Keyword: ion
Paper Title Other Keywords Page
MOZB02 Challenges of the High Current Prototype Accelerator of IFMIF/EVEDA rfq, operation, linac, neutron 52
 
  • J. Knaster, Y. Okumura
    IFMIF/EVEDA, Rokkasho, Japan
  • P. Cara
    Fusion for Energy, Garching, Germany
  • A. Kasughai
    Japan Atomic Energy Agency (JAEA), International Fusion Energy Research Center (IFERC), Rokkasho, Kamikita, Aomori, Japan
  • M. Sugimoto
    QST/Takasaki, Takasaki, Japan
 
  LIPAc, under installation in Rokkasho will produce a 125 mA CW deuteron beam at 9 MeV. The objective of IFMIF is to generate a neutron flux of 1018 m-2s−1 at 14 MeV for fusion materials testing using 2 x 125 mA CW D+ beams at 40 MeV impacting on a liquid lithium jet of 15 m/s. An ECR deuteron injector at 140 mA and 100 keV will be the source for a 9.7m long 4-vane RFQ, which will be complemented by a 175 MHz SRF linac composed of 8 HWRs for producing 9 MeV D+ beam. For a beam transmission >90%, beam simulations demand a D+ beam emittance below <0.3π mm·mrad. The first attempt on such high current accelerator was in the US in the early 80s under FMIT project with a H2+ 100 mA CW 2 MeV beam. LEDA successfully conducted 100 mA CW H+ at 6.7 MeV at the RFQ output energy in the late 90s, but using superconducting HWRs accelerating cavities at 125 mA CW with low-β H+/D+ beam has never been attempted. Beam halo will be monitored with 3 cryogenic μ-loss monitors azimuthally placed in each of the 8 superconducting solenoids interleaved with the HWR structures. A novel approach based on a beam core-halo dual matching has been developed to handle the MW range beam average power.  
slides icon Slides MOZB02 [18.358 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOZB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB011 ROSE, Measuring the Full 4D Transverse Beam Matrix of Ion Beams emittance, vacuum, coupling, detector 98
 
  • M.T. Maier, X. Du, P. Gerhard, L. Groening, S. Mickat, H. Vormann, C. Xiao
    GSI, Darmstadt, Germany
 
  A ROtating System for Emittance measurements ROSE, to measure the full 4 dimensional transverse beam matrix of an ion beam has been developed and commissioned. Different ion beams behind the HLI at GSI have been used in two commissioning beam times. All technical aspects of ROSE have been tested, ROSE has been benchmarked against existing emittance scanners for horizontal and vertical projections, and the method, hard-, and software to measure the 4D beam matrix has been upgraded, refined, and successfully commissioned. The inter plane correlations of the HLI beam have been measured, yet as no significant initial correlations were found to be present, controlled coupling of the beam by using a skew triplet has been applied and confirmed with ROSE. The next step is to use ROSE to measure and remove the known inter plane correlations of a uranium beam before SIS18 injection.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB020 Transverse Intensity Distribution Measurement of Ion Beams Using Gafchromic Films radiation, cyclotron, octupole, tandem-accelerator 130
 
  • Y. Yuri, T. Agematsu, T. Ishizaka, K. Narumi, S. Okumura, H. Seito, T. Yuyama
    JAEA/TARRI, Gunma-ken, Japan
 
  A possible method of measuring the transverse spatial distribution of energetic ion beams is developed at Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (formerly, Japan Atomic Energy Agency). For this purpose, a radiochromic film, Gafchromic film (Ashland Inc.), is employed since it enables us to easily measure a large-area irradiation field distribution at a high spatial resolution. Gafchromic EBT3 and HD-V2 films are irradiated with ion beams of various species and kinetic energies extracted from a cyclotron and electrostatic accelerators at QST/Takasaki. Then, the coloration response of the films is analyzed in terms of the optical density. It is demonstrated that EBT3 and HD-V2 films are useful for the beam profile measurement at low fluence and at low energy, respectively.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB056 Measurements of the Beam Energy and Beam Profile of 100 MeV Proton Linac at KOMAC proton, linac, DTL, acceleration 217
 
  • S.G. Lee, Y.-S. Cho, H.S. Kim, H.-J. Kwon
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by Ministry of Science, ICT and Future Planning.
The linac for generation of the 100 MeV proton beam is operating in KOMAC. The 100 MeV proton beam is used in the industrial and the scientific fields such as improvement of the material characteristics and production of the isotope. The accurate measurements of the proton beam energy and profile are necessary for increasing the efficiency of the application and minimizing the inadequate radioactivation in linac structure caused by the beam loss. The proton beam energy and beam profile are measured by using the TOF (time-of-flight) method with a BPM (beam position monitor) and the ion chamber array, respectively. The detailed measurement setup and the measured results will be given in this paper.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB060 Upgrade of the LHC Schottky Monitor, Operational Experience and First Results pick-up, proton, emittance, injection 226
 
  • M. Betz, O.R. Jones, T. Lefèvre, M. Wendt
    CERN, Geneva, Switzerland
 
  The LHC Schottky system allows the measurement of beam parameters such as tune and chromaticity in an entirely non-invasive way by extracting information from the statistical fluctuations in the incoherent motion of particles. The system was commissioned in 2011 and provided satisfactory beam-parameter measurements during LHC run 1 for lead-ions. However, for protons its usability was substantially limited due to strong interfering signals originating from the coherent motion of the particle bunch. The system has recently been upgraded with optimized travelling-wave pick-ups and an improved 4.8~GHz microwave signal path, with the front-end and the triple down-mixing chain optimized to reduce coherent signals. Design and operational aspects for the complete system are shown and the results from measurements with LHC beams in Run II are presented and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR008 Development of Beam Position Monitor for a Heavy-ion Linac of KHIMA proton, cyclotron, synchrotron, beam-transport 238
 
  • J.G. Hwang
    KIRAMS/KHIMA, Seoul, Republic of Korea
  • G. Hahn, T.K. Yang
    KIRAMS, Seoul, Republic of Korea
 
  Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (no. NRF-2014M2C3A1029534).
The carbon and proton beams are produced by the electron cyclotron resonance ion source with the energy of 8 keV/u and it is accelerated up to 7 MeV/u by the RFQ and IH-DTL. The accelerated beam is injected on the synchrotron through the medium energy beam transport (MEBT). In the MEBT line of KHIMA, the stripline beam position monitor (BPM) is installed to measure the beam trajectory and orbit jitter before the beam injection at the synchrotron. It is also used to measure the phase information such as a bunch length for the de-buncher tuning in MEBT line. The BPM has the position resolution of 100 um with the diameter of 40 mm. The design study is performed and it is fabricated. In order to confirm the performance of the beam position monitor, the measurement of position accuracy and calibration by using wire test-bench, and the beam test with proton beam from MC-50 in KIRAMS are performed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR009 Development of Large Aperture Faraday-Cup for LEBT of KHIMA. electron, proton, ECR, beam-transport 241
 
  • J.G. Hwang
    KIRAMS/KHIMA, Seoul, Republic of Korea
  • T.K. Yang
    KIRAMS, Seoul, Republic of Korea
 
  Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (no. NRF-2014M2C3A1029534).
Since an aperture of a low energy beam transport line of the KHIMA is quite large, 100 mm, to minimize an uncontrolled beam loss, large aperture Faraday-cup with the diameter of 100 mm is installed to measure the beam current from the electron cyclotron resonance ion source (ECR-IS) and to identify the ion species using analyzing magnet. The suppression ring is designed to reduce the repelling electrons for an accurate measurement. The Faraday-cup has the cooling channel with the heat capability of 100 W to recover the heat from the ion beam for safety during the operation. In order to reduce the noise propagation from the cooling channel, the cooling channel is insulated with the cup. In this presentation, we show the physical modeling, mechanical aspect for design the large aperture Faraday-cup, and the result of in-beam test with the ECR-IS in KHIMA.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR010 The Development of Scintillating Screen Detector for Beam Monitoring at the KHIMA Project proton, experiment, cyclotron, heavy-ion 244
 
  • S.Y. Noh, S.D. Chang, J.G. Hwang
    KIRAMS/KHIMA, Seoul, Republic of Korea
  • G. Hahn, T.K. Yang
    KIRAMS, Seoul, Republic of Korea
 
  Funding: NRF-2014M2C3A1029534
It is important to measure the beam propeties such as position, size and intensity, when we control the medical beam qualities, So we developed the scintillation screen monitor used for beam profile monitoring and it will be installed at High Energy Beam Transport(HEBT) section to measure the beam parameters. This system consists of a terbium-doped gadolinium oxysulfide(Gd2O2S:Tb) phosphor screen and high speed charge coupled device camera. The CCD camera has the maximum 90 frame rate and 659 X 494 pixel resolution. This Camera is mounted at distance of 260mm from the center of the scintillation screen and with the angle of 45 degree to the scintillation screen which is mounted at the angle of 45 degree to the beam axis. The image analysis program was written in National Instruments LabVIEW using IMAQ driver. To reduce the image processing time, we optimized the prcessing flow and used LabVIEW built-in function. To evaluate this system, we measured the beam size and center position of the beam at KIRAMS on 50MeV cyclotron. In this paper, we present the manufacture of beam profile system based on a scintillating screen monitor and the in-beam test results of it.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR012 Studies of Buffer Gas Cooling of Ion Beams in an RFQ Cooler and Their Transport to the EBIS Charge Breeder rfq, simulation, emittance, radio-frequency 248
 
  • K.H. Yoo, M. Chung
    UNIST, Ulsan, Republic of Korea
  • H.J. Son
    IBS, Daejeon, Republic of Korea
 
  In rare isotope accelerator facilities, an RFQ cooler is often used to manipulate ions. The RFQ cooler is a de-vice to effectively cool and confine ions in gaseous envi-ronment. The RFQ cooler provides a radial electric force to the beam by applying RF voltages to the quadrupole electrode structures, and axial force by applying different DC voltages to the segmented electrodes. The ions are trapped inside the potential well of the RFQ cooler formed by the DC fields, so that they have more colli-sions with the buffer gas. Several important parameters such as transverse emittance can be improved when ion beams are extracted from the RFQ cooler. In order to design an efficient RFQ cooler, which can properly match the ion beams into the EBIS charge breeder, it is essential to analyze evolutions of the transverse emittance and transmission efficiency through the RFQ cooler. Moreo-ver, to minimize emittance growth and maximize trans-mission efficiency, the beam transport line to the EBIS charge breeder needs to be optimized. In this work, we study the methods to apply the mechanism of buffer gas cooling in RFQ cooler to G4beamline and the beam transport line to EBIS charge breeder to TRACK.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR014 Beam Diagnostics Overview for Collector Ring at FAIR diagnostics, antiproton, injection, pick-up 255
 
  • Yu. A. Rogovsky, E.A. Bekhtenev, M.I. Bryzgunov, O.I. Meshkov, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
  • E.A. Bekhtenev, Yu. A. Rogovsky, D.B. Shwartz
    NSU, Novosibirsk, Russia
  • O. Chorniy
    GSI, Darmstadt, Germany
 
  The Collector Ring (CR) is a dedicated storage ring in the FAIR project, where the main emphasis is laid on the effective stochastic precooling of intense secondary beams of stable ions, rare isotopes or antiprotons. A complex operation scheme with several types of operational cycles with beams in CR starting from injection, RF gymnastics, stochastic cooling then, and finishing to extraction is foreseen. Beam parameters changes significantly during the cycles. This demands an exceptional high dynamic range for the beam instrumentation. Non-destructive methods are mandatory for high currents as well as for the low current secondary beams due to the low repetition rate. Precise measurements of all beam parameters and automatic steering with short response time are required due to the necessary exploitation of the full ring acceptances. An overview of the challenges and solutions for various diagnostic installations will be given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR046 Characterizing Supersonic Gas Jet-based Beam Profile Monitors simulation, vacuum, diagnostics, electron 357
 
  • H.D. Zhang, A.S. Alexandrova, A. Jeff, V. Tzoganis, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.S. Alexandrova, A. Jeff, V. Tzoganis, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • A. Jeff
    CERN, Geneva, Switzerland
 
  Funding: Work supported by EU under contracts 215080 and 289191, Helmholtz Association (VH-NG-328) and STFC under the Cockcroft Institute core grant ST/G008248/1.
The next generation of high power, high intensity accelerators requires non-invasive diagnostics, particularly beam profile monitors. Residual gas-based diagnostics such as ionization beam profile or beam induced fluorescence monitors have been used to replace commonly used scintillating screens. At the Cockcroft Institute an alternative technique using a supersonic gas jet, shaped into a 45o curtain screen, was developed. It has already demonstrated its superior performance in terms of resolution and signal-to-noise ratio in comparison with residual gas monitors in experimental studies. The performance of this type of monitor depends on the achievable jet homogeneity and quality. Using a movable vacuum gauge as a scanner, the dynamic characteristics of the jet are studied. In this paper we also give an analysis of the resolution for this monitor in detail from the theory and ion drift simulation.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR048 Emittance Measurements and Operation Optimization for ECR Ion Sources emittance, ion-source, ECR, cyclotron 361
 
  • V. Tzoganis, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • O. Kamigaito, T. Nagatomo, T. Nakagawa, V. Tzoganis
    RIKEN Nishina Center, Wako, Japan
  • V. Tzoganis, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: RIKEN IPA scheme and Cockcroft Institute Core Grant
Electron Cyclotron Resonance (ECR) ion sources supply a broad range of ions for post acceleration in cyclotrons. Here, an effort to improve the beam transfer from RIKEN's 18 GHz ECR ion source to the Low Energy Beam Transfer (LEBT) line and an optimization of the performance of the ion source is presented. Simulation studies have shown that less than 20% of the beam is currently transferred. The first goal is to measure the transverse beam emittance in real time. The emittance monitor designed and fabricated for this purpose utilizes a pepper pot plate followed by a transparent scintillator and a CMOS camera for image capture. The second goal is to find the optimal operating point of the ion source by sweeping parameters such as RF power, vacuum pressure, extraction electrode position and voltage. To this extent, modifications of the ion source took place, as well as a measurement of the magnetic field inside the ion source. In this contribution the results of the emittance and other operating parameters measurements, as well as the design details of the emittance monitor are presented
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR052 Single-shot Bunch-by-Bunch Horizontal Beam Size Measurements using a Gated Camera at CesrTA electron, positron, vacuum, synchrotron-radiation 364
 
  • S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
 
  Funding: Work supported by NSF NSF PHY-1416318, PHYS-1068662, PHYS-1535696
A visible-light beam size monitor has been built and commissioned to measure transverse beam profiles at CESR-TA*. In order to eliminate beam jitter and to study bunch-by-bunch beam dynamics, a fast-gating camera has been utilized to measure single bunch transverse beam profiles. The minimum camera gate width is ~ 3ns which allows us to resolve single bunch beam dynamics along a CesrTA bunch train. Using single bunch interferometry at different bunch currents, we found that the horizontal beam sizes measured by gated camera are consistently less than those measured by a conventional CCD camera, demonstrating the elimination of turn-by-turn beam jitter with single shot capability. By stepping the camera trigger delay, we collected transverse beam profile images from each bunch in a 14ns-spacing 30-bunch train. The horizontal motion of each bunch as well as the horizontal beam size increases dramatically along an electron train but not along positron bunch trains under the same machine condition. The difference in single bunch horizontal dynamics may be a signature for the difference between electron cloud build-up for positron bunch trains versus ions present for electron bunch trains.
* S.T. Wang, D.L. Rubin, J. Conway, M. Palmer, D. Hartill, R. Campbell, R. Holtzapple, NIMA, 703 (2013) 80
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW004 Realization and High Power Tests of Damped C-Band Accelerating Structures for the ELI-NP Linac vacuum, HOM, klystron, damping 399
 
  • D. Alesini, M. Bellaveglia, S. Bini, R. Boni, P. Chimenti, F. Cioeta, R.D. Di Raddo, A. Falone, A. Gallo, V.L. Lollo, L. Palumbo, S. Pioli, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • F. Cardelli, M. Magi, A. Mostacci, L. Palumbo, L. Piersanti
    University of Rome La Sapienza, Rome, Italy
  • F. Cardelli, L. Piersanti
    INFN-Roma1, Rome, Italy
  • P. Favaron, F. Poletto
    INFN/LNL, Legnaro (PD), Italy
  • L. Ficcadenti, F. Pellegrino, V. Pettinacci
    INFN-Roma, Roma, Italy
 
