
DEVELOPMENT OF A NEW SYSTEM FOR DETAILED LHC FILLING

DIAGNOSTICS AND STATISTICS

A. Calia, K. Fuchsberger, G.H. Hemelsoet, D. Jacquet, CERN, Geneva, Switzerland

Abstract

In the CERN accelerator complex the Super Proton Syn-

chrotron (SPS) is used as injector of the Large Hadron Col-

lider (LHC). Statistics on the injection and beam availability

in 2015 showed that too much time is spent at injection.

Reducing this time could improve LHC availability and lu-

minosity over the year. Currently, useful data to diagnose

the problems is sparse and shown in different applications.

Operators time is wasted in debugging and checking for the

source of the problem before trying another injection. A new

Software application for diagnostics of the LHC Filling is

under development which collects data from multiple inputs

of the CERN Control System and concentrates them in one

central view. The inputs are processed and matched with

a set of rules (or assertions) that need to be fulfilled for an

injection to be successful. Whenever a problem occurs, the

operator can check the Filling Diagnostic for hints on what

is the source of the problem during the injection. Filling

Diagnostic also produces statistics of the LHC injections and

the causes of failed injections, this will allow significantly

better analysis of the LHC performance for next year.

MOTIVATION

In order to optimize integrated luminosity for the LHC, the

time for the turnaround (time between end of stable beams

and the next start of stable beams) has to be minimized. A

big part of the turnaround time is spent at injection which

is still the least reproducible and least automated part. One

reason for the variation in time is the necessity for manual

measurements with pilot beam before nominal beam can

be injected. A second period where time is lost, is when

taking nominal beam from the injectors. In the ideal case,

one injection would simply follow each other with a time

difference of about 40 s between them, as given by the length

of the cycle of the Super Proton Synchrotron (SPS), the direct

injector of the LHC. However, there are various reasons why

injections can fail, for example:

• An interlock can appear which prevents injection (e.g.

coming from a power converter after steering the trans-

fer line).

• No beam is produced in the injectors (e.g. because of

a failure of some equipment or because the timing sys-

tem, which is responsible for transporting the injection

request to the injectors, does not accept the request).

• The beam is considered as ’not good enough’ to be

injected and is blocked by a system called the SPS

Beam Quality Monitor (BQM).

• An operational mistake can also trigger an interlock.

Classical examples for this category are forgotten opera-

tional switches or overlooked latching Injection Quality

Checks (IQC).

Some of these problems are easy to find (e.g. forgotten

switches), others are much harder to diagnose, especially

for people on shift with less experience. In any case, each

time something like this happens at least one SPS cycle is

lost because the problem only materializes (and becomes

diagnosable) when an attempt is made.

Several attempts were made to quantify the time lost and

the reasons for it. For example, Fig. 1 shows a comparison

of the required number of injections, the received injection

events and the number of injections which could have been

done in the time spent. It was shown that on average about

50 % more injections could have taken place than actually

took place within the timespan of filling [1].

Figure 1: Number of injections for clean turnarounds (No

fault tracked during the turnaround). Blue dots indicate the

required number of injections, green crosses the number of

injection events that happened and red crosses the estimated

number of injections that could have been done more than

the required ones in the time period spent for filling.

Besides these rough estimations, a more detailed analy-

sis remains difficult because the required data is partly not

logged and partly not diagnosable automatically at the mo-

ment.

To improve this situation, the development of a new

system was launched which finally should solve both de-

scribed shortcomings: improving on-line diagnostics (and

thus shorten reaction time) and storing data for long-term

statistical analysis.

Proceedings of IPAC2017, Copenhagen, Denmark TUPIK088

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T23 Machine Protection

ISBN 978-3-95450-182-3
1905 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



DATA SOURCES

To gather all the information and to extract meaningful

information out of it, the filling diagnostics system has to

collect information from many different systems and com-

bine them with certain rules. Currently, the system uses data

from the following sources:

• The Injection Sequencer is the central place that or-

chestrates the injection process. It has the knowledge

about the filling scheme which should finally be in the

machine and sends out the injection requests to the

timing system.

• A subsystem of the timing system (CBCM) accepts

(or does not accept) the request, depending e.g. if the

beam can currently be produced in the injectors or not.

If the request is accepted then this system forwards the

request so that the beam is produced in the injectors.

• The injection Beam Interlock Controllers (BICs) can

potentially prevent the injection, based on different

inputs.

• The LHC Software Interlock System has a big inter-

nal logic tree which can prevent injection.

• The SPS Software Interlock System decides through

several logic trees if the beam can be safely extracted

to the LHC.

• The SPS Beam Quality Monitor (BQM) decides if

the beam was "good enough" to be sent to the LHC.

• The LHC Injection Quality Check (IQC) can detect

and bad injections and prevent future injections (if not

unlatched by the operators).

ANALYSIS STRATEGY

The analysis of the aforementioned inputs is declaratively

described in two analysis modules, one for each ring of the

LHC. Each analysis module consists of several so-called

assertions. Each of these assertions represents one condition

to be evaluated.

At each evaluation, every assertion will be resolved into

one of four possible states with the following meaning:

• SUCCESSFUL: The underlaying condition evaluated

to true.

• FAILED: The underlaying condition evaluated to

false.

• ERROR: An error occurred during the evaluation, so

that the state of this assertion could not be determined.

• NONAPPLICABLE: The state of assertion is irrele-

vant in the given context. For example, conditions refer-

ring to ion beams would potentially indicate FAILED

during the proton run, they are irrelevant in this case

and can be masked out by this mechanism.

