

Project is funded by the Federal Ministry of Education and Research under contract number 05K16VKA

Time-resolved energy spread studies at the ANKA storage ring

Benjamin Kehrer, E. Blomley, M. Brosi, E. Bründermann, N. Hiller A.-S. Müller, M. Nasse, P. Schütze, J. L. Steinmann, M. Schedler M. Schuh, P. Schönfeldt, M. Schwarz, N. Smale

Institute for Beam Physics and Technology (IBPT)

www.kit.edu

Outline

Introduction

Setup and DAQ Fast-gated intensified camera (FGC) Schottky diodes + DAQ

Synchronous measurements

Short bunch-length bursting

Summary and outlook

Self-interaction of bunch with its own field

Self-interaction of bunch with its own field
Deformation of longitudinal phase space

- Self-interaction of bunch with its own field
- Deformation of longitudinal phase space
- Occurs above the *bursting* threshold

- Self-interaction of bunch with its own field
- Deformation of longitudinal phase space
- Occurs above the *bursting* threshold
- CSR emission (THz range) in *bursts*

Measurements

- Energy spread above bursting threshold
 - \rightarrow Increases with bunch current¹

¹K Bane, K. Oide, M. Zobov, SLAC-PUB-11007 (2005).

- Measurements
 - Energy spread above bursting threshold
 - \rightarrow Increases with bunch current^1
 - Energy spread and microwave radiation
 - \rightarrow Same modulation period length^2

 ¹K Bane, K. Oide, M. Zobov, SLAC-PUB-11007 (2005).
 ²U. Arp et al., Phys. Rev. ST Accel. Beams 4, 054401 (2001).

- Measurements
 - Energy spread above bursting threshold → Increases with bunch current¹
 - \rightarrow increases with bunch current
 - Energy spread and microwave radiation
 - \rightarrow Same modulation period length^2
- Simulation: Bunch length and CSR
 - \rightarrow Same modulation period length 3

 ¹K Bane, K. Oide, M. Zobov, SLAC-PUB-11007 (2005).
 ²U. Arp et al., Phys. Rev. ST Accel. Beams 4, 054401 (2001).
 ³R. Warnock et al., Nucl. Instrum. Meth. A561, 186 (2006).

- Measurements
 - Energy spread above bursting threshold
 - \rightarrow Increases with bunch current¹
 - Energy spread and microwave radiation
 - \rightarrow Same modulation period length^2
- Simulation: Bunch length and CSR
 - \rightarrow Same modulation period length 3

 Idea: Time-resolved energy spread studies with single-turn resolution and benchmark against CSR

 ¹K Bane, K. Oide, M. Zobov, SLAC-PUB-11007 (2005).
 ²U. Arp et al., Phys. Rev. ST Accel. Beams 4, 054401 (2001).
 ³R. Warnock et al., Nucl. Instrum. Meth. A561, 186 (2006).

ANKA

Measurement principle

Energy spread σ_δ

• Measure the horizontal bunch size σ_x in dispersive section of storage ring

$$\sigma_{\delta} = \frac{1}{D_{X}} \sqrt{\sigma_{X}^{2} - \beta_{X} \cdot \epsilon_{X}}$$

Single turn base?

 \rightarrow Use a fast-gated intensified camera

(

Measurement principle

Energy spread σ_δ

• Measure the horizontal bunch size σ_x in dispersive section of storage ring

$$\sigma_{\delta} = \frac{1}{D_{X}} \sqrt{\sigma_{X}^{2} - \beta_{X} \cdot \epsilon_{X}}$$

Single turn base?

 \rightarrow Use a fast-gated intensified camera

(

CSR

- Fast THz detectors: Schottky diodes
- In-house developed DAQ (KAPTURE)

M. Brosi, THOBA1

Measurement principle

Energy spread σ_δ

• Measure the horizontal bunch size σ_x in dispersive section of storage ring

$$\sigma_{\delta} = \frac{1}{D_x} \sqrt{\sigma_x^2 - \beta_x \cdot \epsilon_x}$$

Single turn base?

 \rightarrow Use a fast-gated intensified camera

CSR

- Fast THz detectors: Schottky diodes
- In-house developed DAQ (KAPTURE)
- Synchronisation
 - Hardware synchronisation scheme⁴
 - Triggered beam based calibration

M. Brosi, THOBA1

⁴B. Kehrer et al.; IPAC'16 (MOPMB014).

- Setup at visible light diagnostics beamline^{5,6}
- Based on previous works of J. Corbett, W. Cheng⁷ and A. Fisher⁸

⁵P. Schuetze et al., IPAC'15 (MOPHA039).

⁶B. Kehrer et al., IPAC'15 (MOPHA037).

⁷W. Cheng et al., PAC'09 (TH6REP032).

⁸A. Fisher et al., AIP Conference Proceedings (Vol. 868, No. 1, pp. 303-312).

- Setup at visible light diagnostics beamline^{5,6}
- Based on previous works of J. Corbett, W. Cheng⁷ and A. Fisher⁸
- Camera
 - Andor iStar 340T
 - Gate width: 1.55 ns FWHM
 - Gate separation: > 6 turns (500 kHz)

⁵P. Schuetze et al., IPAC'15 (MOPHA039).

- ⁶B. Kehrer et al., IPAC'15 (MOPHA037).
- ⁷W. Cheng et al., PAC'09 (TH6REP032).
- ⁸A. Fisher et al., AIP Conference Proceedings (Vol. 868, No. 1, pp. 303-312).

- Setup at visible light diagnostics beamline^{5,6}
- Based on previous works of J. Corbett, W. Cheng⁷ and A. Fisher⁸
- Camera
 - Andor iStar 340T
 - Gate width: 1.55 ns FWHM
 - Gate separation: > 6 turns (500 kHz)
- Mirror
 - 7 mm aperture
 - Galvo drive

- ⁵P. Schuetze et al., IPAC'15 (MOPHA039).
- ⁶B. Kehrer et al., IPAC'15 (MOPHA037).
- ⁷W. Cheng et al., PAC'09 (TH6REP032).
- ⁸A. Fisher et al., AIP Conference Proceedings (Vol. 868, No. 1, pp. 303-312).

- Setup at visible light diagnostics beamline^{5,6}
- Based on previous works of J. Corbett, W. Cheng⁷ and A. Fisher⁸
- Camera
 - Andor iStar 340T
 - Gate width: 1.55 ns FWHM
 - Gate separation: > 6 turns (500 kHz)
- Mirror
 - 7 mm aperture
 - Galvo drive
- Drawback: compromise between resolution and time range
- Ideal: Continuous turn-by-turn data
 - ⁵P. Schuetze et al., IPAC'15 (MOPHA039).
 - ⁶B. Kehrer et al., IPAC'15 (MOPHA037).
 - ⁷W. Cheng et al., PAC'09 (TH6REP032).
 - ⁸A. Fisher et al., AIP Conference Proceedings (Vol. 868, No. 1, pp. 303-312).

FGC raw image

- FGC raw image
- Determine spot size \rightarrow 2D Gaussian fits

- FGC raw image
- Determine spot size \rightarrow 2D Gaussian fits

- FGC raw image
- Determine spot size \rightarrow 2D Gaussian fits
- Timing calibration

- FGC raw image
- Determine spot size \rightarrow 2D Gaussian fits
- Timing calibration

Schottky diodes + KAPTURE

Required: CSR intensity once per bunch and turn

⁹M. Caselle et al., Journal of Instrumentation 12, C01040 (2017).

Schottky diodes + KAPTURE

Required: CSR intensity once per bunch and turn

- Detectors: Schottky barrier diodes
 - Room temperature
 - Response time < 200 ps</p>
 - 50 GHz up to 1 THz + narrowband detectors
 - Commercially available (ACST, VDI)

⁹M. Caselle et al., Journal of Instrumentation 12, C01040 (2017).

Schottky diodes + KAPTURE

Required: CSR intensity once per bunch and turn

Detectors: Schottky barrier diodes

- Room temperature
- Response time < 200 ps</p>
- 50 GHz up to 1 THz + narrowband detectors
- Commercially available (ACST, VDI)

DAQ: KAPTURE

- In-house developed DAQ system⁹
- 4 ADC with turn-by-turn and bunch-by-bunch capability (sampling with fixed phase)
- Continuous streaming

⁹M. Caselle et al., Journal of Instrumentation 12, C01040 (2017).

Energy spread with same modulation pattern as CSR 100 FGC spot size (px) 95 90 85 80 75 Energy spread rises ัก 2 6 4 8 at onset of burst Time (ms) 150 50 0 ัก 2 4 6 8 Time (ms)

Study in more detail \rightarrow 24 turns gate separation, 500 μ s time range

Study in more detail \rightarrow 24 turns gate separation, 500 μ s time range

Study in more detail \rightarrow 24 turns gate separation, 500 μ s time range

Study in more detail \rightarrow 24 turns gate separation, 500 $\mu \textit{s}$ time range

Study in more detail \rightarrow 24 turns gate separation, 500 $\mu \textit{s}$ time range

Study in more detail \rightarrow 24 turns gate separation, 500 $\mu \textit{s}$ time range

But: Not always the case

- Simulations predicted weak instability below the bursting threshold¹⁰
- Measured on CSR at ANKA¹¹ for $\alpha_c \leq 2.64 \cdot 10^{-4}$

Simulations predicted weak instability below the bursting threshold¹⁰
 Measured on CSR at ANKA¹¹ for α_c ≤ 2.64 · 10⁻⁴

Simulations predicted weak instability below the bursting threshold¹⁰
 Measured on CSR at ANKA¹¹ for α_c ≤ 2.64 · 10⁻⁴

Simulations predicted weak instability below the bursting threshold¹⁰
 Measured on CSR at ANKA¹¹ for α_c ≤ 2.64 · 10⁻⁴

Simulations predicted weak instability below the bursting threshold¹⁰
 Measured on CSR at ANKA¹¹ for α_c ≤ 2.64 · 10⁻⁴

Instability would lead to energy spread increase

 ¹⁰K. Bane et al., Phys. Rev. ST Accel. Beams 13, 104402 (2010).
 ¹¹M. Brosi et al., IPAC'16 (TUPOR006).

 \rightarrow Signature of short-bunch length bursting

Acknowledgements

- KIT THz-Team (from IBPT, IMS, IPE, IPS and LAS):
 M. Balzer, E. Blomley, T. Boltz, A. Borysenko, M. Brosi, E. Bründermann,
 M. Caselle, C. Chang*, N. Hiller, S. Höninger, M. Hofherr, E. Huttel, K.S. Ilin,
 V. Judin*, M. Klein*, S. Marsching, Y.-L. Mathis, M.J. Nasse, G. Niehues,
 A. Plech, J. Raasch, P. Rieger*, L. Rota, R. Ruprecht, M. Schedler,
 A. Scheuring, P. Schönfeldt, M. Schuh, P. Schütze*, M. Schwarz, M. Siegel,
 N.J. Smale, B. Smit, J. Steinmann, P. Thoma*, M. Weber, S. Wuensch, M. Yan,
 and A.-S. Müller
- For interesting discussions, good ideas and a lot of fun:
 F. Caspers (CERN), S. Khan (DELTA), P. Peier, B. Steffen (DESY),
 H.-W. Hübers, A. Semenov (DLR), P. Kuske, G. Wüstefeld (HZB),
 V. Schlott (PSI), Y. Cai, J. Corbett, R. Warnock (SLAC), S. Bielawski, C. Evain,
 E. Roussel, C. Szwaj (U. Lille)

SPONSORED BY THE

Federal Ministry of Education and Research

 Fast-gated intensified camera versatile setup for energy spread studies

- Fast-gated intensified camera versatile setup for energy spread studies
- Synchronous measurements
 - Coherent synchrotron radiation (CSR)
 - $\hfill \ensuremath{\, \bullet \,}$ Horizontal bunch size \rightarrow energy spread

- Fast-gated intensified camera versatile setup for energy spread studies
- Synchronous measurements
 - Coherent synchrotron radiation (CSR)
 - $\hfill \ensuremath{\, \bullet \,}$ Horizontal bunch size \rightarrow energy spread
- For certain beam currents and machine parameters
 - \rightarrow Energy spread with same modulation frequency as CSR bursts

- Fast-gated intensified camera versatile setup for energy spread studies
- Synchronous measurements
 - Coherent synchrotron radiation (CSR)
 - $\hfill \ensuremath{\,\bullet\)}$ Horizontal bunch size \rightarrow energy spread
- For certain beam currents and machine parameters
 - \rightarrow Energy spread with same modulation frequency as CSR bursts
- Short bunch-length bursting (weak instability)
 - \rightarrow Energy spread increase

- Fast-gated intensified camera versatile setup for energy spread studies
- Synchronous measurements
 - Coherent synchrotron radiation (CSR)
 - $\hfill \ensuremath{\,\bullet\)}$ Horizontal bunch size \rightarrow energy spread
- For certain beam currents and machine parameters
 - \rightarrow Energy spread with same modulation frequency as CSR bursts
- Short bunch-length bursting (weak instability)
 - \rightarrow Energy spread increase

Next steps

- Continuous sampling and data streaming
- For CSR already possible (KAPTURE)
- Using a 256-pixel line array for turn-by-turn sampling of a single bunch
- Longitudinal bunch profile: Electro-Optical Spectral Decoding
- Horizontal bunch profile: Replace FGC to overcome resolution limit

Thank you for your attention!

Thank you for your attention!

Horizontal plane

Courtesy Paul Schütze