­gramme. Fur­ther­more, con­tin­u­ing work to op­ti­mise the coat­ing pro­ce­dure is re­ported on, and the lat­est un­der­stand­ing of the ideal coat­ing pro­file is dis­cussed.  
slides icon Slides MOOCA2 [10.366 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOOCA2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB022 Fabrication Studies of a 650 MHz Superconducting RF Deflecting Mode Cavity for the ARIEL Electron Linac cavity, electron, linac, impedance 120
 
  • D.W. Storey, R.E. Laxdal, B. Matheson, N. Muller
    TRIUMF, Vancouver, Canada
  • D.W. Storey
    Victoria University, Victoria, B.C., Canada
 
  A 650 MHz RF de­flect­ing mode cav­ity is re­quired for the ARIEL elec­tron Linac to sep­a­rate in­ter­leaved beams bound for ei­ther rare iso­tope pro­duc­tion or a re­cir­cu­la­tion loop con­tain­ing a Free Elec­tron Laser. An RF sep­a­ra­tor will allow both modes to run si­mul­ta­ne­ously by im­part­ing op­po­site trans­verse de­flec­tion to ad­ja­cent bunches at 1.3 GHz. The SRF cav­ity has been de­signed to pro­vide up to 0.6 MV trans­verse volt­age for op­er­a­tion with up to a 50 MeV CW elec­tron beam. The de­sign was op­ti­mised for com­pact geom­e­try with high shunt im­ped­ance. Due to the low dis­si­pated power, the cav­ity will op­er­ate at 4 K and al­lows for in­ves­ti­ga­tions into low cost fab­ri­ca­tion tech­niques. The cav­ity is being ma­chined from bulk re­ac­tor grade ingot Nio­bium and welds will be per­formed using TIG weld­ing in an ul­tra-pure Argon cham­ber. Re­sults of fab­ri­ca­tion stud­ies will be pre­sented as well as mea­sure­ments per­formed on a cop­per pro­to­type cav­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA047 Investigation of Trapped Magnetic Flux in Superconducting Niobium Samples with Polarized Neutron Radiography neutron, detector, experiment, polarization 964
 
  • O. Kugeler, J. Knobloch, M.M. Krzyzagorski, J.M. Köszegi, L. Riik, W. Treimer, R.F. Ziesche
    HZB, Berlin, Germany
 
  The dy­nam­ics of flux ex­pul­sion dur­ing su­per­con­duct­ing tran­si­tion and the in­flu­ence of ex­ter­nal AC mag­netic fields on ex­pul­sion of trapped fields in Nb sam­ples has been in­ves­ti­gated with ra­di­og­ra­phy using po­lar­ized neu-trons. Re­sults of these ex­per­i­ments are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA050 Setup of a Spatially Resolving Vector Magnetometry System for the Investigation of Flux Trapping in Superconducting Cavities cavity, SRF, experiment, radio-frequency 975
 
  • B. Schmitz, K.Alomari. Alomari, J. Knobloch, O. Kugeler, J.M. Köszegi, Y. Tamashevich
    HZB, Berlin, Germany
 
  Flux trap­ping is the major con­tri­bu­tion to the resid­ual re­sis­tance of su­per­con­duct­ing cav­i­ties. In order to gain a bet­ter un­der­stand­ing of the mech­a­nisms in­volved and aim­ing at an even­tual min­i­miza­tion of trapped flux, a mea­sure­ment setup based on AMR sen­sors was de­vised that al­lows for mon­i­tor­ing the mag­netic field vec­tor at var­i­ous po­si­tions near the cav­ity sur­face. First re­sults of the ef­forts are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA057 Structural Investigations of Nitrogen-Doped Niobium for Superconducting RF Cavities SRF, vacuum, radio-frequency, cavity 996
 
  • M. Major, L. Alff, M. Arnold, J. Conrad, S. Flege, R. Grewe, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    IKP, Mainz, Germany
 
  Funding: Work supported by BMBF through 05H15RDRBA.
Nio­bium is the stan­dard ma­te­r­ial for su­per­con­duct­ing RF (SRF) cav­i­ties. Su­per­con­duct­ing ma­te­ri­als with higher crit­i­cal tem­per­a­ture or higher crit­i­cal mag­netic field allow cav­i­ties to work at higher op­er­at­ing tem­per­a­tures or higher ac­cel­er­at­ing fields, re­spec­tively. En­hanc­ing the sur­face prop­er­ties of the su­per­con­duct­ing ma­te­r­ial in the range of the pen­e­tra­tion depth is also ben­e­fi­cial. One di­rec­tion of search for new ma­te­ri­als with bet­ter prop­er­ties is the mod­i­fi­ca­tion of bulk nio­bium by ni­tro­gen dop­ing. In the Nb-N phase di­a­gram the cubic delta-phase of NbN has the high­est crit­i­cal tem­per­a­ture (16 K). Al­ready slight ni­tro­gen dop­ing of the al­pha-Nb phase re­sults in higher qual­ity fac­tors.* Nb sam­ples will be N-doped at the re­fur­bished UHV fur­nace at IKP Darm­stadt. The first re­sults on the struc­tural in­ves­ti­ga­tions of the processed Nb sam­ples at the Ma­te­ri­als Re­search De­part­ment of TU Darm­stadt are pre­sented.
* Grassellino et al., Proc. SRF2015, MOBA06, 48.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA062 Test, Diagnostics and Computed Tomographic Inspection of a Large Grain 3.9 GHz Prototype Cavity cavity, SRF, diagnostics, radio-frequency 1011
 
  • M. Bertucci, A. Bignami, A. Bosotti, J.F. Chen, C.G. Maiano, P. Michelato, L. Monaco, R. Paparella, P. Pierini, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • G. Ciovati, G.R. Myneni
    JLab, Newport News, Virginia, USA
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  A large grain 3.9 GHz pro­to­type cav­ity made of RRR = 105 ±10 has been tested at LASA. The cav­ity suf­fered of quench at mod­er­ate lev­els of ac­cel­er­at­ing field, for all nine fun­da­men­tal pass-band modes. Sev­eral di­ag­nos­tic tech­niques have been em­ployed to de­ter­mine the quench po­si­tions, which occur close to sig­nif­i­cant grain-bound­ary steps, vis­i­ble from the ex­ter­nal cav­ity sur­face. The cav­ity has been scanned with a high res­o­lu­tion X-ray to­mo­graphic ma­chine, con­firm­ing the ex­is­tence of re­mark­able topo­graphic fea­tures on the inner RF sur­face at the sus­pected quench po­si­tions. A strat­egy for a fu­ture sur­face treat­ment for re­cover the cav­ity per­for­mances is here pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA068 Experience on Design, Fabrication and Testing of a Large Grain ESS Medium Beta Prototype Cavity cavity, radiation, operation, cryogenics 1027
 
  • D. Sertore, A. Bellandi, M. Bertucci, A. Bignami, A. Bosotti, J.F. Chen, C.G. Maiano, P. Michelato, L. Monaco, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • S. Pirani
    ESS, Lund, Sweden
 
  We re­port on the de­sign, fab­ri­ca­tion and test­ing of an ESS Medium Beta pro­to­type cav­ity made with Large Grain Nio­bium sheets sliced from an ingot pro­vided by CBMM. The pe­cu­liar choices dur­ing the fab­ri­ca­tion process re­lated to the Large Grain Nio­bium ma­te­r­ial are de­scribed. We pre­sent also the re­sults of the cav­ity test at cryo­genic tem­per­a­ture and the ded­i­cated quench di­ag­nos­tic.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA071 Press Forming Tests of Superconducting Spoke Cavity for Laser Compton Scattered Photon Sources cavity, laser, photon, resonance 1031
 
  • M. Sawamura, R. Hajima
    QST, Tokai, Japan
  • H. Hokonohara, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • T. Kubo, T. Saeki
    KEK, Ibaraki, Japan
 
  We are de­vel­op­ing the su­per­con­duct­ing spoke cav­ity for laser Comp­ton scat­tered (LCS) pho­ton sources. We adopt the su­per­con­duct­ing spoke cav­ity for elec­tron beam dri­vers to re­al­ize a wide use of LCS X-ray and '-ray sources in aca­d­e­mic and in­dus­trial ap­pli­ca­tions. The spoke cav­ity can make the ac­cel­er­a­tor more com­pact than an el­lip­ti­cal cav­ity be­cause the cav­ity size is small at the same fre­quency and the pack­ing fac­tor is good by in­stalling cou­plers on outer con­duc­tor. Though our pro­posal de­sign for the pho­ton source con­sists of the 325 MHz spoke cav­i­ties in 4K op­er­a­tion, we are fab­ri­cat­ing the half scale model of 650 MHz spoke cav­ity in order to ac­cu­mu­late our cav­ity pro­duc­tion ex­pe­ri­ence by ef­fec­tive uti­liza­tion of our lim­ited re­sources. Since the spoke has more com­pli­cated struc­ture than an el­lip­ti­cal cav­ity, we per­formed press form­ing tests for the half spoke and es­ti­mated the formed shapes with 3-di­men­sional mea­sure­ment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA074 Fabrication of Superconducting QWR at MHI-MS cavity, SRF, linac, superconducting-RF 1037
 
  • N. Shigeoka, H. Hara, A. Miyamoto, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • O. Kamigaito, K. Ozeki, N. Sakamoto, K. Suda, Y. Watanabe, K. Yamada
    RIKEN Nishina Center, Wako, Japan
 
  Mit­subishi Heavy In­dus­tries Mecha­tron­ics Sys­tems, Ltd. (MHI-MS), a sub­sidiary cam­pany of MHI, took over MHI's ac­cel­er­a­tor busi­ness on Oc­to­ber 1, 2015, and has been de­vel­op­ing the busi­ness. MHI-MS is man­u­fac­tur­ing the pro­to­type Su­per­con­duct­ing QWR for RIKEN Su­per­con­duct­ing linac pro­ject. MHI-MS has ded­i­cated sur­face treat­ment fa­cil­i­ties for su­per­con­duct­ing cav­i­ties, the QWR will be treated using this fa­cil­i­ties. In this pre­sen­ta­tion, re­cent progress will be re­ported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA100 Atomic Layer Deposition of Niobium Nitride from Different Precursors plasma, experiment, controls, simulation 1094
 
  • P. Pizzol, P. Chalker, J.W. Roberts, J. Wrench
    The University of Liverpool, Liverpool, United Kingdom
  • O.B. Malyshev, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Ad­vance­ments in tech­nol­ogy have taken bulk nio­bium cav­i­ties close to their the­o­ret­i­cal op­er­a­tional lim­its of 45 MV/m, push­ing the re­search to ex­plore novel ma­te­ri­als, such as nio­bium based al­loys . The­o­ret­i­cal stud­ies sug­gest that a com­pos­ite ma­te­r­ial com­posed of al­ter­na­tive su­per­con­duc­tor / in­su­la­tor mul­ti­lay­ers would sur­pass the bulk nio­bium lim­its. Chem­i­cal vapour de­po­si­tion (CVD) can de­posit mi-crons thick Nb films in less than an hour, at the ex­pense of pre­cise thick­ness con­trol. Atomic layer de­po­si­tion (ALD), in­stead, even if con­sid­er­ably slower than CVD can be used in ap­pli­ca­tions where the thick­ness of the de­posited lay­ers needs to be con­trolled with a res­o­lu­tion down to the nanome­ter. This ar­ti­cle pre­sents the pre­lim­i­nary re­sults ob­tained by using plasma as­sisted ALD tech­niques to de­posit NbN based com­pounds start­ing from chlo­ri­nated pre­cur­sors and or­ganic ones, and the de­sign for a new de­po­si­tion sys­tem cur­rently being built at the Dares­bury Lab­o­ra­to­ries.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA115 Status and Challenges of Vertical Electro-Polishing R&D at Cornell cathode, cavity, SRF, linac 1115
 
  • F. Furuta, M. Ge, T. Gruber, D.L. Hall, J.J. Kaufman, M. Liepe, R.D. Porter, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • T.D. Hall, M.E. Inman, R. Radhakrishnan, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
  • H. Hayano, S. Kato, T. Saeki
    KEK, Ibaraki, Japan
 
  Ad­vanced Ver­ti­cal Elec­tro-Pol­ish­ing (VEP) R&D for SRF Nio­bium cav­i­ties con­tin­ues at Cor­nell's SRF group. One focus of this work is new EP cath­ode de­vel­op­ment in col­lab­o­ra­tion with KEK and Marui Gal­va­niz­ing Co. Ltd (Marui) in Japan, and an­other focus is on HF free or acid free VEP pro­to­cols in col­lab­o­ra­tion with Fara­day Tech­nol­ogy Inc. The out­comes of these ac­tiv­i­ties could be a sig­nif­i­cant cost re­duc­tion and an en­vi­ron­men­tally-friend­lier VEP, which would be a break­through for fu­ture large scale EP ap­pli­ca­tions on SRF cav­i­ties. Here we give a sta­tus up­date and re­port lat­est re­sults from these R&D ac­tiv­i­ties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA116 Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour Diffusion cavity, radio-frequency, accelerating-gradient, monitoring 1119
 
  • D.L. Hall, M. Liepe, J.T. Maniscalco, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • P. Cueva, D. Liarte, D.A. Muller, J.P. Sethna
    Cornell University, Ithaca, New York, USA
 
  The su­per­con­duc­tor Nb3Sn is known to have a su­per­heat­ing field, Hsh, of ap­prox­i­mately 400 mT. This crit­i­cal field rep­re­sents the ul­ti­mate achiev­able gra­di­ent in a su­per­con­duct­ing cav­ity, and is equiv­a­lent to an ac­cel­er­at­ing gra­di­ent of 90 MV/m in an ILC sin­gle-cell cav­ity for this value of Hsh. How­ever, the cur­rently best per­form­ing Nb3Sn sin­gle-cell cav­i­ties re­main lim­ited to ac­cel­er­at­ing gra­di­ents of 17-18 MV/m, trans­lat­ing to a peak sur­face mag­netic field of ap­prox. 70 mT. In this paper, we con­sider the­o­ret­i­cal mod­els of can­di­date quench mech­a­nisms, and com­pare them to ex­per­i­men­tal data from sur­face analy­sis and cav­ity tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA118 Impact of Trapped Magnetic Flux and Thermal Gradients on the Performance of Nb3Sn Cavities cavity, site, target, operation 1127
 
  • D.L. Hall, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Liarte, J.P. Sethna
    Cornell University, Ithaca, New York, USA
 
  Trapped mag­netic flux is known to de­grade the qual­ity fac­tor of su­per­con­duct­ing cav­i­ties by in­creas­ing the sur­face losses as­cribed to the resid­ual re­sis­tance. In Nb3Sn cav­i­ties, which con­sist of a thin layer of Nb3Sn coated on a bulk nio­bium sub­strate, the bimetal­lic in­ter­face re­sults in a ther­mal cur­rent being gen­er­ated in the pres­ence of a ther­mal gra­di­ent, which will in turn gen­er­ate flux that can be trapped. In this paper we quan­tify the im­pact of trapped flux, from ei­ther am­bi­ent fields or ther­mal gra­di­ents, on the per­for­mance of the cav­ity. We dis­cover that the sen­si­tiv­ity to trapped flux, a mea­sure of the in­crease in resid­ual re­sis­tance as a func­tion of the amount of flux trapped, is a func­tion of the ac­cel­er­at­ing gra­di­ent. A the­o­ret­i­cal frame­work to ex­plain this phe­nom­e­non is pro­posed, and the im­pact on the re­quire­ments for op­er­at­ing a Nb3Sn cav­ity in a cry­omod­ule are con­sid­ered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA119 Surface Analysis of Features Seen on Nb3Sn Sample Coupons Grown by Vapour Diffusion SRF, simulation, cavity, site 1130
 
  • D.L. Hall, M. Liepe, J.T. Maniscalco, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T. Arias, P. Cueva, D.A. Muller, N. Sitaraman
    Cornell University, Ithaca, New York, USA
 
  As a high-kappa su­per­con­duc­tor with a co­her­ence length of 7 nm, the su­per­con­duc­tor Nb3Sn is highly sus­cep­ti­ble to ma­te­r­ial fea­tures at the sub-mi­cron scale. For nio­bium sur­faces coated with a thin layer of Nb3Sn using the vapour dif­fu­sion method, the poly­crys­talline na­ture of the film grown lends to the pos­si­bil­ity that per­for­mance-de­grad­ing non-uni­for­mi­ties may de­velop. In par­tic­u­lar, re­gions of in­suf­fi­ciently thick coat­ing and tin-de­ple­tion have been seen to occur in sam­ple coupons. In the in­ter­ests of un­der­stand­ing how to con­trol the pres­ence and na­ture of such fea­tures, it is nec­es­sary to know how they form. In this paper we stop the coat­ing at de­fined in­stances to gain a stop-mo­tion image of the growth of the layer, and use SEM and TEM tech­niques to image the de­vel­op­ment of the fea­tures seen in pre­vi­ously coated sam­ples. We demon­strate that sur­face pre-an­odi­s­a­tion can sup­press the for­ma­tion of thin film re­gions, and apply this tech­nique to a sin­gle-cell cav­ity. Con­tem­porar­ily, we use TEM with EDS map­ping to mon­i­tor grain bound­aries and tin-de­pleted re­gions within the layer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA123 Cornell Sample Host Cavity: Recent Results cavity, SRF, electron, operation 1142
 
  • J.T. Maniscalco, D.L. Hall, M. Liepe, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.M. Arrieta, S.R. McNeal, W.E. Williams
    Ultramet, Pacoima, California, USA
 
  Funding: NSF-PHY 1416318 NSF-PHY 1549132
The Cor­nell sam­ple host cav­ity is a 3.9~GHz test­ing sys­tem for RF analy­sis of novel su­per­con­duct­ing sur­faces. The cav­ity ap­plies fields up to 100~mT on a re­mov­able and re­place­able 5-inch sam­ple plate in order to mea­sure the sur­face re­sis­tance of the ma­te­r­ial under in­ves­ti­ga­tion. The cav­ity also in­cludes a tem­per­a­ture-map­ping sys­tem for lo­cal­iza­tion of quench events and sur­face de­fects. In this paper, we pre­sent re­cent ex­per­i­men­tal re­sults from the host cav­ity of nio­bium de­posited onto molyb­de­num and cop­per sub­strates using chem­i­cal vapor de­po­si­tion, in col­lab­o­ra­tion with in­dus­try part­ner Ul­tra­met. The re­sults in­di­cate low BCS re­sis­tance and good ad­he­sion but also areas of high resid­ual re­sis­tance due to chem­i­cal and mor­pho­log­i­cal de­fects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA124 Effectiveness of Chemical Treatments for Reducing the Surface Roughness of Nb3Sn SRF, linac, klystron, cavity 1145
 
  • R.D. Porter, F. Furuta, D.L. Hall, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: DOE DE-SC008431, NSF-PHY 1549132, NSF DMR-1120296
Cur­rent Nio­bium-3 Tin (Nb3Sn) su­per­con­duct­ing ra­dio-fre­quency (SRF) ac­cel­er­a­tor cav­i­ties have rougher sur­faces than con­ven­tional elec­trop­o­l­ished Nio­bium ac­cel­er­a­tor cav­i­ties. The sur­face rough­ness can cause en­hance­ment of the sur­face mag­netic field, push­ing it be­yond the crit­i­cal field. If this oc­curs over a large enough area it can cause the cav­ity to quench. The sur­face rough­ness may cause other ef­fects that neg­a­tively im­pact cav­ity qual­ity fac­tor (Q) per­for­mance. Re­duc­ing sur­face rough­ness of Nb3Sn cav­i­ties may be nec­es­sary to achieve higher gra­di­ent with high Q. Cur­rent chem­i­cal treat­ments for re­duc­ing the sur­face rough­ness of Nio­bium are chal­leng­ing for Nb3Sn: the Nb3Sn layer is only ~2 um thick while it is dif­fi­cult to re­move less than 1 mu uni­formly with most chem­i­cal treat­ments. This paper pre­sents mea­sure­ments of the sur­face rough­ness be­fore and after Buffered Chem­i­cal Pol­ish, Elec­trop­o­l­ish­ing and ox­ipol­ish­ing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA126 Sample Host Cavity Design for Measuring Flux Entry and Quench cavity, SRF, dipole, klystron 1149
 
  • R.D. Porter, M. Liepe, J.T. Maniscalco, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF-PHY 1549132
Cur­rent state-of-the-art Nio­bium su­per­con­duct­ing ra­dio-fre­quency (SRF) ac­cel­er­a­tor cav­i­ties have reached sur­face mag­netic field close to the the­o­ret­i­cal max­i­mum set by the su­per­heat­ing field. Fur­ther in­creas­ing ac­cel­er­at­ing gra­di­ents will re­quire new su­per­con­duct­ing ma­te­ri­als for ac­cel­er­a­tor cav­i­ties that can sup­port higher sur­face mag­netic fields. This ne­ces­si­tates mea­sur­ing the quench fields of new ma­te­ri­als in high power RF fields. In this paper, we pre­sent de­signs and sim­u­la­tions of a sam­ple host cav­ity. The cav­ity de­sign is op­ti­mized to max­i­mize the sur­face mag­netic field achieved on the sam­ple.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA128 RF Performance of Nitrogen-Doped Production SRF Cavities for LCLS-II cavity, SRF, operation, accelerating-gradient 1156
 
  • D. Gonnella, A. Burrill, M.C. Ross
    SLAC, Menlo Park, California, USA
  • S. Aderhold, A. Grassellino, C.J. Grimm, T.N. Khabiboulline, O.S. Melnychuk, S. Posen, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • E. Daly, G.K. Davis, F. Marhauser, K.M. Wilson
    JLab, Newport News, Virginia, USA
 
  Funding: DOE and the LCLS-II Project
The Linac Co­her­ent Light Source II (LCLS-II) re­quires 280 9-cell su­per­con­duct­ing RF cav­i­ties for op­er­a­tion in con­tin­u­ous wave mode. Two ven­dors have pre­vi­ously been se­lected to pro­duce the cav­i­ties, Re­search In­stru­ments GmbH and Et­tore Zanon S.p.a. Here we pre­sent re­sults from man­u­fac­tur­ing and cav­ity prepa­ra­tion for the cav­i­ties con­structed at these two ven­dors for LCLS-II. We show how the cav­ity prepa­ra­tion method has been changed mid-pro­duc­tion in order to im­prove flux ex­pul­sion in the cav­i­ties and main­tain high per­for­mance in re­al­is­tic mag­netic field en­vi­ron­ments (~5 mG). Ad­di­tion­ally, we show that the ni­tro­gen-dop­ing process has been car­ried out suc­cess­fully and re­peat­edly on over 70 cav­i­ties.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA144 Post-Processing of Nb3Sn Coated Nb SRF, superconductivity, cavity, experiment 1190
 
  • U. Pudasaini, M.J. Kelley
    The College of William and Mary, Williamsburg, Virginia, USA
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.J. Kelley, J. Tuggle
    Virginia Polytechnic Institute and State University, Blacksburg, USA
 
  Funding: Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE­AC05­06OR23177 and Office of High Energy Physics under grant SC00144475.
Prac­ti­cal SRF cav­i­ties may be sub­jected to one or more processes after nom­i­nally com­plete prepa­ra­tion. Suc­cess­ful im­ple­men­ta­tion of such processes in Nb3Sn coated cav­i­ties re­quires the un­der­stand­ing of ma­te­r­ial's re­sponse to these treat­ments. SRF-grade Nb sam­ples, coated with Nb3Sn by the widely used tin vapor dif­fu­sion process were sub­jected to one or more of the fol­low­ing: hy­dro­flu­o­ric acid (HF) rins­ing, oxy­pol­ish­ing, buffered chem­i­cal pol­ish­ing (BCP) or elec­tro­chem­i­cal treat­ment. They were ex­am­ined by ma­te­ri­als char­ac­ter­i­za­tion tech-niques in­clud­ing scan­ning elec­tron mi­croscopy (SEM) with en­ergy dis­per­sive X-ray spec­troscopy (EDS), atomic force mi­croscopy (AFM), and X-ray pho­to­elec­tron spec-troscopy (XPS). The ef­fects com­pared to nio­bium are dif­fer­ent enough in most cases that fur­ther de­vel­op­ment is de­sir­able to rou­tinely ob­tain a fa­vor­able re­sult.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA144  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB027 Production, Tuning and Processing Challenges of the BERLinPro Gun1.1 Cavity cavity, gun, cathode, SRF 1375
 
  • H.-W. Glock, A. Frahm, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • B. Rosin, D. Trompetter
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of the Helmholtz Association
For the BERLinPro en­ergy re­cov­ery LINAC, HZB is de­vel­op­ing a su­per­con­duct­ing 1.4-cell elec­tron gun, which, in its final ver­sion, is planned to be ca­pa­ble of CW 1.3 GHz op­er­a­tion with 77 pC/bunch. For this pur­pose a se­ries of three su­per­con­duct­ing cav­i­ties, de­noted as Gun 1.0, Gun 1.1 (both de­signed for 6 mA) and Gun 2.0 (100 mA) are fore­seen. Gun 1.0 now reached op­er­a­tional sta­tus and the Gun 1.1 cav­ity is com­pletely man­u­fac­tured. In the paper the chronol­ogy of man­u­fac­tur­ing, tun­ing and pro­cess­ing of the Gun 1.1-cav­ity is de­scribed, also giv­ing de­tails about com­bined me­chan­i­cal/elec­tro­dy­namic sim­u­la­tions, which were per­formed in order to gain deeper un­der­stand­ing of the cav­ity's un­ex­pected tun­ing be­hav­ior.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA145 Analysis of Mean Free Path and Field Dependent Surface Resistance cavity, SRF, electron, radio-frequency 3609
 
  • J.T. Maniscalco, F. Furuta, D.L. Hall, P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF-PHY 1416318
Work from Cor­nell in 2016 built on re­cent the­o­ret­i­cal re­search in the field of SRF to link the elec­tron mean free path to the field-de­pen­dent BCS sur­face re­sis­tance. This re­search re­lates the mag­ni­tude of the ‘‘anti-Q-slope'', the puz­zling re­duc­tion of sur­face re­sis­tance with in­creas­ing RF field in­ten­sity ob­served in cer­tain cav­i­ties, to the dop­ing level of ni­tro­gen-doped nio­bium, quan­ti­fied by the mean free path: shorter mean free paths cor­re­spond di­rectly with stronger anti-Q-slopes. The the­o­ret­i­cal con­nec­tion comes through the over­heat­ing of the qua­si­par­ti­cles, which more ef­fec­tively trans­fer their en­ergy to the lat­tice at short mean free paths. In this re­port, we pre­sent an up­date of this analy­sis, in­ves­ti­gat­ing re­cent test re­sults of low-tem­per­a­ture-doped sin­gle-cell and nine-cell cav­i­ties. We also study the the­o­ret­i­cal im­pli­ca­tions for cav­i­ties at fre­quen­cies higher and lower than the of­ten-stud­ied 1.3~GHz.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)