Only if all of the assertions are SUCCESSFUL or NON-

APPLICABLE, then the whole analysis is considered as

SUCCESSFUL.

It has to be noted, that as long as the conditions do not

cover all potential failure scenarios, a successful analysis

does still not mean that beam is injected. While some scenar-

ios might be practically impossible to cover, it is of course

the goal in the longer term to get close to a perfect prediction.

A particular challenging part of the whole project turned

out to be the alignment of the different inputs and choosing

the right moment of the analysis trigger. For example, the

BIC interlocks are published immediately, while SPS SIS is

published a few seconds later, at the end of the SPS cycle.

Figure 2: screenshot of the new filling diagnostics applica-

tion.

The result of the analysis is displayed to the user through

a dedicated Graphical User Interface (GUI). Figure 2 shows

a screenshot of this GUI, displaying the actually evaluated

conditions. It displays the result of the analysis modules for

both beams next to each other. The displayed results can

be filtered by the user and are kept until the next injection.

Dedicated views can visualize the underlaying expression

tree and also keep a history of previous injections.

ARCHITECTURE AND FRAMEWORKS

To cope with the challenges described in the previous

section, it was essential to choose the right technologies for

the task at hand.

Reactive Streams [2] were selected as the way of retrieving

data from the devices of the control system. The key ad-

vantages of Reactive Streams is the fully asynchronous data

processing and the ability to handle backpressure, which is

an vital feature when combining slow and fast devices. In or-

der to manage the lifecycle of the required Reactive Streams

a new library has been created, Streaming Pool [3, 4]. This

library abstracts the management and the creation of Reac-

tive Streams and, with proper extensions, the access to LHC

devices.

Once the stream of data are established, they are analyzed

and compared with predefined conditions, in order to de-

termine the result of the analysis. All the conditions are

specified using the Tensorics Expressions library [5,6]. A

TUPIK088 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
1906Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T23 Machine Protection



Listing 1: Assertion example within and analysis module.

assertThat(INJ1_LHC_SW_PERMIT).

isEqualTo(true).

withName("SPS SIS INJ1_LHC_SW_PERMIT OK");

Tensoric Expression is a node in a tree of expressions that

can either be resolved by a Tensorics Resolver (custom logic)

or can contain a single, resolved, value. Resolving the tree

means walking from the leaf nodes to the root and resolving

all the, unresolved, nodes in the way. In the use case of the

LHC Filling Diagnostic, the root of the tree represents the

final condition of the analysis and the leaf the data coming

from the LHC control system. In this context, resolving a

node means checking that a specific signal from the controls

system matches the desired value.

The combination of Streaming Pool and Tensorics Ex-

pressions produces a powerful on-line analysis framework

that can be adapted to any use case.

The analysis modules are expressed using a Java inter-

nal domain specific language (DSL). Listing 1 shows an

example of the description of an assertion within an analysis

module.

In this particular example, it is checked that a par-

ticular permit (INJ1_LHC_SW_PERMIT) is true at the time

of the evaluation of the module. The last part (withName)

configures the text under which this assertion will appear in

the GUI. The usage of a DSL makes it easy to to understand

and to extend the behavior of the modules, even at some

time in the future.

FIRST EXPERIENCE AND OUTLOOK

A beta version of the system became operational only a

few weeks before the end of the run in 2016. Already then

it showed promising analysis results. The focus of this first

version was to get a first set of assertions in place and to build

a framework which makes it easy to add more conditions

and input signals during the run.

Development of this system was paused during the long

shutdown because of other priorities relevant for the LHC

restart. After the startup, the LHC software team will be able

to refocus on this system. The first goal is to make logging

functionality operational so that the data can be analyzed

afterwards and new strategies can be derived from it.

Later, more conditions are planned to be put in place,

based on the actual experience. A strong focus will also be to

disentangle more and more conditions which depend on each

other and mask out more and more redundant information, so

that it becomes clear at one glance what is the root cause of

a failed injection, so that it becomes easier for the operations

team to take the right decisions quickly.

Some effort also will have to go into stabilizing the under-

laying frameworks and making them easily reusable in other

contexts. Even some more advanced concepts (like machine

learning, for example) could be considered in the long term.

CONCLUSION

A new diagnostics system for the LHC filling phase was

put in place in 2016 and first version of it was available

towards the end of the run. Despite being still of limited

functionality, this first version proved that the applied con-

cepts were capable of producing the desired functionality.

The underlaying frameworks were improved along the devel-

opment and will be reusable for many other purposes. Some

more work is planned for 2017 to make this system a key

tool of LHC operations.

ACKNOWLEDGMENT

The authors would like to thank the whole LHC operations

team for their common voice which triggered this project

and for their continuous feedback on the implementation.

Further a lot of thanks goes to the BE-CO-APS and the TE-

MPE-MS section for all the past and future collaborations

for software developments.

REFERENCES

[1] K. Fuchsberger, “Turnaround and precycle: analysis and im-

provements”, proceedings of 7th Evian workshop, CERN,

Switzerland (2016).

[2] http://www.reactive-streams.org

[3] A.Calia et al, “Streaming Pool - Managing Long-Living Re-

active Streams for Java”, ICALEPCS’17, Barcelona, Spain

(2017).

[4] https://streamingpool.github.io

[5] K. Fuchsberger et al, “A framework for online analysis based

on Tensorics Expressions & Streaming Pool”, ICALEPCS’17,

Barcelona, Spain (2017).

[6] https://tensorics.github.io

Proceedings of IPAC2017, Copenhagen, Denmark TUPIK088

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T23 Machine Protection

ISBN 978-3-95450-182-3
1907 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs


