Keyword: instrumentation
Paper Title Other Keywords Page
MOPAB005 The MultiMat Experiment at CERN HiRadMat Facility: Advanced Testing of Novel Materials and Instrumentation for HL-LHC Collimators target, experiment, real-time, damping 76
 
  • F. Carra, A. Bertarelli, E. Berthomé, C. Fichera, J. Guardia, M. Guinchard, L.K. Mettler, S. Redaelli, O. Sacristan De Frutos
    CERN, Geneva, Switzerland
  • T.R. Furness
    University of Huddersfield, Huddersfield, United Kingdom
  • M. Portelli
    UoM, Msida, Malta
 
  Funding: *Part of the work described in this thesis was developed in the scope of the EuCARD-2 Project, WP11 'ColMat ' HDED', co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement n. 312453. Research supported by the HL-LHC project.
The increase of the stored beam energy in future particle accelerators, such as the HL-LHC and the FCC, calls for a radical upgrade in the design, materials and instrumentation of Beam Intercepting Devices (BID), such as collimators Following successful tests in 2015 that validated new composite materials and a novel jaw design conceived for the HL-LHC collimators, a new HiRadMat experiment, named 'HRMT36-MultiMat', is scheduled for autumn 2017. Its objective is to determine the behaviour under high intensity proton beams of a broad range of materials relevant for collimators and beam intercepting devices, thin-film coatings and advanced equipment. The test bench features 16 separate target stations, each hosting various specimens, allowing the exploration of complex phenomena such as dynamic strength, internal damping, nonlinearities due to anisotropic inelasticity and inhomogeneity, effects of energy deposition and radiation on coatings. This paper details the main technical solutions and engineering calculations for the design of the test bench and of the specimens, the candidate target materials and the instrumentation system
#federico.carra@cern.ch
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB035 Status of Beam Diagnostics for SIS100 ion, diagnostics, pick-up, beam-diagnostic 156
 
  • M. Schwickert, O. Chorniy, T. Giacomini, P. Kowina, H. Reeg, T. Reichert, R. Singh
    GSI, Darmstadt, Germany
 
  The FAIR (Facility for Antiproton and Ion Research) accelerator facility presently under construction at GSI will supply a wide range of ion species and beam intensities for physics experiments. Design beam intensities range from 2.5·1013 protons/cycle to be delivered to the pBar-target and separator for production of antiprotons, to beams of e.g. 109 ions/s in the case of slowly extracted beams. The main synchrotron of FAIR is the fast ramped super-conducting SIS100. In the present layout SIS100 will deliver up to 4·1011 U-28+ ions/s with energies of 400-2700 MeV/u, either in single bunches of 30-90 ns, or as slowly extracted beam with extraction times of several seconds, for the radioactive ion beam program of FAIR. This contribution gives an overview of the present layout of beam diagnostic instruments for SIS100 and presents the status of the main development projects regarding e.g. the beam position monitor system, ionization profile monitor and the beam current transformers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB054 Development and Application of Rogowski Coils as Beam Position Monitors simulation, dipole, storage-ring, synchrotron 223
 
  • F. Trinkel, H. Soltner
    FZJ, Jülich, Germany
 
  We have developed segmented Rogowski coils as a beam position monitors at the storage ring COSY Jülich as an alternative to the conventional monitors installed there. These coils feature a torus with two or four segments, each densely covered with an insulating copper wire of 150μm in diameter. The bunched particle beam induces voltages in these segments, which are combined and analysed to yield information about beam displacements in the horizontal and the vertical plane. We highlight our theoretical understanding of position determination of these coils together with corresponding numerical simulations. The integration of such a beam position monitor with COSY and first results with it for a bunched deuteron beam are described. The ultimate goal of this development is a better control of the beam orbit for the very demanding requirements in a future ring dedicated to the measurement of Electric Dipole Moments (EDMs) of charged particles.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB057 Analysis and Correction of Geometrical Non-Linearities of ELI-NP BPMs on Position and Current Measurements linac, electron, laser, photon 235
 
  • G. Franzini, F. Cioeta, O. Coiro, V.L. Lollo, D. Pellegrini, S. Pioli, A. Stella, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • M. Marongiu
    INFN-Roma, Roma, Italy
  • A. Mostacci
    University of Rome La Sapienza, Rome, Italy
  • A.A. Nosych
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • L. Sabato
    U. Sannio, Benevento, Italy
 
  The advanced source of Gamma-ray photons will be soon built near Bucharest (Romania) by an European consortium (EurogammaS) led by INFN, as part of the ELI-NP (Extreme Light Infrastructure-Nuclear Physics). It will generate photons by Compton back-scattering in the collision between a multi-bunch electron beam, at a maximum energy of 720 MeV, and a high intensity recirculated laser pulse. An S-Band photo-injector and the following C-band Linac, which are under construction, will operate at 100Hz repetition rate with macro pulses of 32 electron bunches, separated by 16ns and with 250pC nominal charge. Stripline and cavity BPMs will be installed along the linac, in order to measure both the position and charge of the electron beam. Stripline BPM response can be considered linear within a limited area around the BPM origin. In order to use the full BPM acceptance area, without accuracy losses due to non-linearities, we plan to use correction algorithms, developed on the basis of simulations and measurements of BPMs response. In particular, suitable high-order surface polynomials will be used.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB088 A Differential Beam Intensity Monitoring for the CIADS LINAC monitoring, linac, simulation, pick-up 325
 
  • Z.P. Xie
    Hohai University, Nanjing, People's Republic of China
  • Y. He, R. Huang, Z.J. Wang
    IMP/CAS, Lanzhou, People's Republic of China
 
  Funding: Work supported by the National Natural Science Foundation of China (Grant No. 91026001) and the Fundamental Research Funds for the Chinese Central Universities
The high power Linac places many crucial requirements on the beam diagnostics for the China initiative accelerator driven subcritical(CIADS) facility. Measuring the beam loss is essential for the purpose of machine protections for the facility. A beam position pickup based differential beam current monitoring (BPDBCM) scheme has been proposed for the MEBT section at CIADS. Discussions of the principles for the scheme and the realtionship between beam intensity measurement and the pulse length are presented. Simulations are performed and they demonstrate that the proposed system can be effective at the low enery section for the CIADS beam. This paper describes the proposed implementation that will have the capability of detecting both the instantaneous and chronicle loss in real time.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB112 Schottky Based Intensity Measurements and Errors Due to Statistical Fluctuations background, antiproton, pick-up, diagnostics 385
 
  • C. Carli, M.E. Angoletta, F. Caspers, O.R. Jones, F. Pedersen, J. Sanchez-Quesada, L. Søby
    CERN, Geneva, Switzerland
 
  The beam intensities at the Extra Low ENergy Antiproton ring ELENA are too low for standard beam current transformers and, thus, are measured with longitudinal Schottky diagnostics. This method is already successfully used at the Antiproton Decelerator since the commissioning of this machine. The fact that Schottky noise is a statistical phenomenon implies statistical errors of these measurements. Simple analytical formulas describing the statistical error to be expected as a function of the frequency spread of the band considered, the time resolution chosen and the background noise have been derived. On the one hand, low revolution harmonics and, in turn, frequency spread of the band analysed lead to large measurement errors as this situation corresponds to low momentum resolution of the resulting distribution describing the beam. At very large revolution harmonics and, thus, frequency spreads of the band analysed, the measurement error increases again due to additional contributions from the background noise.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB120 Beam Instrumentation for the CERN LINAC4 and PSB Half Sector Test linac, laser, emittance, proton 408
 
  • F. Roncarolo, J.C. Allica Santamaria, M. Bozzolan, C. Bracco, S. Burger, G.J. Focker, G. Guidoboni, L.K. Jensen, B. Mikulec, A. Navarro Fernandez, U. Raich, J.B. Ruiz, L. Søby, J. Tan, W. Viganò, C. Vuitton, C. Zamantzas
    CERN, Geneva, Switzerland
  • T. Hofmann
    Royal Holloway, University of London, Surrey, United Kingdom
 
  The construction, installation and initial commissioning of CERN's LINAC4 was completed in 2016 with H ions successfully accelerated to its top energy of 160 MeV. The accelerator is equipped with a large number of beam diagnostic systems that are essential to monitor, control and optimize the beam parameters. A general overview of the installed systems and their functional specifications will be followed by a summary of the most relevant results. This includes transverse profile monitors (wire scanners, wire grids and a laser profile monitor), beam position and phase monitors (whose ToF measurements were essential for adjusting RF cavity parameters), beam loss monitors, beam current transformers and longitudinal beam shape monitors. This contribution will also cover the beam instrumentation for the so-called PSB Half Sector Test, which has been temporarily installed in the LINAC4 transfer line to study H stripping efficiency. At this facility it was possible to test the new H0/H beam current monitor, designed to monitor the stripping efficiency and an essential element of the beam interlock system when the LINAC4 is connected to the PSB in 2019.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB133 Optimisation of Electrical and Instrumentation Design for the Diamond Light Source DDBA Upgrade storage-ring, dipole, insertion-device, insertion 448
 
  • A. Thomson, C.A. Abraham, M.T. Heron, S.C. Lay, G. Rehm, A.J. Rose, H.S. Shiers
    DLS, Oxfordshire, United Kingdom
 
  In planning the upgrade of one cell of the Diamond Storage Ring, the DDBA upgrade, it was evident that the electrical installation and commissioning would contribute a significant component of the overall installation time. Given the pressures to minimise the shutdown length, the electrical and instrumentation design was optimised for time effective installation and commissioning. This paper outlines the electrical and instrumentation design for DDBA; explores the installation time determining issues and how these were addressed; and reports on the lessons learnt from the actual installation and commissioning process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB133  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA124 The Beam Lines Design for the CERN Neutrino Platform in the CERN North Area and an Outlook on Their Expected Performance experiment, target, detector, proton 2382
 
  • N.C. Charitonidis, M. Brugger, I. Efthymiopoulos, L. Gatignon, E.M. Nowak, I. Ortega Ruiz
    CERN, Geneva, Switzerland
  • Y. Karyotakis
    IN2P3-LAPP, Annecy-le-Vieux, France
  • P.R. Sala
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
 
  In the framework of the CERN Neutrino Platform project, extensions to the existing SPS North Area H2 and H4 secondary beam lines, able to provide low-energy charged particles in the momentum range of 0.4 to 12 GeV, have been designed. The parameters of these very low energy beam lines, the expected beam composition as seen by the experiments as well as an outlook on their expected performance are summarized in this paper. Results from Monte-Carlo simulations, important for the optimization of the future instrumentation of the beam lines (serving both the purpose of beam tuning and the experiments' needs for particle identification and momentum measurements), are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB154 Mechanical Design of Compact Vertical and Horizontal Linear Nanopositioning Flexure Stages With Centimeter-Level Travel Range for X-Ray Beamline Instrumentation controls, laser, photon, synchrotron 4096
 
  • D. Shu, J.W.J. Anton, S.P. Kearney, B. Lai, W. Liu, J. Maser, C. Roehrig, J.Z. Tischler
    ANL, Argonne, Illinois, USA
  • J.W.J. Anton
    University of Illinois at Chicago, Chicago, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Nanopositioning techniques present an important capability to support the state-of-the-art x-ray instrumentation research for the APS operations and upgrade project. To overcome the performance limitations of precision ball-bearing-based or roller-bearing-based linear stage systems, compact vertical and horizontal linear nanopositioning flexure stages have been designed and developed at the APS with centimeter-level travel range and nanometer-level resolution for x-ray beamline instrumentation. Using improved deformation compensated linear guiding mechanisms [*,**], the APS T8-55 vertical linear flexure stage and T8-56 horizontal linear flexure stage are initially designed as a pair of sample scanning stages for a hard x-ray scanning microscope at the APS sector 2. Due to their unique repeatable nanopositioning performance over the centimeter-level travel range, these stages are also suitable for many photon beam lines optics with repeatable and stable nanopositioning requirements. The mechanical design and finite element analyses of the APS T8-55 and T8-56 flexural stages, as well as its initial mechanical test results with laser interferometer are described in this paper.
* D. Shu, W. Liu, S. Kearney, J. Anton, B. Lai, J. Maser, C. Roehrig, and J. Z. Tischler, Proceedings of MEDSI-2016, Sept. 11-16, 2016, Barcelona, Spain.
** U.S. Patent granted No. 8,957, 567, D. Shu, S. Kearney, and C. Preissner, 2015.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB154  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA079 First Optics Design and Beam Performance Simulation of PRAE: Platform for Research and Applications With Electrons at Orsay electron, optics, gun, detector 4637
 
  • A. Faus-Golfe, S. Barsuk, B. Borgo, D. Douillet, M. El Khaldi, L. Garolfi, A. Gonnin, M. Langlet, P. Lepercq, M. Omeich, V. Puill, C. Vallerand
    LAL, Orsay, France
  • P. Ausset, M. Ben Abdillah, S. Blivet, P. Duchesne, B. Genolini, M. Hoballah, G. Hull, R. Kunne, C. Le Galliard, J. Lesrel, D. Marchand, E. J-M. Voutier
    IPN, Orsay, France
  • A. Hrybok, A. Pastushenko
    National Taras Shevchenko University of Kyiv, Radiophysical Faculty, Kiev, Ukraine
  • A. Vnuchenko
    IFIC, Valencia, Spain
 
  The PRAE project aims at creating a multidisciplinary R&D facility in the Orsay campus gathering various scientific communities involved in radiobiology, subatomic physics, instrumentation and particle accelerators around an electron accelerator delivering a high-performance beam with energy up to 70 MeV and later 140 MeV, in order to perform a series of unique measurements and future challenging R&D. In addition PRAE will provide a major education and training asset for students and engineers yielding a regional instrument of advanced technology at the heart of the scientific, technological and academic complex of the Paris-Saclay University. In this paper we report the first optics design and performance evaluations of such a multidisciplinary machine, including a first description of future experiments and the required beam instrumentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)