  The ELI-NP C-Band structures are 1.8 m long travelling wave accelerating structures, quasi-constant gradient, with a field phase advance per cell of 2pi/3. They operate at a repetition rate of 100 Hz and, because of the multi-bunch operation, they have been designed with a dipole HOM damping system to avoid beam break-up (BBU). The structures have symmetric input and output couplers and integrate, in each cell, a waveguide HOM damping systems with silicon carbide RF absorbers. An optimization of the electromagnetic and mechanical design has been done to simplify the fabrication and to reduce their cost. After the first full scale prototype successfully tested at the nominal gradient of 33 MV/m, the production of the twelve structures started. In the paper we illustrate the main design criteria, the realization process and the high power test results.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW014 Design of the 7MeV Linac Injector for the 200MeV Synchrotron of the Xi'an Proton Application Facility linac, rfq, DTL, synchrotron 426
 
  • Q.Z. Xing, C. Cheng, C.T. Du, L. Du, T. Du, X. Guan, H. Jiang, C.-X. Tang, R. Tang, D. Wang, X.W. Wang, L. Wu, H.Y. Zhang, Q.Z. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • W.Q. Guan, Y. He, J. Li
    NUCTECH, Beijing, People's Republic of China
  • B.C. Wang, Z.M. Wang, W.L. Yang, Y. Yang, C. Zhao
    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Shannxi, People's Republic of China
 
  We present, in this paper, the design result of the 7 MeV linac which will inject the negative hydrogen ion beam to the downsteam synchrotron of the Xi‘an Proton Application Facility (XiPAF). This newly designed facility will be located in Xi'an city and provide the proton beam with the maximum energy of 230 MeV for the research of the single event effect. The 7 MeV linac injector is composed of the 50 keV negative hydrogen ion source, Low Energy Beam Transport line (LEBT), 3 MeV four-vane-type Radio Frequency Quadrupole (RFQ) accelerator, 7 MeV Alvarez-type Drift Tube Linac (DTL), and the corresponding RF power source system. The output beam of the linac injector is designed with the peak current of 5 mA, maximum repetition frequency of 0.5 Hz, beam pulse width of 10~40 μs and RMS normalized emittance of 0.24 π mm·mard.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW031 Beam Test of a Dielectric Loaded High Pressure RF Cavity for Use in Muon Cooling Channels cavity, electron, plasma, accelerating-gradient 463
 
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • D.L. Bowring, A. Moretti, D.W. Peterson, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • A.V. Kochemirovskiy
    University of Chicago, Chicago, Illinois, USA
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: This work is supported by the Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359.
Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. A 99.5% alumina ring was inserted in a high pressure RF test cell and subjected to an intense proton beam at the MuCool Test Area at Fermilab. The results of the performance of this dielectric loaded high pressure RF cavity will be presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR034 Numerical Space-Charge Compensation Studies and Comparison of Different Models electron, simulation, proton, space-charge 674
 
  • D. Noll, M. Droba, O. Meusel, U. Ratzinger, K. Schulte, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  The design of many Low-Energy Beam Transport sections relies on the presence of space-charge compensation by particles of opposing charge. To improve understanding of the processes involved in the built-up and steady-state, simulations using the Particle-in-Cell code bender were made. We will present the influence of various system parameters on the results. Furthermore, the electron velocity distribution was found to be approximately thermal. The spatial distribution can then be found by solving the Poisson-Boltzmann equation. Such a model for the electron distribution was implemented in a 2D PIC code and applied to typical beam transport situations. We will present results in comparison to the 3D simulations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR035 Space Charge Neutralization Studies with H Beam in Low Energy Beam Transport Test Stand space-charge, emittance, ion-source, rfq 677
 
  • S. Artikova
    Private Address, Tsukuba, Japan
  • K. Ikegami
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • T. Shibata, A. Takagi
    KEK, Tokai, Ibaraki, Japan
 
  J-PARC is intensity-upgraded up to pulse current of 50 mA of H beam. Two-solenoid based LEBT test stand is being built to support the operation of J-PARC linac. It imitates the actual LEBT of linac, yet contains the diagnostics chamber composed of horizontal and vertical beam emittance-meters and Faraday-cup for the current measurement. Vacuum composition of LEBT is predominantly H2 gas. The pressure inside the LEBT can be varied by the differential pumps allowing us to study the beam phase space evolution under space charge effects. The measurements of the beam phase space emittance were made as a function of the residual gas pressure. This paper presents the results and discussion on beam space charge neutralization and its effect on the beam phase space emittance.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR047 Numerical and Experimental Substantiation of the Ion Density Beam Transfer Function Measurements electron, betatron, space-charge, accumulation 698
 
  • D. Sauerland, W. Hillert
    ELSA, Bonn, Germany
 
  Funding: Funded by the BMBF, Germany under grant 05K13PDA
In the ELSA stretcher ring electrons are accelerated to a beam energy of 3.2 GeV utilizing a fast energy ramp of 6 GeV/s. Ions being generated by collision with the residual gas molecules accumulate inside the beam potential, causing incoherent tune shifts and coherent beam instabilities. Since the ion induced incoherent tune shift rises linearly with the beam neutralisation, it offers a suitable approach for evaluating the efficiency of several ion clearing measures. It was indirectly measured using a new experimental approach: By measuring the beam transfer function using a broadband transversal kicker, one was able to perceive a shift and broadening of the tune peak. Both effects could be adequately parameterized providing a quantity proportional to the incoherent tune shift and thus the average neutralisation. The impact of incoherent effects to the coherent electron beam response during the measurement has not been subject to intensive theoretical attention yet. This leaves the obtained quantity unscaled. Here new numerical simulations and experimental investigations will be presented in order to further substantiate the results of this new method.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY016 HSI RFQ Upgrade for the UNILAC Injection to FAIR rfq, bunching, emittance, simulation 877
 
  • C. Zhang, L. Groening, O.K. Kester, S. Mickat, H. Vormann
    GSI, Darmstadt, Germany
  • M. Baschke, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main, Germany
 
  As an injector to the future FAIR facility, the UNILAC accelerator is required to deliver ion beams with high intensities as well as good beam quality. The electrodes of the current HSI RFQ are exhausted and the current RFQ itself is assigned to be one bottle-neck for improving the brilliance performance of the whole linac. Based on the so-called NFSP (New Four-Section Procedure) method, a new RFQ electrode design has been developed and optimized for 20 emA, U4+ beams at the RFQ entrance. Since only the electrodes will be replaced, the RFQ length has been kept unchanged. Even with a lowered inter-vane voltage, the new RFQ design has achieved better beam performance compared to the previous design. This paper will focus on the performed study with respect to beam dynamics.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY017 Upgrade of the Universal Linear Accelerator UNILAC for FAIR DTL, emittance, rfq, operation 880
 
  • L. Groening, A. Adonin, X. Du, R. Hollinger, E. Jäger, M.T. Maier, S. Mickat, A. Rubin, B. Schlitt, G. Schreiber, H. Vormann, C. Xiao, A. Yakushev, C. Zhang
    GSI, Darmstadt, Germany
  • M. Baschke, H. Hähnel, H. Podlech, U. Ratzinger, A. Seibel, R. Tiede
    IAP, Frankfurt am Main, Germany
  • Ch.E. Düllmann, P. Scharrer
    HIM, Mainz, Germany
 
  In order to meet the requirements on beam parameters for the upcoming FAIR facility at GSI, the injector linac UNILAC will be upgraded. The activities comprise development of the sources for stable provision of intense uranium beams at a repetition rate of 2.7 Hz, a revision of the beam dynamics layout of the 120 keV/u RFQ, the replacement of the matching section to the 1.4 MeV/u pre-stripper DTL, and enhancement of the gaseous stripping section efficiency. This section shall also include a round-to-flat emittance adaptor to prepare the beam for injection into the synchrotron SIS18 which has a flat transverse injection acceptance. Finally, the upgrade includes the complete replacement of the 40 year old 11.4 MeV/u Alvarez-type post-stripper DTL with a new DTL, preferably using Alvarez-type cavities with improved beam focusing features, as well as its rf-power alimentations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY019 Status of the First CH-Cavities for the New Superconducting CW Heavy Ion LINAC@GSI resonance, cavity, linac, operation 886
 
  • M. Basten, M. Amberg, M. Busch, F.D. Dziuba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, S. Mickat, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, S. Mickat, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  In the field of Super Heavy Elements (SHE) a superconducting (sc) continuous wave (cw) high intensity heavy ion LINAC is highly desirable. Currently a multi-stage R&D program conducted by GSI, HIM and IAP* is in progress. The baseline linac design composes a high performance ion source, a new low energy beam transport line, a (cw) upgraded High Charge State Injector (HLI), and a matching line (1.4 MeV/u) followed by the new sc-DTL LINAC for acceleration up to 7.3 MeV/u. The commissioning of the first CH cavity (Demonstrator), in a horizontal cryo module with beam is a major milestone in 2016**. The advanced demonstrator comprises constant-beta sc Crossbar-H-mode (CH) cavities operated at 217 MHz. Presently, the first two sc CH cavities of the advanced demonstrator are under construction at Research Instruments (RI), Bergisch Gladbach, Germany. A string of cavities and focusing elements build from several short CH-cavities with 8 gaps, without girders is recommended. The new design potentially reduces the overall technical risks during the fabrication and the pressure sensitivity through stiffening brackets. The present status of the first two sc cavities will be presented.
* W.Barth et al., Further R&D for a new Superconducting cw Heavy Ion LINAC@GSI, IPAC'14
**F.Dziuba et al., Measurements on the Superconducting 217 MHz CH Cavity during the Manufacturing Phase, SRF2015
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY022 Further Upgrade Measures at New GSI cw-Linac Demonstrator Setup solenoid, cavity, linac, heavy-ion 892
 
  • M. Heilmann, W.A. Barth, S. Mickat, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Amberg, M. Basten, F.D. Dziuba, H. Podlech, U. Ratzinger, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, S. Mickat, M. Miski-Oglu
    HIM, Mainz, Germany
 
  A new continuous wave (cw) linac is required to deliver high intensity heavy ion beams for Super Heavy Element (SHE) future experiments at GSI Darmstadt, Germany. The presented upgrade measures are dedicated to improve the performance of the cw demonstrator setup. The key component is a cryomodule comprising a superconducting (sc) 217 MHz Crossbar-H-mode (CH) cavity surrounded by two sc 9.3T solenoids with compensation coils. The solenoid coil is made of a Nb3Sn wire; and the compensation coils at both ends of the solenoid comprises NbTi wires. The distance between solenoid lense and CH cavity has to be optimized for ideal beam matching as well as for a minimum rest field inside the cavity below the critical magnetic field. The GSI High Charge State (HLI) injector has to deliver a heavy ion beam with an energy of 1.4 MeV/u. Longitudinal matching to the demonstrator is provided by two 108.4 MHz cw room temperature λ/4 re-buncher cavity installed behind the HLI. In this paper electromagnetic simulations of the field optimization for the solenoids and the re-buncher cavities will be presented as well as first beam experiments at the beam transport line to the demonstrator cavity.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY023 Further Steps Towards the Superconducting CW-LINAC for Heavy Ions at GSI linac, cavity, heavy-ion, target 896
 
  • M. Schwarz, M. Basten, M. Busch, F.D. Dziuba, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main, Germany
  • W.A. Barth, V. Gettmann, M. Heilmann, S. Mickat, M. Miski-Oglu, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, V. Gettmann, S. Mickat, M. Miski-Oglu
    HIM, Mainz, Germany
 
  Funding: Work supported by BMBF contr. No. 05P15RFRBA
For future experiments with heavy ions near the coulomb barrier within the super-heavy element (SHE) research project a multi-stage R&D program of GSI, HIM and IAP is currently in progress. It aims at developing a superconducting (sc) continuous wave (cw) LINAC with multiple CH cavities as key components downstream the upgraded High Charge Injector (HLI) at GSI. The LINAC design is challenging, due to the requirement of intense beams in cw-mode up to a mass-to-charge-ratio of 6 while covering a broad output energy range from 3.5 to 7.3 MeV/u with minimum energy spread. The next milestone will be a full performance beam test of the first expansion stage at GSI, the Demonstrator, comprising two solenoids and a 15-gap CH cavity inside a cryostat.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY024 Development of a 325 MHz Ladder-RFQ of the 4-Rod-Type rfq, proton, linac, vacuum 899
 
  • M. Schütt, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • C. Zhang
    GSI, Darmstadt, Germany
 
  In order to have an inexpensive alternative to 4-Vane RFQs above 200 MHz, we study the possibilities of a Ladder-RFQ. The 325 MHz RFQ is designed to accelerate protons from 95 keV to 3.0 MeV according to the design parameters of the research program with cooled antiprotons at FAIR. This particular high frequency for an RFQ creates difficulties, which are challenging in developing a cavity. In order to define a satisfactory geometrical configuration for this resonator, both from the RF and the mechanical point of view, different designs have been examined and compared. Very promising results have been reached with a ladder type RFQ, which has been investigated since 2013. Due to its geometric size the manufacturing as well as maintenance is not that complex compared with welded accelerators. The manufacturing, coppering and assembling of a 0.8 m prototype RFQ is finished. We present recent measurements of the rf-field, frequency-tuning, field flatness and the mode spectrum.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY033 Design Study on an Injector RFQ for Heavy Ion Accelerator Facility rfq, simulation, cavity, heavy-ion 928
 
  • W. Ma, Y. He, L. Lu, X.B. Xu, Z.L. Zhang, H.W. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  A Low Energy Accelerator Facility (LEAF) was launched as a pre-research facility for High Intensity heavy ion Accelerator Facility (HIAF). The LEAF consists of a 2-mA U34+ electron cyclotron resonance (ECR) type ion source with 300-kV extraction voltage, a low energy beam transport (LEBT) line with a multi-harmonic buncher (MHB), a CW 81.25MHz radio frequency quad-rupole (RFQ) accelerator which could accelerate heavy ions from 14 keV/u up to 500 keV/u, a triplet magnet for medium energy beam transport and an experimental platform for nuclear physics. After describing the selected structure, an octagonal cavity with π-mode stabilizing loop (PISL) type structure was adopted and simulated. In this paper, the detailed electromagnetic design and ther-mal simulation of the LEAF-RFQ will be reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY039 Progress on Superconducting Linac for the RAON Heavy Ion Accelerator cryomodule, linac, cavity, electron 935
 
  • H.J. Kim, H.C. Jung, W.K. Kim
    IBS, Daejeon, Republic of Korea
 
  The RISP (Rare Isotope Science Project) has been proposed as a multi-purpose accelerator facility for providing beams of exotic rare isotopes of various energies. It can deliver ions from proton to uranium. Proton and uranium ions are accelerated upto 600 MeV and 200 MeV/u respectively. The facility consists of three superconducting linacs of which superconducting cavities are independently phased. Requirement of the linac design is especially high for acceleration of multiple charge beams. In this paper, we present the RISP linac design, the prototyping of superconducting cavity and cryomodule.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY041 Commissioning of New Proton and Light Ion Injector for Nuclotron-Nica rfq, linac, vacuum, simulation 941
 
  • S.M. Polozov, V.S. Dyubkov, M. Gusarova, T. Kulevoy, A.A. Martynov, A.S. Plastun, A.V. Samoshin
    MEPhI, Moscow, Russia
  • V. Aleksandrov, A.V. Butenko, B.V. Golovenskiy, A. Govorov, V. Kobets, A.D. Kovalenko, V. Monchinsky, V.V. Seleznev, A.O. Sidorin, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • V. Andreev, A.I. Balabin, S.V. Barabin, V.A. Koshelev, A.V. Kozlov, G. Kropachev, R.P. Kuibeda, T. Kulevoy, V.G. Kuzmichev, D.A. Liakin, A.Y. Orlov, A.S. Plastun, D.N. Selesnev, A. Sitnikov, Yu. Stasevich
    ITEP, Moscow, Russia
  • A.P. Durkin
    MRTI RAS, Moscow, Russia
  • K.A. Levterov
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • S.V. Vinogradov
    MIPT, Dolgoprudniy, Moscow Region, Russia
 
  The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is now under development and construction at JINR. New complex is assumed to operate using two injectors: the Alvarez-type linac LU-20 as injector of light ions, polarized protons and deuterons and a new linac HILac of heavy ions. Now the modernization of LU-20 is also realized and old pulse DC injector is planning to replace by RFQ linac. New RFQ linac was developed and manufactured and is now under commissioning at Nuclotron injectors hall. New results of RFQ linac resonator testing and measurements, RF power load and linac testing with deuterium and carbon beam will discuss in this report.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY042 The Perspective of Jinr Lu-20 Replacement by a Superconducting Linac linac, simulation, proton, cavity 944
 
  • S.M. Polozov, M. Gusarova, T. Kulevoy, M.V. Lalayan, A.V. Samoshin, S.E. Toporkov
    MEPhI, Moscow, Russia
  • M.A. Baturitski
    BSU, Minsk, Belarus
  • A.V. Butenko, V. Monchinsky, A.O. Sidorin, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • G. Kropachev, T. Kulevoy
    ITEP, Moscow, Russia
  • A.A. Marysheva, V.S. Petrakovsky, I.L. Pobol, A.I. Pokrovsky, S.V. Yurevich, A.Yu. Zhuravsky
    Physical-Technical Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
 
  The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is now under development and construction at JINR. Existing Alvarez-type DTL linac LU-20 is now operates as injector of light ions, polarized protons and deuterons to Nuclotron for LHEP experimental program. It provides proton beam of 20 MeV energy and light ions of 5 MeV/u energy. In 2015 the cascade transformer 800 kV which is pre-accelerator of LU-20 had been replaced by the new RFQ linac (energy 155 keV for ions with Z/A<0.5). The proposal on Alvarez linac LU-20 upgrade by a superconducting light ion linac with energy up to 50 MeV is discussed in this report.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY049 The PXIE LEBT Design Choices rfq, ion-source, solenoid, vacuum 958
 
  • L.R. Prost, A.V. Shemyakin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the United States Department of Energy
Typical front-ends of modern light-ion high-intensity accelerators typically consist of an ion source, a Low Energy Beam Transport (LEBT), a Radiofrequency Quadrupole and a Medium Energy Beam Transport (MEBT), which is followed by the main linac accelerating structures. Over the years, many LEBTs have been designed, constructed and operated very successfully. In this paper, we present the guiding principles and compromises that lead to the design choices of the PXIE LEBT, including the rationale for a beam line that allows un-neutralized transport over a significant portion of the LEBT whether the beam is pulsed or DC.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY052 200 MeV H Linac Upgrades at Brookhaven linac, controls, power-supply, ion-source 968
 
  • D. Raparia, J.G. Alessi, G. Atoian, B. Briscoe, C. Cullen, D.M. Gassner, O. Gould, M. Harvey, T. Lehn, V. LoDestro, M. Mapes, I. Marneris, A. McNerney, J. Morris, W.E. Pekrul, J. Ritter, R.F. Schoenfeld, F. Severino, C. Theisen, A. Zaltsman, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  The 200 MeV H Linac has been operational for the last 45 years providing beam for the physics and isotope programs. Currently we are upgrading the Linac for improved reliability and integrated intensity. Recently we replaced the 7651 tubes with solid-state RF amplifiers. In addition, the low level RF system and Timing system were upgraded and new beam loss monitors were installed that is sensitive at low-energies and to neutrons. We have a plan for future upgrades to the vacuum, Controls, diagnostics and power supply systems. In order to achieve higher average current for the isotope program, it is plan to increase the beam pulse length from 450 us to 900 us. This will require modifications to the RF and all pulse power supply systems.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY055 Technologies for Stabilizing the Dynamic Vacuum and Charge Related Beam Loss in Heavy Ion Synchrotrons vacuum, heavy-ion, synchrotron, cryogenics 977
 
  • P.J. Spiller, L.H.J. Bozyk, C. Omet, I. Pongrac, St. Wilfert
    GSI, Darmstadt, Germany
 
  With increasing the intensities of heavy ion beams in synchrotrons, charge related beam loss become more and more significant. In order to reduce space charge forces and to minimize the incoherent tune spread, the charge state of heavy Ions shall be lowered. Thus the cross section for charge related beam loss is further enhanced. For the FAIR project, GSI has developed a number of different technologies to stabilize the dynamic residual gas pressure and thereby to minimize charge related beam loss at high intensity heavy ion operation. Technologies suitable for such issues are, dedicated lattice structures, cold and warm ion catchers, NEG coated and cryogenic magnet chambers and cryo-adsorption pumps.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY056 Development of a Neutronics Facility using Radio Frequency Quadrupole for Characterization of Fusion Grade Materials rfq, neutron, quadrupole, radio-frequency 981
 
  • R. Bahl, S.K. Kumar, M. Mittal, B. Sarkar, A. Shyam
    Institute for Plasma Research, Bhat, Gandhinagar, India
 
  Qualification of the materials is among the important challenges for a fusion reactor. Working in tandem with the present need that recognizes the value of evaluating fusion reactor materials, Institute for Plasma Research has initiated the 'Development of RFQ for Accelerators' project, which will provide a neutronic facility for material qualification in a relatively larger scale. The facility will consist of an high intensity ECR ion (H+/D+) source coupled to Radio Frequency Quadrupole (RFQ) Accelerator through a LEBT system to produce 5 MeV, 40 mA deuterium ions to fulfil the objectives. Further upgrade in the beam energy and current is also foreseen to suit the facility requirement. A four vane type copper RFQ @352.2 MHz frequency with transmission efficiency of ≈ 96% has been designed to accelerate deutrons upto 1 MeV energy as a demonstration of the RFQ functioning and controls. Through LEBT system, deuterons are then focused into RFQ using weak beam focalization method. The harmonization of the vane tips design and manufacturing constraints has been part of the study to have a near realistic engineering design. Design and analysis of RFQ will be discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY059 LHC Injectors Upgrade (LIU) Project at CERN injection, proton, linac, brightness 992
 
  • E.N. Shaposhnikova, J. Coupard, H. Damerau, A. Funken, S.S. Gilardoni, B. Goddard, K. Hanke, L. Kobzeva, A.M. Lombardi, D. Manglunki, S. Mataguez, M. Meddahi, B. Mikulec, G. Rumolo, R. Scrivens, M. Vretenar
    CERN, Geneva, Switzerland
 
  A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LIU roadmap and revised performance objectives of the main upgrades, including the work status and outlook in terms of the required installation and commissioning stages.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAA02 Status and Performance of ORNL Spallation Neutron Source Accelerator Systems linac, rfq, operation, ion-source 1007
 
  • Y.W. Kang, A.V. Aleksandrov, D.E. Anderson, M.S. Champion, M.T. Crofford, J. Galambos, B. Han, S.-H. Kim, S.W. Lee, J. Moss, V.V. Peplov, C. Piller, M.A. Plum, R.T. Roseberry, J.P. Schubert, A.P. Shishlo, M.P. Stockli, C.M. Stone, R.F. Welton, M. Wezensky, D.C. Williams, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • L.A. Longcoy, M. Magda, M.E. Middendorf, W.S. Passmore, C.C. Peters, J. Price, R.B. Saethre, J. Saunders
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
The Spallation Neutron Source (SNS) accelerator sys-tems have been performing continuously and progressively since commissioning in 2006 to deliver the neutrons to beamlines. The 1.4 MW design beam power has been demonstrated during 24/7 operation while developments and investigations for system improvements are still ongoing to achieve the full design beam power and availability. Numerous difficulties that impeded reaching the full performance of the SNS accelerator systems have been identified and are being eliminated through repairs, upgrades, and developments. In this report, operational performance and developments of the accelerator systems are presented along with the efforts for future upgrades of the SNS.
 
slides icon Slides TUOAA02 [5.410 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB031 From Design Towards Series - The Superconducting Magnets for FAIR quadrupole, dipole, superconducting-magnet, sextupole 1167
 
  • E.S. Fischer, A. Bleile, V.I. Datskov, J.P. Meier, A. Mierau, H. Müller, C. Roux, P. Schnizer, K. Sugita
    GSI, Darmstadt, Germany
 
  The Facility for Anti-proton and Ion Research (FAIR-project) is now under construction. The heavy ion synchrotron SIS100 and the Super Fragment Separator (Super-FRS) use mainly superferric magnets as beam guiding elements. We present the design status of the magnets next to the experience obtained on the first magnets which were produced for SIS100. Finally we give an overview of the preparation for the series production and testing of the cryomagnetic modules.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB032 Magnetic Field Characterisation of the First Series Dipole Magnet for the SIS100 Accelerator of FAIR dipole, multipole, superconductivity, sextupole 1171
 
  • F. Kaether, E.S. Fischer, V. Marusov, A. Mierau, C. Roux, P. Schnizer, K. Sugita, H.G. Weiss
    GSI, Darmstadt, Germany
 
  The procurement of the SIS100 dipoles was contracted without building and testing an appropriate model magnet. So the thorough test of the first of series magnet is the key issue for the final realisation of the complete series production. The core of these tests is the measurement and analysis of the magnetic field of the first dipole. We describe the adapted measurement technics next to a detailed analysis of the obtained field quality and point out the critical issues of the series production  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB040 LHC Accelerator Fault Tracker - First Experience operation, cryogenics, hardware, luminosity 1190
 
  • A. Apollonio, L. Ponce, C. Roderick, R. Schmidt, B. Todd, D. Wollmann
    CERN, Geneva, Switzerland
 
  Availability is one of the key performance indicators of LHC operation, being directly correlated with integrated luminosity production. An effective tool for availability tracking is a necessity to ensure a coherent capture of fault information and relevant dependencies on operational modes and beam parameters. At the beginning of LHC Run 2 in 2015, the Accelerator Fault Tracking (AFT) tool was deployed at CERN to track faults or events affecting LHC operation. Information derived from the AFT is crucial for the identification of areas to improve LHC availability, and hence LHC physics production. For the 2015 run, the AFT has been used by members of the CERN Availability Working Group, LHC Machine coordinators and equipment owners to identify the main contributors to downtime and to understand the evolution of LHC availability throughout the year. In this paper the 2015 experience with the AFT for availability tracking is summarised and an overview of the first results as well as an outlook to future developments is given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR001 Preliminary Test of 1 Mv Electrostatic Accelerator at Komac ion-source, high-voltage, power-supply, extraction 1222
 
  • D.I. Kim
    KAERI, Daejon, Republic of Korea
  • Y.-S. Cho, H.-J. Kwon, S.H. Park
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Ministry of Education, Science and Technology of the Korean Government.
1 MV electrostatic accelerator is being developed to satisfy the needs from the users, especially for the applications with a MeV range ion beam implantation at KOrea Multi-purpose Accelerator Complex (KOMAC). Typically, the accelerator consists of ion source, beam transport system and target chamber. For the accelerating voltage of a MeV range, ELV type high voltage power supply has been selected. And then, ion source has been selected as the newly developed RF ion source which can be installed inside the pressure vessel of high voltage power supply due to its limited space and electrical power. In this paper, preliminary test of 1 MV electrostatic accelerator including test results in test stand is presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR002 Suppression of Concomitant Flow of Charged Particles in the Tandem Accelerator with Vacuum Insulation electron, vacuum, proton, neutron 1225
 
  • S.Yu. Taskaev, D.A. Kasatov, A.N. Makarov, Y.M. Ostreinov, I.M. Shchudlo, I.N. Sorokin
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: The study was supported by the Grants from the Russian Science Foundation (Project no. 14-32-00006) and the Budker Institute of Nuclear Physics.
A source of epithermal neutrons based on a tandem accelerator with vacuum insulation for Boron Neutron Capture Therapy of malignant tumors was proposed and constructed. Stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity and 0.5% current stability was obtained*. The flow of charged particles accompanying the accelerated ion beam was detected and measured**. To suppress this concomitant flow cooled diaphragm, cryopump and the electrostatic ring were installed in the input of accelerator. The surface of the vacuum vessel was covered with netting to suppress secondary electron emission. These steps have reduced the flow of charged particles 25 % of the ion beam to 0.5 % and to increase the current proton beam 3 times - up to 4.5 mA. The paper presents the results of research and declares plans to use the accelerator for the BNCT.
* D. Kasatov, et al. JINST 9 (2014) P12016.
** D. Kasatov, et al. Technical Physics Letters 41 (2015) 139-141.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR003 Three-fold Increase of the Proton Beam Current in the Vacuum Insulation Tandem Accelerator vacuum, proton, tandem-accelerator, electron 1228
 
  • I.M. Shchudlo, V. Dokutovich, D.A. Kasatov, A.N. Makarov, I.N. Sorokin, S.Yu. Taskaev
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: The study was supported by the Grants from the Russian Science Foundation (Project no. 14-32-00006) and the Budker Institute of Nuclear Physics
In BINP neutron source for boron neutron capture therapy of cancer based on the vacuum insulation tandem accelerator and lithium target for neutron generation was constructed. After optimization of the injection of negative hydrogen ions and modernization of the stripping target 1.6 mA 2 MeV proton beam was obtained. Improvements of the accelerator to suppress accompanying electron current were introduced, and after making changes to protection system of high voltage power supply a stable proton beam with a current of 4.5 mA was obtained. Analysis of the experimental results shows that the beam is accelerated without losses. Obtaining of proton beam with the current of more than 3 mA offers the prospects of using of accelerators for BNCT in cancer clinics.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR007 Radiative Recombination Detection to Monitor Electron Cooling Conditions During Low Energy RHIC Operations electron, quadrupole, detector, closed-orbit 1239
 
  • F.S. Carlier, M. Blaskiewicz, K.A. Drees, A.V. Fedotov, W. Fischer, M.G. Minty, C. Montag, G. Robert-Demolaize, P. Thieberger
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Providing Au-Au collisions in the Relativistic Heavy Ion Collider (RHIC) at energies equal or lower than 10 GeV/nucleon is of particular interest to study the location of a critical point in the QCD phase diagram. To mitigate luminosity limitations arising from intra-beam scattering at such low energies, an electron cooling system is being developed. To achieve cooling, the relative velocities of the electrons and protons need to be small with maximized transverse overlap. Recombination rates of ions with electrons in the electron cooler can provide signals that can be used to tune the energies and transverse overlap to the required conditions. In this paper we take a close look at various detection methods for recombination processes that may be used to approach cooling.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR008 Simulation of Ion Beam under Coherent Electron Cooling simulation, electron, kicker, FEL 1243
 
  • G. Wang, M. Blaskiewicz, V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The proof of coherent electron cooling (CeC) principle experiment is currently under commissioning and it is essential to have the tools to predict the influences of cooling electrons on a circulating ion bunch. Recently, we have developed a simulation code to track the evolution of an ion bunch under the influences of both CeC and Intra-beam scattering (IBS). In this paper, we will first show the results of benchmarking the code with numerical solutions of Fokker-Planck equation and then present the simulation results for the proof of CeC principle experiment.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR009 Analytical Studies of Ion Beam Evolution under Coherent Electron Cooling electron, synchrotron, simulation, scattering 1247
 
  • G. Wang, M. Blaskiewicz, V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the presence of coherent electron cooling (CeC), the evolution of the longitudinal profile of a circulating ion bunch can be described by the 1-D Fokker-Planck equation. We show that, in the absence of diffusion, the 1-D equation can be solved analytically for certain dependence of cooling force on the synchrotron amplitude. For more general cases, we solved the 1-D Fokker-Planck equation numerically and the numerical solutions have been used to benchmark our simulation code as well as providing fast estimations of the cooling effects.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR012 Investigation of Central Region Design of 10MeV AVF Cyclotron cyclotron, ion-source, acceleration, injection 1253
 
  • M. Afkhami Karaei, H. Afarideh, S. Azizpourian, R. Solhju
    AUT, Tehran, Iran
  • J.-S. Chai, M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  Recently, studies on the central region of 10 MeV AVF Cyclotron have been done at AmirKabir University of Technology. In this study, the aim of the cyclotron design is to accelerate the ions up to 10MeV energy. The cyclotron, consist of four sector magnets and 2 RF cavities which will be operated at 71 MHz. The internal PIG ion source is used in this cyclotron. The purpose of this work is to investigate the behavior of trajectories of ions in the magnetic and electric fields at the center of the cyclotron. The electric and magnetic field distribution was designed by OPERA-3DTOSCA. In order to solve the equation of motion, numerical code was written in C++ program that used the conventional Rung-Kutta method. The obtained results of simulation were the horizontal and vertical motion of an ion in the center of cyclotron, and motion of the center of the orbits.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR013 Heat Transfer Study of PIG Ion Source for 10 MeV Cyclotron cathode, ion-source, electron, cyclotron 1256
 
  • F. Zakerhosseini, H. Afarideh, S. Sabounchi
    AUT, Tehran, Iran
  • J.-S. Chai, M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  A PIG Ion source provides H-ions for the 10 MeV cyclotron, which is designed and being manufactured by Amirkabir university of technology. Plasma created in the anode contains the desired ions. Discharge for producing plasma consists of the both ion current from plasma towards the cathode and the secondary electron current from the cathode to the plasma. Secondary electron emission is the result of ion collision on the surface of the cathode. Heat generated by these collisions is considerably high, so a cooling system for ion source is crucial. In this paper heat transfer study of the ion source, temperature distribution and deformation of different parts simulated using ANSYS CFX. Also the thermionic emission of the electrons from cathode in the calculated temperatures by ANSYS simulated Using CST STUDIO. Results showed the maximum temperature of the cathodes is 1992 K, which is far away from the cathode melting point. The thermionic current in 1992 K of cathode simulated and the results showed an electron current of 0.00706 A at 500 V which is negligible in comparison to the discharge current of 1 A. Maximum deformation were about 0.2 mm in cathode edges.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR021 A Racetrack-shape Fixed Field Induction Accelerator for Giant Cluster Ions induction, acceleration, extraction, ion-source 1278
 
  • K. Takayama, T. Adachi, K. Okamura, M. Wake
    KEK, Ibaraki, Japan
  • T. Adachi, K. Okamura
    Sokendai, Ibaraki, Japan
  • Y. Iwata
    AIST, Tsukuba, Japan
  • Y. Yuri
    JAEA/TARRI, Gunma-ken, Japan
 
  At KEK, circular induction accelerators employing an induction acceleration system, which is characterized by a simple fact of functional separation of acceleration and beam confinement, have been developed since 2000. The slow cycling induction synchrotron (IS) was demonstrated using the KEK 12 GeV PS in 2006, where superbunch formation and focusing-free transition energy crossing were realized*. The fast cycling IS called the KEK digital accelerator is under operation since 2012**, where bunch squeezing and splitting/merging never realized in RF synchrotrons have been demonstrated, as well as acceleration in a wide range of ion mass to charge ratio. Based on the experiences, a racetrack-shape fixed field induction accelerator (induction microtron)*** that can accelerate giant cluster ions such as C-60 or Si-100, to high energy beyond that of electrostatic accelerators has been designed. Its full story and status of R&D work will be presented at the conference.
* K.Takayama, Induction Accelerators (Springer, 2010), Chapter 11,12
** K.Takayama et al., Phys. Rev. ST-AB 17, 010101(2014).
*** K.Takayama, T.Adachi, et al., Phys. Rev. ST-AB 18, 050101(2015).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR022 Present Status and Future Plan of RIKEN RI Beam Factory cyclotron, acceleration, heavy-ion, ion-source 1281
 
  • O. Kamigaito, T. Dantsuka, M. Fujimaki, N. Fukunishi, H. Hasebe, Y. Higurashi, E. Ikezawa, H. Imao, M. Kase, M. Kidera, M. Komiyama, K. Kumagai, T. Maie, T. Nagatomo, T. Nakagawa, M. Nakamura, J. Ohnishi, H. Okuno, K. Ozeki, N. Sakamoto, K. Suda, S. Watanabe, T. Watanabe, Y. Watanabe, K. Yamada, H. Yamasawa
    RIKEN Nishina Center, Wako, Japan
 
  Recent efforts concerning the accelerators of the RIKEN RI Beam Factory (RIBF) have been directed towards achieving higher heavy-ion beam intensities. As shown at the IPAC2014 conference, the intensities of these ion beams have improved significantly following the construction of the new injector, RILAC2, which is equipped with a 28-GHz superconducting ECR ion source, development of the helium gas stripper, and upgrading of the bending power of the fRC. In this respect, this paper presents the subsequent upgrade programs conducted in the past two years, such as the development of a new charge stripper for uranium beam and a new acceleration scheme of krypton beam. The current performance level of the RIBF accelerator complex, as well as a future plan to further increase the beam intensities, are also presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR023 First Operational Experience of HIE-Isolde detector, dipole, experiment, target 1284
 
  • J.A. Rodriguez, N. Bidault, E. Bravin, R. Catherall, E. Fadakis, P. Fernier, M.A. Fraser, M.J. Garcia Borge, K. Hanke, K. Johnston, Y. Kadi, M. Kowalska, M.L. Lozano Benito, E. Matli, S. Sadovich, E. Siesling, W. Venturini Delsolaro, F.J.C. Wenander
    CERN, Geneva, Switzerland
  • M. Huyse, P. Van Duppen
    KU Leuven, Leuven, Belgium
  • J. Pakarinen
    JYFL, Jyväskylä, Finland
  • E. Rapisarda
    PSI, Villigen PSI, Switzerland
  • M. Zielinska
    Warsaw University, Warsaw, Poland
 
  The High Intensity and Energy ISOLDE project (HIE-ISOLDE)* is a major upgrade of the ISOLDE facility at CERN. The energy range of the post-accelerator will be extended from 2.85 MeV/u to 9.3 MeV/u for beams with A/q = 4.5 (and to 14.3 MeV/u for A/q = 2.5) once all the cryomodules of the superconducting accelerator are in place. The project has been divided into different phases, the first of which (phase 1a) finished in October 2015 after the hardware and beam commissioning were completed**. The physics campaign followed with the delivery of both radioactive and stable beams to two different experimental stations. The characteristics of the beams (energies, intensities, time structure and beam contaminants) and the plans for the next experimental campaign will be discussed in this paper.
* The HIE-ISOLDE Project, Journal of Physics: Conference Series 312.
** HIE-ISOLDE First Commissioning Experience, IPAC'16
** Beam Commissioning of the HIE-ISOLDE Post-Accelerator, IPAC'16
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR024 Commissioning and First Accelerated Beams in the Reaccelerator (Rea3) of the National Superconducting Cyclotron Laboratory, MSU experiment, rfq, acceleration, cyclotron 1287
 
  • A.C.C. Villari, G. Bollen, M. Ikegami, S.M. Lidia, R. Shane, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • D.M. Alt, D.B. Crisp, S.W. Krause, A. Lapierre, D.J. Morrissey, S. Nash, R. Rencsok, R.J. Ringle, S. Schwarz, C. Sumithrarachchi, S.J. Williams
    NSCL, East Lansing, Michigan, USA
 
  The ReAccelerator ReA3 is a worldwide unique, state-of-the-art reaccelerator for rare isotope beams. Beams of rare isotopes are produced and separated in-flight at the NSCL Coupled Cyclotron Facility and subsequently stopped in a gas cell. The rare isotopes are then continuously extracted as 1+ (or 2+) ions and transported into a beam cooler and buncher, followed by a charge breeder based on an Electron Beam Ion Trap (EBIT). In the charge breeder, the ions are ionized to a charge state suitable for acceleration in the superconducting radiofrequency (SRF) linac, extracted in a pulsed mode and mass analyzed. The extracted beam is bunched to 80.5 MHz and then accelerated to energies ranging from 300 keV/u up to 6 MeV/u, depending on their charge-to-mass ratio. Alternatively, stable isotope ions can be accelerated injecting stable gas in the EBIT. ReA3 was commissioned recently with stable 40Ar and 39K as well as with the rare isotope beams of 46Ar and 46K. This contribution will focus on the properties and techniques used to accelerate and transport rare isotope beams and will show results obtained during the preparation of the two first experiments using the ReA facility.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR026 First Experience of Applying Loco for Optics at Cosy quadrupole, optics, simulation, storage-ring 1294
 
  • D. Ji
    IHEP, Beijing, People's Republic of China
  • M. Bai, Y. Dutheil, F. Hinder, B. Lorentz, M. Simon, C. Weidemann
    FZJ, Jülich, Germany
 
  COSY is a cooler synchrotron designed for internal target hadron physics experiments, equipped with both electron cooling system and stochastic cooling system. During the past couple of years, COSY has been evolved into an ideal test facility for accelerator technology development as well as detector development for the Facility of Anti-proton and Ion Research at Darmstadt (FAIR). In addition, COSY has been the test ground for exploring the feasibility of a storage ring based Electric Dipole Moment (EDM) measurement. The proposed precursor experiment of a direct measurement of the EDM of the deuteron at COSY using an RF wien filter by the Jülich Electric Dipole moment Investigation (JEDI) requests significant improvement of beam based measurements as well as beam control. In this paper, first results of measured linear optics based on AT-LOCO are reported. Simulation studies are also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR027 CERN's Fixed Target Primary Ion Programme extraction, target, proton, experiment 1297
 
  • D. Manglunki, M.E. Angoletta, J. Axensalva, G. Bellodi, A. Blas, M.A. Bodendorfer, T. Bohl, S. Cettour-Cave, K. Cornelis, H. Damerau, I. Efthymiopoulos, A. Fabich, J.A. Ferreira Somoza, A. Findlay, P. Freyermuth, S.S. Gilardoni, S. Hancock, E.B. Holzer, S. Jensen, V. Kain, D. Küchler, A.M. Lombardi, A.I. Michet, M. O'Neil, S. Pasinelli, R. Scrivens, R. Steerenberg, G. Tranquille
    CERN, Geneva, Switzerland
 
  The renewed availability of heavy ions at CERN for the needs of the LHC programme has triggered the interest of the fixed-target community. The project, which involves sending several species of primary ions at various energies to the North Area of the Super Proton Synchrotron, has now entered its operational phase. The first argon run, with momenta ranging from 13 AGeV/c to 150 AGeV/c, took place from February 2015 to April 2015. This paper presents the status of the project, the performance achieved thus far and an outlook on future plans.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR029 Advanced EBIS Charge Breeder for Rare Isotope Science Project electron, gun, solenoid, vacuum 1304
 
  • S.A. Kondrashev, J.-W. Kim, Y.H. Park
    IBS, Daejeon, Republic of Korea
  • H.J. Son
    Handong Global University, Pohang, Republic of Korea
 
  Rare Isotope Science Project (RISP) is under development in Korea to provide wide variety of intense rare isotope beams for nuclear physics experiments and applied science using both Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IF) techniques. Electron Beam Ion Source (EBIS) charge breeder is a key element to efficiently accelerate rare isotope ion beams produced by ISOL method. These beams will be charge-bred by an EBIS charge breeder to a charge-to-mass ratio (q/A) ≥ - and accelerated by linac post-accelerator to energies of 18.5 MeV/u. Utilization of 3 A electron beam and 6 T superconducting solenoid with wide (8) warm bore diameter will allow high efficient and fast charge breeding of rare isotope beams with exceptional degree of purity. The main features of RISP EBIS charge breeder design and current status of the project will be presented and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR031 Implementation and Preliminary Test of Electron Beam Ion Sources at KOMAC electron, dipole, rfq, ion-source 1311
 
  • S. Lee, Y.-S. Cho, H.S. Kim, H.-J. Kwon
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by Ministry of Science, ICT and Future Planning.
Electron beam ion source (EBIS) has been one of widely used table-top devices for the production of highly charged ions by electron impact ionization. An EBIS employs a magnetically compressed, high energy and density electron beam to sequentially ionize atoms or ions with a low charge state*. At KOMAC, we have a compact room-temperature operated EBIS. It is additionally constructed with a magnetic mass spectrometer and a Faraday Cup to measure charge spectra. Using this measurement setup, preliminary tests are performed to find suitable operational potentials in the EBIS for a stable production of highly charge ions. In future, we aim to build an EBIS based pre-injector with a radio frequency quadrupole. It has advantages of having a simple operation and a large number of ion species**. For this, we intend to improve and modify the current EBIS design to incorporate with existing setups at KOMAC.
* M. A. Levin et al., Phys. Scr. T22, 157-163 (1988)
** J. Alessi et al., EBIS Pre-Injector Project Conceptual Design Report, Brookhaven National Laboratory (2005)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR033 Low Emittance Growth in a LEBT with Un-neutralized Section ion-source, emittance, solenoid, vacuum 1317
 
  • L.R. Prost, J.-P. Carneiro, A.V. Shemyakin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the United States Department of Energy
In a Low Energy Beam Transport line (LEBT), the emittance growth due to the beam's own space charge is typically suppressed by way of neutralization from either electrons or ions, which originate from ionization of the background gas. In cases where the beam is chopped, the neutralization pattern changes throughout the beginning of the pulse, causing the Twiss parameters to differ significantly from their steady state values, which, in turn, may result in beam losses downstream. For a modest beam perveance, there is an alternative solution, in which the beam is kept un-neutralized in the portion of the LEBT that contains the chopper. The emittance can be nearly preserved if the transition to the un-neutralized section occurs where the beam exhibits low transverse tails. This report discusses the experimental realization of such a scheme at Fermilab's PXIE, where low beam emittance dilution was demonstrated
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR034 Development and Tests of Beam Test Facility with New Spare RFQ for Spallation Neutron Source rfq, ion-source, diagnostics, neutron 1320
 
  • Y.W. Kang, A.V. Aleksandrov, M.S. Champion, M.T. Crofford, J. Moss, R.T. Roseberry, J.P. Schubert, M.P. Stockli, C.M. Stone, R.F. Welton, D.C. Williams, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • B. Han, S.W. Lee, M.E. Middendorf, J. Price, R.B. Saethre
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
The Beam Test Facility (BTF) has been constructed to validate the performance of the new RFQ, to study ion source improvements, and to support neutron moderator development and six-dimensional phase space measure-ments for SNS. The BTF includes an H ion source, Ra-dio-Frequency Quadrupole (RFQ), and Medium Energy Beam Transport (MEBT) beam diagnostics systems. A spare RFQ was built and fully RF tested in the BTF and will be installed in the SNS linac in the future. The test stand is ready to run with the H ion beam through the new RFQ to fully validate the RFQ performance. The RFQ was designed to have the beam characteristics iden-tical to the existing RFQ with improved operational relia-bility and stability. The H RF plasma ion source system includes new high power RF components for improved front-end system performance.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR038 The Experimental Beam Line at CNAO proton, synchrotron, betatron, extraction 1334
 
  • M. G. Pullia, S. Alpegiani, J. Bosser, E. Bressi, L. Casalegno, G. Ciavola, M. Ciocca, M. Donetti, A. Facoetti, L. Falbo, M. Ferrarini, S. Foglio, S.G. Gioia, V. Lante, L. Lanzavecchia, R. Monferrato, A. Parravicini, M. Pezzetta, C. Priano, E. Rojatti, S. Rossi, S. Savazzi, S. Sironi, S. Toncelli, G. Venchi, B. Vischioni, S. Vitulli, C. Viviani
    CNAO Foundation, Milan, Italy
  • G. Battistoni
    Universita' degli Studi di Milano & INFN, Milano, Italy
  • L. Celona, S. Gammino, S. Passarello
    INFN/LNS, Catania, Italy
  • A. Clozza, E. Di Pasquale, A. Ghigo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, G. Sensolini, M. Serio
    INFN/LNF, Frascati (Roma), Italy
  • M. Del Franco
    Consorzio Laboratorio Nicola Cabibbo, Frascati, Italy
  • S. Giordanengo
    INFN-Torino, Torino, Italy
  • A.G. Lanza
    INFN - Pavia, Pavia, Italy
  • R. Sacchi
    Torino University, Torino, Italy
 
  The CNAO center has been conceived since the beginning with three treatment rooms and an 'experimental room' where research can be carried out without hindering the clinical activity. The room itself was built since the beginning, but the beam line was planned at a second moment in time to give priority to the treatments. The experimental room beam line has now been designed to be 'general purpose', to be used for research in different fields. Possible activities could be, as an example, irradiation of cells, test of beam monitors, development of in-beam monitoring devices or radiation hardness studies. In a second stage a third source will be added to the present two in order to carry on experiments with additional ion species besides the two used presently for treatments, protons and carbon ions. In this paper a description of the design and of the construction status is given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR041 Design of the Low Energy Beam Transport Line for Xi‘an Proton Application Facility rfq, solenoid, ion-source, simulation 1343
 
  • R. Ruo, L. Du, T. Du, X. Guan, C.-X. Tang, R. Tang, X.W. Wang, Q.Z. Xing, H.Y. Zhang, Q.Z. Zhang
    TUB, Beijing, People's Republic of China
  • W.Q. Guan, Y. He, J. Li
    NUCTECH, Beijing, People's Republic of China
 
  Xi‘an Proton Application Facility (XiPAF) is a new proton project which is being constructed for single-event-effect experiments. It can provide proton beam with the maximum energy of 200 MeV. The accelerator facility of XiPAF mainly contains a 7 MeV H linac injector and a proton synchrotron accelerator. The 7 MeV H linac injector is composed of an ECR ion source, a Low Energy Beam Transport line (LEBT), a Radio Frequency Quadrupole accelerator (RFQ) and a Drift Tube Linac (DTL). The 50 keV 10 mA H beam (pulse width 1ms) extracted from the ion source is expected to be symmetric with the Twiss parameters alpha=0 and β=0.065 mm/mrad. The RMS normalized emittance is required to be less than 0.2 π mm·mrad. With an adjustable collimator and an electric chopper in the 1.7 m-long LEBT, the beam pulse width of 10~40μs and peak current of 6 mA can be obtained. The H beam is matched into the downstream RFQ accelerator with alpha=1.051 and β=0.0494 mm/mrad. This paper shows the detailed design process of the LEBT and simulation result with the TRACEWIN code.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR048 SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time injection, kicker, damping, proton 1360
 
  • B. Goddard, E. Carlier, L. Ducimetière, G. Kotzian, J.A. Uythoven
    CERN, Geneva, Switzerland
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisation errors, damper performance and SPS non-linear optics behavior. The outlook for deployment is discussed, with the implications for LHC operation and HL-LHC performance.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR056 Development and Investigation of Pulsed Pinch Plasmas for the Application as FAIR Plasma Stripper plasma, electron, heavy-ion, cathode 1387
 
  • M. Iberler, T. Ackermann, B. Bohlender, C. Hock, J. Jacoby, D. Mann, A. Puth, J. Wiechula
    IAP, Frankfurt am Main, Germany
  • G. Ge
    GSI, Darmstadt, Germany
 
  Funding: This work is supported by BMBF
The planed Facility for Ion Research (FAIR) is a new international accelerator laboratory at the GSI in Darm-stadt, Germany. The main topic at this facility is aimed to heavy ion research. The FAIR project in comparison to the existing facility GSI extends the research area by raising the energy of ion beams. After creation of the ion beam at the ion source the state charge is low. Therefor the demand for acceleration of the beam to the highest possible energy is a highly ionized charge state of the beam. For beam stripping to get higher charge state, the traditional tools are gas stripper and foil stripper [1, 2]. Hence Plasma is suggested to be a stripper medium. In Frankfurt are different kinds of Pinch Plasmas under investigation for Stripper. The constricting effect on the plasma or conductor is produced by the magnetic field pressure resulting from the current or by the Lorentz force produced by the current flowing in its own magnetic field. In addition to separate the high pressure discharge cham-ber of the accelerator a plasma window will be used [3]. This contribution gives an overview of the plasma proper-ties and shows first results of different beam times at the GSI.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR057 High Current Proton and Carbon Beam Operation via Stripping of a Molecular Beam at GSI UNILAC proton, linac, operation, ion-source 1390
 
  • M. Heilmann, A. Adonin, W.A. Barth, Ch.E. Düllmann, R. Hollinger, E. Jäger, P. Scharrer, W. Vinzenz, H. Vormann
    GSI, Darmstadt, Germany
  • W.A. Barth, Ch.E. Düllmann, P. Scharrer
    HIM, Mainz, Germany
  • Ch.E. Düllmann
    Johannes Gutenberg University Mainz, Institut of Nuclear Chemistry, Mainz, Germany
  • P. Scharrer
    Mainz University, Mainz, Germany
 
  The experimental program of the future facility for Antiproton and Ion Research (FAIR) project requires a high number of cooled anti-protons per hour. The FAIR proton injector linac has to deliver a 70 MeV, 35 mA pulsed proton beam at a repetition rate of 4 Hz. During recent machine investigations at the GSI a high current proton beam was achieved in the Universal Lineral Accelerator (UNILAC). In preparation for this the ion source was equipped with a newly developed 7-hole extraction system and optimized for single charged hydrocarbon beam (isobutane gas) operation. This beam was accelerated to 1.4 MeV/u and cracked in a new pulsed gas stripper into protons and charged carbon. The new stripper setup injects high density gas pulses synchronous with the transit of the beam pulse close to the beam trajectory. With this setup a proton (up to 4.3 mA) as well a carbon beam (up to 9.5 mA) intensity record at beam energy of 1.4 MeV was achieved. The proton beam was accelerated up to 3.6 MeV/u inside the first Alvarez-section with full transmission. The paper will present beam measurement in comparison to the former beam investigations using a 2 mA proton beam in the entire UNILAC.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR058 An Upgrade for the 1.4 MeV/u Gas Stripper at the GSI UNILAC target, injection, dipole, heavy-ion 1394
 
  • P. Scharrer, W.A. Barth, Ch.E. Düllmann, J. Khuyagbaatar, A. Yakushev
    HIM, Mainz, Germany
  • W.A. Barth, M. Bevcic, Ch.E. Düllmann, L. Groening, K.P. Horn, E. Jäger, J. Khuyagbaatar, J. Krier, P. Scharrer, A. Yakushev
    GSI, Darmstadt, Germany
  • Ch.E. Düllmann
    Johannes Gutenberg University Mainz, Institut of Nuclear Chemistry, Mainz, Germany
  • P. Scharrer
    Mainz University, Mainz, Germany
 
  The GSI UNILAC will serve as part of an injector system for the future FAIR facility, currently under construction in Darmstadt, Germany. For this, it has to deliver short-pulsed, high-current, heavy-ion beams with highest beam quality. An upgrade for the 1.4 MeV/u gas stripper is ongoing to increase the yield of uranium ions in the desired charge state. The new setup features a pulsed gas injection synchronized with the beam pulse transit to increase the effective density of the stripper target while keeping the gas load for the differential pumping system low. Systematic measurements of charge state distributions and energy-loss were conducted with 238U-ion beams and different stripper gases, including H2 and He. By using H2 as a stripper gas, the yield into the most populated charge state was increased by over 50%, compared to the current stripper. Furthermore, the high gas density, enabled by the pulsed injection, results in increased mean charge states.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW006 Power Deposition in LHC Magnets Due to Bound-Free Pair Production in the Experimental Insertions dipole, luminosity, simulation, heavy-ion 1418
 
  • C. Bahamonde Castro, B. Auchmann, M.I. Besana, K. Brodzinski, R. Bruce, F. Cerutti, J.M. Jowett, A. Lechner, T. Mertens, V. Parma, S. Redaelli, M. Schaumann, N.V. Shetty, E. Skordis, G.E. Steele, R. van Weelderen
    CERN, Geneva, Switzerland
 
  The peak luminosity achieved during Pb-Pb collisions in the LHC in 2015 (3x1027cm-2s−1) well exceeded the design luminosity and is anticipated to increase by another factor 2 after the next Long Shutdown (2019- 2020). A significant fraction of the power dissipated in ultra-peripheral Pb-Pb collisions is carried by ions from bound-free pair production, which are lost in the dispersion suppressors adjacent to the experimental insertions. At higher luminosities, these ions risk to quench superconducting magnets and might limit their operation due to the dynamic heat load that needs to be evacuated by the cryogenic system. In this paper, we estimate the power deposition in superconducting coils and the magnet cold mass and we quantify the achievable reduction by deviating losses to less sensitive locations or by installing collimators at strategic positions. The second option is considered for the dispersion suppressor next to the ALICE insertion, where a selective displacement of losses to a magnet-free region is not possible.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW015 Symplectic Tracking of Multi-Isotopic Heavy-Ion Beams in SixTrack heavy-ion, dipole, simulation, quadrupole 1450
 
  • P.D. Hermes, R. Bruce, R. De Maria
    CERN, Geneva, Switzerland
 
  Funding: Work suppported by the Wolfgang Gentner Programme of the German BMBF
The software SixTrack provides symplectic proton tracking over a large number of turns. The code is used for the tracking of beam halo particles and the simulation of their interaction with the collimators to study the efficiency of the LHC collimation system. Tracking simulations for heavy-ion beams require taking into account the mass to charge ratio of each particle because heavy ions can be subject to fragmentation at their passage through the collimators. In this paper we present the derivation of a Hamiltonian for multi-isotopic heavy-ion beams and symplectic tracking maps derived from it. The resulting tracking maps were implemented in the tracking software SixTrack. With this modification, SixTrack can be used to natively track heavy-ion beams of multiple isotopes through a magnetic accelerator lattice.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW027 The 2015 Heavy-Ion Run of the LHC luminosity, experiment, heavy-ion, operation 1493
 
  • J.M. Jowett, R. Alemany-Fernandez, R. Bruce, M. Giovannozzi, P.D. Hermes, W. Höfle, M. Lamont, T. Mertens, S. Redaelli, M. Schaumann, J.A. Uythoven, J. Wenninger
    CERN, Geneva, Switzerland
 
  In late 2015 the LHC collided lead nuclei at a beam energy of 6.37 Z TeV, chosen to match the 5.02 TeV per colliding nucleon pair of the p-Pb collision run in 2013. In so doing, it surpassed its design luminosity by a factor of 2. Besides the higher energy, the operational configuration had a number of new features with respect to the previous Pb-Pb run at 3.5 Z TeV in 2011; unusual bunch patterns providing collisions in the LHCb experiment for the first time, luminosity levelling and sharing requirements, a vertical displacement of the interaction point in the ALICE experiment, and operation closer to magnet quench limits with mitigation measures. We present a summary of the commissioning and operation and what has been learned in view of future heavy-ion operation at higher luminosity.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW028 Bound-Free Pair Production in LHC Pb-Pb Operation at 6.37 Z TeV per Beam luminosity, experiment, dipole, simulation 1497
 
  • J.M. Jowett, B. Auchmann, C. Bahamonde Castro, M.K. Kalliokoski, A. Lechner, T. Mertens, M. Schaumann, C. Xu
    CERN, Geneva, Switzerland
 
  In the 2015 Pb-Pb collision run of the LHC, the power of the secondary beams emitted from the interaction point by the bound-free pair production process reached new levels while the propensity of the bending magnets to quench is higher at the new magnetic field levels. This beam power is about 70 times greater than that contained in the luminosity debris and is focussed on a specific location. As long foreseen, orbit bumps were introduced in the dispersion suppressors around the highest luminosity experiments to mitigate the risk by displacing and spreading out these losses. An experiment designed to induce quenches and determine the quench levels and luminosity limit was carried out to assess the need for special collimators to intercept these secondary beams.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW039 Measurement of the Total Cross Section of Gold-Gold Collisions at sqrt {sNN}=200 GeV luminosity, heavy-ion, collider, emittance 1530
 
  • W. Fischer, A.J. Baltz, M. Blaskiewicz, K.A. Drees, D.M. Gassner, Y. Luo, M.G. Minty, P. Thieberger
    BNL, Upton, Long Island, New York, USA
  • I.A. Pshenichnov
    RAS/INR, Moscow, Russia
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
Heavy ion collision cross sections totaling several hundred barns have been calculated previously for the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). These total cross sections are more than one order of magnitude larger than the geometric ion-ion cross sections, primarily due to Bound-Free Pair Production (BFPP) and Electro-Magnetic Dissociation (EMD). Apart from a general interest in verifying the calculations experimentally, an accurate prediction of the losses created in the heavy ion collisions is of practical interest for RHIC and the LHC, where some collision products are lost in cryogenically cooled magnets. These losses have the potential to affect power and signal electronic devices and quench superconducing magnets. We have previously reported the total cross section measurement of U+U collisions at a center-of-mass energy of 192.8 GeV per nucleon-pair. Here we present the equivalent analysis for Au+Au collisions with the data available from a low-intensity store of RHIC Run in 2014.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY016 Design of a Collection and Selection System for High Energy Laser-driven Ion Beams laser, dipole, quadrupole, proton 1581
 
  • F. Schillaci, L. Allegra, A. Amato, L. Andò, G.A.P. Cirrone, M. Costa, G. Cuttone, G. De Luca, G. Gallo, J. Pipek, F. Romano
    INFN/LNS, Catania, Italy
  • G. Korn, D. Margarone, V. Scuderi
    ELI-BEAMS, Prague, Czech Republic
  • M. Maggiore
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: ELI-Beamlines Contract n.S14-187, LaserGen(CZ.1.07/2.3.00/30.0057), Ministry of Education of Czech Rep.(reg. No.CZ.1.05/1.1.00/02.0061), the FZU, AVCR, v.v.i and the project financed by ESF and Czech Rep.
Laser-target acceleration represents a very promising alternative to conventional accelerators for several potential applications, from the nuclear physics to the medical ones. However, some extreme features, not suitable for multidisciplinary applications, as the wide energy and angular spreads are typical of optically accelerated ion beams. Therefore, beyond the improvements at the laser-target interaction level, a lot of efforts have been recently devoted to the development of specific beam-transport devices in order to obtain controlled and reproducible output beams. In this framework, a three years contract has been signed between INFN-LNS (IT) and Eli-Beamlines-IoP (CZ) to provide the design and the realization of a complete transport beam-line, named ELIMED, dedicated to the transport, diagnostics and dosimetry of laser-driven ion beams. The transport devices will be composed by a set of super-strong permanent magnet quadrupoles able to collect and focus laser driven ions up to 70MeV/u, and a magnetic chicane made of conventional electromagnetic dipole to select particles within a narrow energy range. Here, the design and development of these magnetic systems is described.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY018 Recent Progress of Proton Acceleration at Peking University laser, electron, target, plasma 1588
 
  • Q. Liao, Y.X. Geng, C. Lin, H.Y. Lu, W.J. Ma, X.Q. Yan, Y.Y. Zhao
    PKU, Beijing, People's Republic of China
 
  We study the enhanced laser ion acceleration using near critical density plasma lens attached to the front of a solid target. The laser quality is spontaneously improved by the plasma lens and energy density of hot electrons is greatly increased by the direct laser acceleration mechanism. Both factors will induce stronger sheath electric field at the rear surface of the target, which accelerates ions to a higher energy. Particle-in-cell simulations show that proton energy can be increased 2-3 times compared with single solid target. This result provides the opportunities for applications of laser plasma accelerator, such as cancer therapy. Further experiments will soon be carried out on 200 TW laser acceleration system at Peking University.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY019 CLAPA Proton Beam Line in Peking University proton, laser, target, plasma 1592
 
  • J.G. Zhu, J.E. Chen, C. Lin, H.Y. Lu, W.J. Ma, L. Tao, X.Q. Yan, K. Zhu
    PKU, Beijing, People's Republic of China
 
  Comparing with the conventional accelerator, the laser plasma accelerator can accelerate ions more effectively and greatly reduce the scale and cost. A laser accelerator− Compact Laser Plasma Accelerator (CLAPA) is being built at Institute of Heavy Ion physics of Peking University. According to the beam parameters from proof of principle experiments and theoretical simulations, we design the beam line for ions transport which is being built now and in the near future we will carry out experimental study with it. The beam line is mainly constituted by quadrupole and analyzing magnets . The quadrupole triplet lens collects protons generated from the target, while the analyzing magnet system will choose the protons with proper energy. The transport is simulated by program TRACK. The beam line is designed to deliver proton beam with the energy of 1~ 40MeV, energy spread of ±1% and 106-8 protons per pulse to satisfy the requirement of different experiments. The transmission efficiency is about 94% when the energy spread is ±1%.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY023 Advanced Gabor Lens Lattice for Laser Driven Hadron Therapy and Other Applications lattice, laser, collimation, cavity 1595
 
  • J.K. Pozimski, M. Aslaninejad, P.A. Posocco
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Funding: Funding was provided by the Imperial Confidence in Concept scheme.
The application of laser accelerated ion beams in hadron therapy requires a beam optics with unique features. Due to the spectral and spatial distribution of laser accelerated protons a compact ion optical system with therapy applications, based on Gabor space charge lenses for collecting, focusing and energy filtering the laser produced proton beam, has significant advantages compared with other setups. While a passive momentum selection could improve already the usability of laser driven hadron, we show that an advanced lattice utilizing additional RF cavities not only will deliver a momentum spread smaller than conventional accelerators, but also will increases the dose delivered. Furthermore, a possible near term application in the field of radio nuclide production is presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY024 First Test of The Imperial College Gabor (Plasma) Lens prototype at the Surrey Ion Beam centre plasma, proton, electron, background 1598
 
  • P.A. Posocco, J.K. Pozimski, Y. Xia
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • M.J. Merchant
    UoM ICS, Manchester, United Kingdom
  • M.J. Merchant
    The Christie NHS Foundation Trust, Manchester, United Kingdom
 
  Funding: Funding was provided by the Imperial College Confidence in Concepts scheme.
The first plasma (Gabor) lens prototype operating at high electron density was built by the Imperial College London in 2015. In November 2015 the lens was tested at the Ion Beam Centre of the University of Surrey with a 1 MeV proton beam. Over 500 snapshots of the beam hitting a scintillator screen installed 0.5 m downstream of the lens were taken for a wide range of settings. Unexpectedly, instead of over- or underfocusing the incoming particles, the lens converted pencil beams into rings. In addition to the dependence of their radius on the lens settings, periodic features appeared along the circumference, suggesting that the electron plasma was exited into a coherent off-axis rotation. The cause of this phenomenon is under investigation.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOR002 Residual Ion Dynamics in ThomX Electron Storage Ring storage-ring, electron, focusing, dipole 1648
 
  • A.R. Gamelin, C. Bruni
    LAL, Orsay, France
 
  Funding: Work is supported by ANR-10-EQPX-51, by grants from Région Ile-de-France, IN2P3 and Pheniics Doctoral School.
ThomX is a compact Compton Backscattering Source (CBS) which is being built in Orsay, France. Ions produced from residual gas in the storage ring can induce several instabilities. However the electron beam stability is crucial to attain the nominal performances foreseen. In order to prevent instabilities ion cleaning is considered. Complete studies of the beam effect on the ions have been undertaken. It shows that there are preferential ion accumulation points depending on the storage ring lattice. This paper will detail the ion longitudinal and transverse dynamics considering the optics of ThomX storage ring.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOR031 Trapped Ion Effects and Mitigation During High Current Operation in the Cornell DC Photoinjector radiation, experiment, linac, vacuum 1735
 
  • S.J. Full, A.C. Bartnik, I.V. Bazarov, J. Dobbins, B.M. Dunham, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: U.S. Department of Energy (Grant No. DE-SC0012493), National Science Foundation (Award No. NSF-DMR 0807731)
The Cornell high intensity photoinjector reaches a new regime of linac beam parameters where high continuous-wave electron beam currents lead to ion trapping. Above 10 mA, we have observed beam trips that limit stable machine operation to approximately 10-15 minutes. By applying known ion clearing methods, the machine lifetime increases to at least 24 hours of continuous operation, suggesting that trapped ions are the most likely cause of the trips. In this paper we share some of our observations ion trapping in the photoinjector, as well as experimental tests of three common ion mitigation methods: clearing electrodes, beam shaking and bunch gaps.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY004 Recommissioning of the Marburg Ion-beam Therapy Centre (MIT) Accelerator Facility proton, operation, synchrotron, extraction 1908
 
  • U. Scheeler, Th. Haberer, C. Krantz, S.T. Sievers, M.M. Strohmeier
    MIT, Marburg, Germany
  • R. Cee, E. Feldmeier, M. Galonska, K. Höppner, J.M. Mosthaf, A. Peters, S. Scheloske, C. Schömers, T.W. Winkelmann
    HIT, Heidelberg, Germany
 
  The Marburg Ion-Beam Therapy Centre (MIT), located in Marburg, Germany, is in clinical operation since 2015. MIT is designed for precision cancer treatment using beams of protons or carbon nuclei, employing the raster scanning technique. The accelerator facility consists of a linac-synchrotron combination, developed by Siemens Healthcare/Danfysik, that was in a state of permanent stand-by upon purchase. With support from its Heidelberg-based sister facility HIT, the MIT operation company (MIT Betriebs GmbH) recommissioned the machine in only 13 months, reaching clinical standards of beam quality delivered to all four beam outlets. With the first medical treatment in October 2015, MIT became the third operational hadron beam therapy centre in Europe offering both proton and carbon beams.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY005 The Use of Cyclotron for PET/CT Scan in Indonesian Hospitals and Future Collaboration cyclotron, proton, ion-source, HOM 1911
 
  • N.S. Risdianto, J. Purwanto, F.A. Rahmadi
    Universitas Islam Negeri Sunan Kalijaga, Yogyakarta, Indonesia
  • N. Risdiana
    UMY, Yogyakarta, Indonesia
 
  In Indonesia there are only three hospitals, which using cyclotrons for cancer detection (PET scans). These three hospitals are located in one place: Jakarta. With 1.4 percent of the Indonesian population are developing tumor/cancer, compared to the number of hospitals, which have advanced PET technology from cyclotrons, it will be a major task for the government to empower the production and overseas collaboration in the cyclotron industry.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY006 Improvement of Scanning Irradiation in Gunma University Heavy Ion Medical Center extraction, heavy-ion, acceleration, experiment 1914
 
  • H. Souda, T. Kanai, K. Kikuchi, Y. Kubota, A. Matsumura, H. Shimada, M. Tashiro, K. Torikai, M. Torikoshi, S. Yamada, K. Yusa
    Gunma University, Heavy-Ion Medical Research Center, Maebashi-Gunma, Japan
  • T. Fujimoto
    AEC, Chiba, Japan
  • E. Takeshita
    Kanagawa Cancer Center, Ion-beam Radiation Oncology Center in Kanagawa, Kanagawa, Japan
 
  Funding: Work collaborated with Mitsubishi Electric Corporation Ltd. Work supported by JSPS Kakenhi 26860395, Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering by MEXT of Japan.
Gunma University Heavy Ion Medical Center (GHMC) is a compact heavy ion treatment facility* and have experienced 5 years of successful treatment operation. GHMC has 3 treatment room using broad beam (wobbling) irradiation system and 1 experimental irradiation room for the research and development of a spot-scanning irradiation. During the study toward the treatment, several improvements were done in both accelerator and irradiation system. For accelerators, slow extraction from a synchrotron using a transverse rf field is tested**. Compared with conventional extraction system of rf acceleration, ripples of the beam spill (peak to bottom ratio) is reduced from almost 100% to 60%; the deviation of the beam center position and the deviation of the beam size (1σ) are reduced to the order of 0.1 mm. For irradiation system, regularly operation for biological experiments has started form June 2014. In order to shorten the experiment time, 2-dimensional optimization of the irradiation planning was carried out. After the optimization, the irradiation time was reduced by 30% with keeping the dose uniformity within ±2.5%.
* T. Ohno et al., Cancers, 3, 4046 (2011)
** K. Noda et al., Nucl. Instrum. Meth. A492, 253 (2002)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY017 Beam Energy Deposition from PS Booster and Production Rates of Selected Medical Radioisotopes in the CERN-MEDICIS Target target, proton, booster, extraction 1936
 
  • B.C. Gonsalves, R.J. Barlow, S.C. Lee
    IIAA, Huddersfield, United Kingdom
  • R.M. Dos Santos Augusto
    LMU, München, Germany
  • T. Stora
    CERN, Geneva, Switzerland
 
  CERN-MEDICIS uses the scattered (ca. 90%) 1.4 GeV, 2 uA protons delivered by the PS Booster to the ISOLDE target, which would normally end up in the beam dump. After irradiation, the MEDICIS target is transported back to an offline isotope mass separator, where the produced isotopes are mass separated, and are then collected. The required medical radioisotopes are later chemically separated in the class A laboratory. The radioisotopes are transported to partner hospitals for processing and preparation for medical use, imaging or therapy. Production of the isotopes is affected by the designs of the ISOLDE and MEDICIS targets. The MEDICIS target unit is a configurable unit, allowing for variations in target material as well as ion source for the production of selected medical radioisotopes. The energy deposition on both targets is simulated using the Monte Carlo code FLUKA, along with the in-beam production of some medical isotopes of interest. Diffusion and effusion efficiencies are then applied to estimate their production.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY018 FLUKA Simulations for Radiation Protection at 3 Different Facilities neutron, proton, radiation, photon 1940
 
  • R. Rata, S.C. Lee
    IIAA, Huddersfield, United Kingdom
  • R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
 
  FLUKA Monte Carlo Code is a transport code widely used in radiation protection studies. The code was developed in 1962 by Johannes Ranft and the name stands for FLUktuierende Kaskade (Fluctuating Cascade). The code was developede for high-energy physics and it can track 60 different particles from 1keV to thousands of TeV. It can be applied to accelerator design, shielding design, dosimetry, space radiation and hadron therapy. For particle therapy, FLUKA uses various physical models, all implemented in the PEANUT (Pre-Equilibrium Approach to Nuclear Thermalization) framework. The investigation was made for three different facilities : the Clatterbridge Cancer Centre, the Christie Hospital and the OpenMeD facility at CERN. We calculated the secondary dose distributed to the patient, in case of Clatterbridge Cancer Centre, and to the workers in case of the Christie Hospital and OpenMeD, and to investigate whether the shielding methods meet the existing radiation protection requirements and that the doses to the staff are kept As Low As Reasonably Achievable (ALARA).  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY022 A Fixed Field Alternating Gradient Accelerator for Helium Therapy proton, acceleration, emittance, injection 1953
 
  • J. Taylor
    IIAA, Huddersfield, United Kingdom
  • T.R. Edgecock, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • S. Green
    University Birmingham, Birmingham, United Kingdom
  • C. Johnstone
    PAC, Batavia, Illinois, USA
 
  A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 nested superconducting rings, treating with helium ions (He2+) and image with hydrogen ions (H2+). Compared to protons, ions deliver a more conformal dose with a significant reduction in range straggling and beam broadening. Carbon ions are currently used and there are no current facilities providing helium therapy. We are investigating the feasibility of an FFAG approach for helium therapy, which has never been previously considered. We investigate emittance and demonstrate that the machine meets isochronicity requirements for fixed frequency RF.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY026 Optimization of Medical Accelerators proton, diagnostics, detector, network 1966
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675265.
The Optimization of Medical Accelerators (OMA) is the aim of a new European Training Network. OMA joins universities, research centers and clinical facilities with industry partners to address the challenges in: treatment facility design and optimization; numerical simulations for the development of advanced treatment schemes; and beam imaging and treatment monitoring. Projects include: compact accelerators for proton beam energy boosting and gantry design; strategies for improving Monte Carlo codes for medical applications and treatment planning; and advanced diagnostics for online beam monitoring. The latter involves RF-based measurements of ultra-low charges and new encoding methodologies for ultra-fast 3D surface scanning. This contribution presents an overview of the network's research program and highlights the various challenges across the three scientific work packages. It also summarizes the network-wide training program consisting of schools, topical workshops and conferences that will be open to the wider medical and accelerator communities.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY036 Diffusion and Thermal Stability of Implanted Hydrogen in ZnO Nanorods proton, resonance, lattice, radiation 1982
 
  • J.K. Park, Y.-S. Cho, H.-J. Kwon, K.T. Seol, S.P. Yun
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by Ministry of Science ICT and Future Planning of Korean Government.
The 20-MeV proton-beams with a fluence of 1012 cm-2 were irradiated on ZnO nanorods. The effects of proton-beam irradiation on ZnO nanorods are investigated by using 1H nuclear magnetic resonance (NMR) spectroscopy. After irradiation, new and modified NMR resonance lines are observed in 1H NMR spectra. The diffusion and thermal stability of each proton species are investigated from the lab- and rotating-frame spin-lattice relaxation data depending on temperature. Understanding the properties of thermally stable hydrogen species created by the beam irradiation may promise many possible applications, since the hydrogen stable up to high temperature only meets the device working conditions.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYA01 Beam Physics and Technical Challenges of the FRIB Driver Linac linac, solenoid, focusing, cavity 2039
 
  • Y. Yamazaki, H. Ao, N.K. Bultman, F. Casagrande, C. Compton, K.D. Davidson, A. Facco, F. Feyzi, P.E. Gibson, T. Glasmacher, Z.Q. He, L.T. Hoff, K. Holland, M. Ikegami, S.M. Lidia, Z. Liu, G. Machicoane, F. Marti, S.J. Miller, D. Morris, J. Popielarski, L. Popielarski, G. Pozdeyev, T. Russo, K. Saito, S. Shanab, G. Shen, S. Stark, H. Tatsumoto, R.C. Webber, J. Wei, T. Xu, Y. Zhang, Q. Zhao, Z. Zheng
    FRIB, East Lansing, Michigan, USA
  • K. Dixon, V. Ganni
    JLab, Newport News, Virginia, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama, M. Masuzawa, K. Tsuchiya
    KEK, Ibaraki, Japan
  • M.P. Kelly, P.N. Ostroumov
    ANL, Argonne, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The FRIB driver linac accelerates all the stable ion beams including uranium over 200 MeV/u with a CW beam power of 400 kW in order to produce isotopes as rare as possible. Except for 0.5 MeV/u RFQ, the linac is making use of superconducting (SC) RF technology. The beam power, which is an order of 2.5 as high as those of existing SC heavy ion linac, gives rise to many technical challenges as well as beam physics related ones. In particular, the uranium beam loss power density is approximately 30 times as high as the proton one with the same beam energy per nucleon and the same beam power. For this reason, the machine protection system needs a special care. Another example of the technical challenges is to install beam focusing solenoid as close as possible to SC cavities in order to ensure the frequent beam focusing both longitudinally and transversely. The talk reviews all these challenges with development results of their mitigation as well as construction status.
 
slides icon Slides WEYA01 [16.820 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEYA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBA03 High Brilliance Uranium Beams for FAIR brilliance, emittance, target, injection 2052
 
  • W.A. Barth, A. Adonin, Ch.E. Düllmann, M. Heilmann, R. Hollinger, E. Jäger, O.K. Kester, J. Khuyagbaatar, J. Krier, E. Plechov, P. Scharrer, W. Vinzenz, H. Vormann, A. Yakushev, S. Yaramyshev
    GSI, Darmstadt, Germany
  • Ch.E. Düllmann, J. Khuyagbaatar, P. Scharrer, A. Yakushev
    HIM, Mainz, Germany
  • Ch.E. Düllmann
    Johannes Gutenberg University Mainz, Institut of Nuclear Chemistry, Mainz, Germany
  • P. Scharrer
    Mainz University, Mainz, Germany
 
  The 40 years old GSI-UNILAC (Universal Linear Accelerator) as well as the heavy ion synchrotron SIS18 will serve as a high current heavy ion injector for the new FAIR (Facility for Antiproton and Ion Research) synchrotron SIS100. Due to an advanced machine investigation program in combination with the ongoing UNILAC upgrade program, a new uranium beam intensity record (10 emA, U29+) at very high beam brilliance was achieved recently in a machine experiment campaign. This is an important step paving the way to fulfill the FAIR heavy ion high intensity beam requirements. Results of high current uranium beam measurements applying a newly developed pulsed hydrogen gas stripper (at 1.4 MeV/u) will be presented in detail.  
slides icon Slides WEOBA03 [2.281 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOBA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZA01 RHIC Performance with Stochastic Cooling for Ions and Head-on Beam-beam Compensation for Protons luminosity, operation, electron, proton 2055
 
  • W. Fischer, J.G. Alessi, Z. Altinbas, E.C. Aschenauer, G. Atoian, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, M.R. Costanzo, T. D'Ottavio, K.A. Drees, A.V. Fedotov, C.J. Gardner, D.M. Gassner, X. Gu, C.E. Harper, M. Harvey, T. Hayes, J. Hock, H. Huang, R.L. Hulsart, J.P. Jamilkowski, T. Kanesue, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J. Morris, G. Narayan, C. Naylor, S. Nemesure, M. Okamura, S. Perez, A.I. Pikin, P.H. Pile, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, B. Van Kuik, G. Wang, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • M. Bai, Y. Dutheil
    FZJ, Jülich, Germany
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
The Relativistic Heavy Ion Collider (RHIC) has two main operating modes with heavy ions and polarized protons respectively. In addition to a continuous increase in the bunch intensity in all modes, two major new systems were completed recently mitigating the main luminosity limit and leading to significant performance improvements. For heavy ion operation stochastic cooling mitigates the effects of intrabeam scattering, and for polarized proton operation head-on beam-beam compensation mitigated the beam-beam effect. We present the performance increases with these upgrades for heavy ions and polarized protons, as well as an overview of all operating modes past and planned.
 
slides icon Slides WEZA01 [12.687 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEZA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZA02 The NICA Project at JINR collider, detector, heavy-ion, booster 2061
 
  • G.V. Trubnikov, A.V. Butenko, V.D. Kekelidze, H.G. Khodzhibagiyan, S.A. Kostromin, V.A. Matveev, I.N. Meshkov, A.O. Sidorin, A. Sorin
    JINR, Dubna, Moscow Region, Russia
 
  The physics program and the present status of the project of NICA collider, which is under construction at JINR (Dubna), are presented. The main goal of the project is to provide ion beams for experimental studies of hot and dense strongly interacting baryonic matter and spin physics. The proposed physics program concentrates on the search for possible manifestations of the phase transitions and critical phenomena in the energy region, where the excited matter is produced with maximal achievable net baryon density, and clarification of the origin of nucleon spin. The collider will provide heavy ion collisions in the energy range of √sNN=4/11 GeV at average luminosity of L=1·1027cm&#8722;2·s&#8722;1 for 197Au79+ nuclei and polarized proton collisions in energy range of √sNN=12/27 GeV at luminosity of L≥1032cm&#8722;2·s-1. The key issue of the accelerator complex is application of sophisticated beam accumulation schemes and both stochastic and electron cooling methods. Strong space-charge effects in the collider arise a challenge to its optics and application of novel methods of beam stability maintenance.  
slides icon Slides WEZA02 [17.880 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEZA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB01 Status, Plans and Potential Applications of the ELIMED Beam Line at ELI-Beamlines laser, proton, acceleration, target 2077
 
  • G.A.P. Cirrone, L. Allegra, A. Amato, A. Amico, G. Candiano, A.C. Caruso, L. Cosentino, M. Costa, G. Cuttone, G. De Luca, G. Gallo, S. Gammino, G. Larosa, R. Leanza, R. Manna, V. Marchese, G. Milluzzo, G. Petringa, J. Pipek, P.S. Pulvirenti, F. Romano, S. Salamone, F. Schillaci, V. Scuderi
    INFN/LNS, Catania, Italy
  • G. Korn, D. Margarone, V. Scuderi
    ELI-BEAMS, Prague, Czech Republic
 
  Charged particle acceleration using ultra-intense and ultra-short laser pulses has gathered a strong interest in the scientific community and it is now one of the most attractive topics in the relativistic laser-plasma interaction research. Indeed, it could represent the future of particle acceleration and open new scenarios in multidisciplinary fields, in particular, medical applications. One of the biggest challenges consists of using, in a future perspective, high intensity laser-target interaction to generate high-energy ions for therapeutic purposes, eventually replacing the old paradigm of acceleration, characterized by huge and complex machines. In this framework, INFN-LNS (Italian Institute of Nuclear Physics, Catania (I)) in collaboration with ELI-Beamline Institute (Dolny Brezany, CZ) will realise, within 2017 the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline. ELIMED will be the first Users' addressed transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams.  
slides icon Slides WEXB01 [29.683 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEXB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB01 Advanced Acceleration Mechanisms for Laser Driven Ions by PW-lasers laser, acceleration, target, electron 2082
 
  • S.S. Bulanov, E. Esarey, Q. Ji, W. Leemans, T. Schenkel, S. Steinke
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by LDRD funding from Berkeley Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
With the fast development of laser technology the energy of laser accelerated proton beams rose up to almost 100 MeV. The PW-class laser facilities that are being built right now or are already in operation, such as the Berkeley Lab Laser Accelerator (BELLA) Center, will offer peak intensities approaching 1022 W/cm2. This will allow the development of a new generation laser ion accelerators for numerous applications. The integral part of this task is the investigation of the advanced acceleration mechanisms for laser driven ion beams that would allow for a high degree of control over the angular and energy distributions of ion beams, as well as the increase of the maximum ion energy. We will present recent theoretical and simulation results on three advanced acceleration mechanisms: (i) Directed Coulomb Explosion*, (ii) Radiation Pressure Acceleration**, and (iii) Magnetic Vortex acceleration***.
Reference:
* S. S. Bulanov et al, Phys. Rev. E 78, 026412 (2008).
** S. S. Bulanov et al, Phys. Rev. Lett. 114, 105003 (2015).
*** S. S. Bulanov et al, Phys. Rev. STAB 18, 061302 (2015).
 
slides icon Slides WEOAB01 [39.942 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOAB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBB03 A Non-destructive Profile Monitor Using a Gas Sheet electron, proton, target, experiment 2102
 
  • N. Ogiwara, Y. Hikichi, J. Kamiya, M. Kinsho, Y. Namekawa
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • M. Fukuda, K. Hatanaka, T. Shima
    RCNP, Osaka, Japan
 
  We are developing a dense gas-sheet target to realize a non-destructive and fast-response beam profile monitor for 3 GeV rapid cycling synchrotron (RCS) in the J-PARC. This time, to demonstrate the function of the gas sheet for measuring the 2 dimensional profiles of the accelerated beams, the following experiments were carried out: 1) The gas sheet with a thickness of 1.5 mm and the density of 2×10-4 Pa was generated by the combination of the deep slit and the thin slit. Here, the gas sheet was produced by the deep slit, and the shape of the sheet was improved by the thin slit. 2) For the electron beam of 30 keV with a diameter greater than 0.35 mm, the position and the two-dimensional profiles were well measured using the gas sheet. 3) Then the profiles of the 400 MeV proton beam with a current of 1×10-6 A was well measured, too.  
slides icon Slides WEOBB03 [4.718 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOBB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIB01 Collaboration with Industry in Korea for Medical Accelerators cyclotron, proton, medical-accelerators, radiation 2105
 
  • S.H. Nam
    KIRAMS/KHIMA, Seoul, Republic of Korea
 
  Activities related to medical accelerator development in Korea have been very active recently. Industrial collaboration in this respect has also been highly active. The current main medical accelerator project in Korea is the Korean Heavy Ion Medical Accelerator (KHIMA) project, which is an heavy ion therapy facility mainly with carbon ions. The collaboration covers wide technical areas such as RF structures, magnets, vacuum components, diagnostics, etc. In this talk, such industrial collaboration aspects in Korea will be presented and further collaboration areas will be proposed.  
slides icon Slides WEIB01 [5.766 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEIB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB044 Development of RF Conditioning System for RISP RF Power Couplers controls, cavity, vacuum, heavy-ion 2211
 
  • C.K. Sung, E.-S. Kim
    Korea University Sejong Campus, Sejong, Republic of Korea
  • S. Lee, I. Shin
    IBS, Daejeon, Republic of Korea
 
  RF power coupler prototypes have been conditioned for a heavy ion accelerator of the Rare Isotope Science Project (RISP) in Korea. The RF couplers operate for 162.5 MHz half-wave resonators at 6 kW RF power. The RF couplers are a 50-Ohm coaxial structure with a disk type ceramic window at room temperature. The control system using Labview software supported automatic process for RF conditioning, data acquisition and interlock system. The conditioning system and the result of conditioning of RF coupler are presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR034 Analyses of 476 MHz and 952 MHz Crab Cavities for JLAB Electron Ion Collider cavity, collider, electron, betatron 2348
 
  • H. Park, A. Castilla, S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov
    JLab, Newport News, Virginia, USA
 
  Center for Accelerator Science at ODU has designed, fabricated and successfully tested a crab cavity for MEIC at Jefferson Lab*. This proof of principle cavity was based on the earlier MEIC design which used 748.5 MHz RF system. The updated MEIC design** utilizes the components from PEP-II. It results in the change on the bunch repetition rate of stored beam to 476.3 MHz. The ion ring collider will eventually require 952.6 MHz crab cavity. This paper will present the analyses of crab cavities of both 476 MHz and 952 MHz options. It compares advantages and disadvantages of the options which provides the MEIC design team important technical information for a system down selection.
* Cryogenic Test of a 750 MHz Superconducting RF Dipole Crabbing Cavity, A. castilla et al, IPAC2014
** MEIC Design Summary, S. Abeyratne et al, arXiv:1504.07961
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR044 Beam Induced Damage Studies of the IFMIF/EVEDA 125 mA CW 9 MeV D+ Linear Accelerator proton, operation, neutron, linac 2373
 
  • F. Scantamburlo, J. Knaster, A. Marqueta
    IFMIF/EVEDA, Rokkasho, Japan
  • P.-Y. Beauvais
    F4E, Germany
  • B. Bolzon, H. Dzitko
    CEA/IRFU, Gif-sur-Yvette, France
  • R. Ichimiya
    JAEA, Aomori, Japan
  • H. Kobayashi
    KEK, Ibaraki, Japan
 
  IFMIF (International Fusion Material Irradiation Facility) will be a Li(d, xn) neutron source providing equivalent neutron spectrum of DT fusion reactions and comparable neutron flux of future commercial reactors. IFMIF, presently in its EVEDA (Engineering Validation and Engineering Design Activities) phase is installing LIPAc (Linear IFMIF Prototype Accelerator) in Rokkasho (Japan), a 125 mA CW 9 MeV deuteron beam as validating prototype of IFMIF accelerators. The MPS of LIPAc manages the interlocks for a fast beam stop during anomalous beam losses or other hazardous situations. High speed processing is essential to achieve MPS goals driven by investment protection principles. Since Bragg's peak depth is dependent of energy, power densities by uncontrolled beam losses can be very damaging at low energies; the MPS principles for LIPAc are validating those for IFMIF. Beam losses may lead to severe damages by excessive thermal stresses, annealing or even burn/melting of materials. Careful studies to set the maximum allowable time for a beam shutdown to prevent undesired scenarios during the accelerator operational life have been undertaken.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW012 Injection Optics for the JLEIC Ion Collider Ring quadrupole, injection, optics, collider 2445
 
  • V.S. Morozov, Y.S. Derbenev, F. Lin, F.C. Pilat, G.H. Wei, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y. Nosochkov, M.K. Sullivan, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: * Work supported by the U.S. DOE Contract DE-AC02-76SF00515. ** Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required to allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW013 Bunch Splitting Simulations for the JLEIC Ion Collider Ring emittance, simulation, collider, synchrotron 2448
 
  • B.R.P. Gamage, T. Satogata
    ODU, Norfolk, Virginia, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW014 Development of the Electron Cooling Simulation Program for JLEIC electron, emittance, collider, simulation 2451
 
  • H. Zhang, J. Chen, R. Li, Y. Zhang
    JLab, Newport News, Virginia, USA
  • H. Huang, L. Luo
    ODU, Norfolk, Virginia, USA
 
  Funding: Work supported by the Department of Energy, Laboratory Directed Research and Development Funding, under Contract No. DE-AC05-06OR23177
In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during collision at the collider ring. A new electron cooling process simulation program has been developed to fulfill the requirements of the JLEIC electron cooler design. The new program allows the users to calculate the electron cooling rate and simulate the cooling process with either DC or bunched electron beam to cool either coasting or bunched ion beam. It has been benchmarked with BETACOOL in aspect of accuracy and efficiency. In typical electron cooling process of JLEIC, the two programs agree very well and we have seen a significant improvement of computational speed using the new one. Being adaptive to the modern multicore hardware makes it possible to further enhance the efficiency for computationally intensive problems. The new program is being actively used in the electron cooling study and cooler design for JLEIC. We will present our models and some simulation results in this paper.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW015 Evaluation and Compensation of Detector Solenoid Effects in the JLEIC solenoid, detector, coupling, quadrupole 2454
 
  • G.H. Wei, F. Lin, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515.
The JLEIC detector solenoid has a strong 3 T field in the IR area, and its tails extend over a range of several meters. One of the main effects of the solenoid field is coupling of the horizontal and vertical betatron motions which must be corrected in order to preserve the dynamical stability and beam spot size match at the IP. Additional effects include influence on the orbit and dispersion caused by the angle between the solenoid axis and the beam orbit. Meanwhile it affects ion polarization breaking the figure-8 spin symmetry. Crab dynamics further complicates the picture. All of these effects have to be compensated or accounted for. The proposed correction system is equivalent to the Rotating Frame Method. However, it does not involve physical rotation of elements. It provides local compensation of the solenoid effects independently for each side of the IR. It includes skew quadrupoles, dipole correctors and anti-solenoids to cancel perturbations to the orbit and linear optics. The skew quadrupoles and FFQ together generate an effect equivalent to adjustable rotation angle to do the decoupling task. Details of all of the correction systems are presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW019 Study of Beam Synchronization at JLEIC electron, dipole, collider, proton 2463
 
  • V.S. Morozov, Y.S. Derbenev, J. Guo, A. Hutton, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The ion collider ring of Jefferson Lab's Electron-Ion Collider (JLEIC) accommodates a wide range of ion energies, from 20 to 100 GeV for protons or from 8 to 40 GeV per nucleon for lead ions. In this medium energy range, ions are not fully relativistic, which means values of their relativistic beta are slightly below 1, leading to an energy dependence of revolution time of the collider ring. On the other hand, electrons with energy 3 GeV and above are already ultra-relativistic such that their speeds are effectively equal to the speed of light. The difference in speeds of colliding electrons and ions in JLEIC, when translated into a path-length difference necessary to maintain the same timing between electron and ion bunches, is quite large. In this paper, we explore schemes for synchronizing the electron and ion bunches at a collision point as the ion energy is varied.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW020 Storage-ring Electron Cooler for Relativistic Ion Beams electron, damping, storage-ring, emittance 2466
 
  • F. Lin, Y.S. Derbenev, D. Douglas, J. Guo, G.A. Krafft, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
  • R.P. Johnson
    Muons, Inc, Illinois, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW022 Multi-Cell RF-Dipole Deflecting and Crabbing Cavity cavity, dipole, electron, proton 2469
 
  • S.U. De Silva, J.R. Delayen, H. Park
    ODU, Norfolk, Virginia, USA
 
  Single cell superconducting rf-dipole cavities operating at 400 MHz, 499 MHz and 750 MHz have been designed, fabricated and successfully tested at cryogenic temperatures. These cavities have been shown to have attractive rf properties: high deflecting gradients, low electric and magnetic peak surface fields, and high shunt impedance. The single cell rf-dipole geometry has no lower order modes and has widely separated higher order mode spectrum. In this study we are investigating a multi-cell superconducting rf-dipole cavity operating at 952.6 MHz intended for the Jefferson Lab Energy Electron-Ion Collider. The analysis investigates the dependence of beam aperture variation and other cavity parameters on rf properties including cavity gradient, surface fields, shunt impedance and higher order mode separation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW029 Simulation of Heavy-Ion Beam Losses with the SixTrack-FLUKA Active Coupling heavy-ion, simulation, coupling, collimation 2490
 
  • P.D. Hermes, R. Bruce, F. Cerutti, A. Ferrari, J.M. Jowett, A. Lechner, A. Mereghetti, D. Mirarchi, P.G. Ortega, S. Redaelli, B. Salvachua, E. Skordis, G. Valentino, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Funding: Work suppported by the Wolfgang Gentner Programme of the German BMBF
The LHC heavy-ion program aims to further increase the stored ion beam energy, putting high demands on the LHC collimation system. Accurate simulations of the ion collimation efficiency are crucial to validate the feasibility of new proposed configurations and beam parameters. In this paper we present a generalized framework of the SixTrack-FLUKA coupling to simulate the fragmentation of heavy-ions in the collimators and their motion in the LHC lattice. We compare heavy-ion loss maps simulated on the basis of this framework with the loss distributions measured during heavy-ion operation in 2011 and 2015.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW030 Cleaning Performance of the Collimation System of the High Luminosity Large Hadron Collider collimation, insertion, luminosity, simulation 2494
 
  • D. Mirarchi, A. Bertarelli, R. Bruce, F. Cerutti, P.D. Hermes, A. Lechner, A. Mereghetti, E. Quaranta, S. Redaelli
    CERN, Geneva, Switzerland
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • H. Garcia Morales, R. Kwee-Hinzmann
    Royal Holloway, University of London, Surrey, United Kingdom
 
  Different upgrades of the LHC will be carried out in the framework of the High Luminosity project (HL-LHC), where the total stored energy in the machine will increase up to about 700 MJ. This unprecedented stored energy poses serious challenges for the collimation system, which was designed to handle safely up to about 360 MJ. In this paper the baseline collimation layout for HL-LHC is described, with main focus on upgrades related to the cleaning of halo and physics debris, and its expected performance is discussed. The main upgrade items include the presence of new collimators in the dispersion suppressor of the betatron cleaning insertion installed between two 11 T dipoles, and two additional collimators for an improved local protection of triplet magnets. Thus, optimized settings for the entire and upgraded collimation chain were conceived and are shown here together with the resulting cleaning performance. Moreover, the cleaning performance taking into account crab cavities it is also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW032 Radiation-induced Effects on LHC Collimator Materials under Extreme Beam Conditions radiation, proton, neutron, heavy-ion 2502
 
  • E. Quaranta, A. Bertarelli, F. Carra, P.D. Hermes, S. Redaelli, A. Rossi
    CERN, Geneva, Switzerland
  • K. Bunk
    Goethe Universität Frankfurt, Frankfurt am Main, Germany
  • F. Carra
    Politecnico di Torino, Torino, Italy
  • J. Guardia Valenzuela
    Universidad de Zaragoza, Zaragoza, Spain
  • P.D. Hermes
    Westfaelische Wilhelms-Universität Muenster, Muenster, Germany
  • C.L. Hubert, M. Tomut
    GSI, Darmstadt, Germany
  • P. Nocera
    Università di Roma I La Sapienza, Roma, Italy
  • C. Porth
    TU Darmstadt, Darmstadt, Germany
  • N. Simos
    BNL, Upton, Long Island, New York, USA
 
  Over the last years, several samples of present and novel LHC collimator materials were irradiated under various beam conditions (using protons, fast neutrons, light and heavy ions at different energies and fluences) in different facilities around the world. This was achieved through an international collaboration including many companies and laboratories over the world. The main goal of the beam tests and the post-irradiation campaign is the definition of a threshold for radiation damage above which LHC collimators need to be replaced. In this paper, highlights of the measurements performed will be presented. First conclusions from the available data are also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW043 Frequency Scaling Study of Crab Cavity for Future Colliders with Crab Crossing cavity, luminosity, collider, electron 2532
 
  • Y. Hao, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Crab crossing is an essential concept in the newly proposed colliders or the upgrades. It enables crossing angles to achieve lower β* without a loss of luminosity. The frequency of the crab cavity shall be chosen with various considerations, including the luminosity degradation, emittance growth due to synchro-beta resonances and RF noises. We use the figure of merits and related simulation to establish the frequency scaling relations with important beam parameters, which guide the choice of crab cavity frequency for new designs.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY031 The Production of Negative Carbon Ions with a Volume Cusp Ion Source extraction, plasma, ion-source, electron 2620
 
  • S.V. Melanson, M.P. Dehnel, C. Hollinger, P.T. Jackle, J.A. Martin, D.E. Potkins, T.M. Stewart, J.E. Theroux
    D-Pace, Nelson, British Columbia, Canada
  • T.L. Jones, H.C. McDonald, C. Philpott
    BSL, Auckland, New Zealand
 
  Recent progress has been made at the newly commissioned Ion Source Test Facility (ISTF). Phase II, the final phase of the project, was completed in March 2016. First measurements were performed with D-Pace's TRIUMF licensed H ion source. The source was first characterized with H and an extraction study of the H ions was performed. A study of the production of heavy negative ions with volume cusp sources was started. Measurements with helium revealed no negative ions were extracted. Negative carbon ions were produced with acetylene. The beam composition has been analysed with a spectrometer.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY032 A PID Control Algorithm for Filament-Powered Volume-Cusp Ion Sources controls, ion-source, plasma, electron 2623
 
  • S.V. Melanson, M.P. Dehnel, C. Hollinger, J.A. Martin, D.E. Potkins
    D-Pace, Nelson, British Columbia, Canada
  • C. Philpott
    BSL, Auckland, New Zealand
 
  Volume-cusp ion sources require a fast and precise control algorithm to ensure the arc current, and thus the beam current is stable for high-power industrial DC operation. Using D-Pace's TRIUMF [1] licensed filament-powered H volume-cusp ion source, a proportional-integral-derivative (PID) control algorithm was implemented that provides a peak-to-peak beam current variation of ±0.45 % and a root mean square error of 0.025 mA for 10.16 mA of beam current over 60 minutes. The PID parameters were tuned for different set points and the performance of the algorithm is compared for the different settings. Measured arc current stability, and measured beam current as a function of time are presented and the algorithm utilized is described in detail.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY036 Laser Ablation Ion Source for Highly Charge-State Ion Beams extraction, plasma, laser, target 2632
 
  • N. Munemoto, K. Horioka
    TIT, Yokohama, Japan
  • K. Okamura, S. Takano, K. Takayama
    KEK, Ibaraki, Japan
  • K. Okamura, K. Takayama
    Sokendai, Ibaraki, Japan
 
  The KEK Laser ablation ion source (KEK-LAIS) is un-der development in order to generate highly ionized metal and fully ionized carbon ions for future applica-tions*. Laser ablation experiments have been carried out by using Nd-YAG laser (0.75 J/pulse, 20 ns) at the KEK test bench. Basic parameters such as a charge-state spec-trum and momentum spectrum of the plasma and extract-ed ion beam current have been obtained. Extraction of C ions from the LAIS is described.
* N.Munemoto et al., Rev. Sci. Inst. 85, 02B922 (2014)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR032 Power Recycling of Burst-mode Laser Pulses for Laser Particle Interactions cavity, laser, resonance, experiment 2739
 
  • Y. Liu, A. Rakhman
    ORNL, Oak Ridge, Tennessee, USA
  • A. Rakhman
    UTK, Knoxville, Tennessee, USA
 
  Funding: This work has been partially supported by U.S. DOE grant DE-FG02-13ER41967. ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
A number of laser-particle interaction experiments such as the laser assisted hydrogen ion beam stripping or X-/γ-ray generations via inverse-Compton scattering involve light sources operating in a burst mode to match the temporal structure of the particle beam. As the small cross-section in the laser-particle interaction process results in negligible laser power loss, it is desirable to make the interaction inside an optical cavity to recycle the laser power. In many cases, conventional cavity locking techniques will not work since the burst normally has very small duty factor and low repetition rate and it is impossible to generate an effective control signal. In this talk, we report on the development of a doubly-resonant optical cavity scheme and its locking technique that enables a simultaneous resonance of two laser beams with different spectra and/or temporal structures. We demonstrate that such a cavity can be used to recycle burst-mode ultra-violet laser pulses with arbitrary burst lengths and repetition rates. System implementation, technical challenges, experimental results and applications will be described.
* V. Danilov et al., Phys. Rev. ST Accel. Beams 10, 053501 (2007).
** K. Sakaue et al., Rev. Sci. Instrum. 80, 123304 (2009).
*** A. Rakhman, M. Notcutt, and Y. Liu, Opt. Lett. 40, 5562 (2015).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR057 A Mass Spectrometer for Measuring a High Current Ion Beam With a Big Range of the Charge-to-Mass Ratio radiation, detector, induction, ion-source 2799
 
  • Z. Bowen, S. An
    PLAI, Nanjing, People's Republic of China
  • L. Zhang
    Chang'an University, Chang'an, People's Republic of China
 
  In order to analyze a high-current mixed-ion beam's physical properties with a current of 100 mA and a charge-to-mass ratio range from 1:1 to 1:48, a mass spectrometer has been developed to measure the beam's current, profile and ratio of the different ions by Nanjing University and Andesun Technology Inc. The main part of the mass spectrometer is a mass analyzer, which is used to measure the different ion's beam current at the same time. This paper introduces the design of the mass analyzer.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY009 Simulation Study of Emittance Growth from Coulomb Explosion in a Charge Separator System After Stripping emittance, electron, space-charge, simulation 3005
 
  • M. Droba, O. Meusel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: BMBF-05P15RFRBA
A computer 3D particle-in-cell (PIC) simulation is used to examine the emittance growth of an intense heavy ion beam after a charge stripper. Multi-species dynamics of the bunched uranium beam with various charge states and including compensation electrons will be presented. The rms-emittance growth shows different behaviour in the horizontal, vertical and longitudinal planes, dependent on initial conditions, like a bunch size, beam current and phase space ellipse orientation. An optimization of initial parameters is therefore crucial for a successful and efficient post-acceleration. The role of the separation system and of co-moving electrons will be discussed for the example of the GSI-Unilac.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY038 Design of a Collection and Selection System for High Energy Laser-Driven Ion Beams quadrupole, laser, permanent-magnet, proton 3070
 
  • F. Schillaci, G.A.P. Cirrone, G. Cuttone, D. Rifuggiato
    INFN/LNS, Catania, Italy
  • M. Maggiore
    INFN/LNL, Legnaro (PD), Italy
 
  Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines. Nowadays, energy and angular spread of the laser-driven beams are the main issues in application and different solutions for dedicated beam-transport lines have been proposed. In this context a system of permanent magnet quadrupoles has been realized, by INFN researchers in collaboration with SIGMAPHI company, to be used as a collection system for laser-driven protons up to 20 MeV. The definition of well specified characteristics, in terms of performances and field quality, of the magnetic lenses is crucial for the system realization and an accurate study of the beam dynamics. Hence, a method for studying the errors on the PMQ harmonic contents has been developed. It consists of different series of simulations in which magnetic and mechanical errors are introduced in the array and the harmonic content is analyzed to fix the tolerances necessary to have a good beam quality downstream the system. The method developed for the analysis of the PMQs errors and its validation is here described. The technique is general and can be easily extended to any magnetic lens.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY042 Open XAL Status Report 2016 linac, operation, software, site 3083
 
  • T.A. Pelaia II, C.K. Allen, A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • D.A. Brown
    NMSU, Las Cruces, New Mexico, USA
  • Y.-C. Chao
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • C.P. Chu, Y. Zhang
    FRIB, East Lansing, Michigan, USA
  • P. Gillette, P. Laurent, E. Lécorché, G. Normand
    GANIL, Caen, France
  • E. Laface, Y.I. Levinsen, M. Muñoz
    ESS, Lund, Sweden
  • Y. Li
    IHEP, Beijing, People's Republic of China
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
Formed in 2010, the Open XAL accelerator physics software platform was developed through an international collaboration among several facilities to establish it as a standard for accelerator physics software. While active development continues, the project has now matured. This paper presents the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY048 Overview of the Design of the IBEX Linear Paul Trap experiment, alignment, multipole, vacuum 3104
 
  • S.L. Sheehy
    JAI, Oxford, United Kingdom
  • D.J. Kelliher, S. Machida, D.C. Plostinar, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  We report on the status and design of the Intense Beam Experiment (IBEX) at RAL. This experiment consists of a linear Paul trap apparatus similar to the S-POD system at University of Hiroshima, confining non-neutral Argon plasma in an RF quadrupole field. The physical equivalence between this device and a beam in a linear focusing channel makes it a useful tool for accelerator physics studies including resonances and high intensity effects. We give an overview of the design and construction of IBEX and outline plans for commissioning and the future experimental programme.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAB01 Status of Proton Beam Commissioning of the MedAustron Particle Therapy Accelerator proton, synchrotron, extraction, quadrupole 3176
 
  • A. Garonna, F. Farinon, M. Kronberger, T.K.D. Kulenkampff, C. Kurfürst, S. Myalski, S. Nowak, F. Osmić, L.C. Penescu, M.T.F. Pivi, C. Schmitzer, P. Urschütz, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
 
  MedAustron is a synchrotron-based ion beam therapy centre, designed to deliver clinical beams of protons (60-250 MeV) and carbon ions (120-400 MeV/u) to three clinical irradiation rooms (IR) and one research room, which can also host 800 MeV protons. The commission-ing activities for the first treatments with proton beams in IR3 have been completed and commissioning of IR1-2 is ongoing. The present paper describes the activities which took place during the last year, which involved all accel-erator components from the ion source to the IR.  
slides icon Slides THOAB01 [4.483 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOAB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THEA01 Learn to Read Korean: An Introduction to the Hangul Alphabet factory, insertion, site, distributed 3207
 
  • Z. Handel
    University of Washington, Seattle, Washington, USA
 
  In the mid 15th century the Korean scholar-king Sejong invented Hangul, the native Korean alphabet. This was the beginning of a long process by which Hangul has gradually supplanted Chinese characters as Korea's primary script, a process which is still ongoing today. This presentation will introduce the historical and cultural background behind the invention of Hangul and describe the systematic linguistic principles on which it is based. The 1446 text that introduced Hangul proclaimed that it was so simple that "a wise man can master it in a morning, and even a stupid person can learn it in ten days." We will put this claim to the test by attempting to learn to read Korean during the 30-minute presentation.  
slides icon Slides THEA01 [14.724 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THEA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB002 Beam Dynamics and Closed Orbit Correction at the Collector Ring optics, sextupole, antiproton, dipole 3216
 
  • O.E. Gorda, A. Dolinskyy, O.A. Kovalenko
    GSI, Darmstadt, Germany
  • I. Koop, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
  • Yu. A. Rogovsky
    Budker INP & NSU, Novosibirsk, Russia
 
  The Collector Ring (CR) has been designed for fast cooling of hot antiproton or ion beams at FAIR. Its ion-optical layout and system design has been recently finalized after careful optimizations aiming at improvement of the beam parameters and machine performance. In this paper we present the simulations of the transverse beam dynamics for the different ion-optical modes of the CR. Particle tracking calculations have been performed to evaluate an influence of the magnet imperfections on the dynamic aperture. The analysis and correction of the closed orbit distortions due to the magnet misalignments is also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB003 Orbit Response Matrix Analysis for FAIR Storage Rings quadrupole, storage-ring, optics, dipole 3219
 
  • O.A. Kovalenko, A. Dolinskyy, O.E. Gorda, S.A. Litvinov
    GSI, Darmstadt, Germany
 
  The Orbit Response Matrix (ORM) analysis is a method which allows to find the sources of discrepancies between design and real optics of an accelerator machine. In particular, with this technique one retrieves information about gradient errors, dipole corrector gain errors etc. Orbit response matrix is computed by measuring orbit deviations caused by single kicks of corrector magnets. With fitting the matrix one obtains the ion optics which best describes the real accelerator. The ORM analysis, presented in the paper, is employed to find error sources in the FAIR storage rings CR and HESR during and after the beam commissioning. The algorithm itself was implemented in Python programming language with a help of linear algebra libraries. The ORM analysis accuracy as well as its limitations are addressed in the paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB029 Simultaneous Two Beam Acceleration Lattice Design Study for the Post Linear Accelerator of RISP lattice, acceleration, emittance, simulation 3294
 
  • S.W. Jang
    KNU, Deagu, Republic of Korea
  • E.-S. Kim
    Korea University Sejong Campus, Sejong, Republic of Korea
 
  The Rare Isotope Science Project, RISP, is the research complex by using heavy ion accelerator, which RISP research complex consists of front-end system, super conducting linear accelerator(SCL), ISOL system, In-fight system. The original purpose of post linear accelerator was for the alternative acceleration of stable driver beam from ECR ion source and unstable rare isotope beam from ISOL system. The new concept of acceleration method by using post accelerator lattice was studied to get more benefits. The idea was the simultaneous acceleration of stable driver beam and RI beam by using the average A/q value of post accelerator lattice. For the simultaneous two beam acceleration study, we used two ion beams the first one was 58Ni+8 and the other one was 132Sn+20. The beam dynamics simulation was performed by TRACK and TraceWin codes. In this poster, we will describe the results of beam dynamics study for the simultaneous two beam acceleration of the post linear accelerator of RISP.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB033 Beam Tracking on the High Energy Beam Transport Line in KHIMA Medical Machine optics, synchrotron, beam-transport, quadrupole 3302
 
  • C.W. Park
    KIRAMS/KHIMA, Seoul, Republic of Korea
  • D.H. An, H. Yim
    KIRAMS, Seoul, Republic of Korea
 
  The Korea Heavy Ion Medical Accelerator (KHIMA) launched the synchrotron based hadron beam therapy facility for combined medical cancer treatment and cancer related research. The Korea Institute of Radiological & Medical Sciences (KIRAMS) synchrotron system has been designed to accelerate the particle beams having the kinetic energy interval of 60-230 MeV proton and 110-430 MeV/u carbon ions respectively. An accelerated beam from the synchrotron is transported to the patient position through the High Energy Beam Transport (HEBT) lines. In the HEBT lines, the lattice was designed with beam optics codes. In order to check and confirm the beam loss at the HEBT lines, the tracking code, TRACK, has been used with encoded field map and also with simulated field map by Opera3D code. The performances are described and also compared with two methods for manufacturing the components in the HEBT lines.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR004 Design of a Compact ion Beam Transport System for the BELLA Ion Accelerator laser, target, quadrupole, proton 3391
 
  • Q. Ji, S.S. Bulanov, E. Esarey, W. Leemans, T. Schenkel, S. Steinke
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by LDRD funding from Lawrence Berkeley National Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Berkeley Lab Laser Accelerator (BELLA) Center hosts a Ti:sapphire CPA laser providing laser pulses at petawatt-level peak power with a repetition rate of 1 Hz. High irradiances of 1022 W/cm2 can be achieved with a short focal length beamline when the laser is focused to a spot of w0 < 5 um. Under this condition, theoretical and particle-in-cell (PIC) simulations have shown that protons and helium ions at energies up to several hundred MeV/u can be expected from the interaction between BELLA laser pulses and different targets. High ion energies*, low energy spread with high controllability and stability, a new generation of ion accelerators using high performance laser-driven ion beam has numerous potential applications such as injectors for conventional accelerators, radiation therapy, as well as high energy density laboratory physics and material science studies. We will present a preliminary ion optics design to collect, transport, and focus the ions generated from the laser-driven ion accelerator, and beam dynamics results using the ion distribution from the PIC simulation.
* S.S. Bulanov et al, Physical Review Special Topics: Accelerators and Beams 18, 061302 (2015).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR053 Influence of Magnet Multipole Field Components on Beam Dynamics in the JLEIC Ion Collider Ring multipole, dynamic-aperture, collider, dipole 3525
 
  • G.H. Wei, F. Lin, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Nosochkov, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515.
To get a luminosity level of a few 1033 cm-2ses−1 at all design points of the Jefferson Lab Electron Ion Collider (JLEIC) project, small β* values in both horizontal and vertical planes are necessary at the Interaction Point (IP) in the ion collider ring. This also means large β in the final focus area, chromaticity correction sections, etc. which sets a constraint on the field quality of magnets in large beta areas, in order to ensure a large enough dynamic aperture (DA). In this context, limiting multipole field components of magnets are surveyed to find a possible compromise between the requirements and what can be realistically achieved by a magnet manufacturer. This paper describes that work. Moreover, non-linear field dedicated correctors are also studied to provide semi-local corrections of specific multipole field components.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR054 Error Correction for the JLEIC Ion Collider Ring quadrupole, dynamic-aperture, closed-orbit, collider 3528
 
  • G.H. Wei, F. Lin, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Nosochkov, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515.
The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, and chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW009 Data Mining Applied in Management of Heavy Ion Accelerator Power Supplies power-supply, heavy-ion, database, network 3552
 
  • H. Zhang, D.Q. Gao, Q.S. Qian, P. Sun
    IMP/CAS, Lanzhou, People's Republic of China
 
  Scientific and effective management of power supplies could reduce the failure rate and improve the efficiency of the heavy ion accelerator. This paper shows how to introduce data mining into the intelligent management of heavy ion accelerator power supplies. A web site platform was developed to collect raw data. The raw data includes many kinds of information about one power supply's life cycle form its development to operation. Among which the failure records are particularly important. According to the attribute that the records are mostly nominal data, R software and SQL Server 2008 Business Intelligence Development Studio were chose as mining tools. R soft-ware was used to carry on the statistical characteristic analysis and SQL Server 2008 Business Intelligence Development Studio was used to find out association rules. Useful conclusions have been drawn. This work has laid a solid foundation to further establish the intelligent management system of heavy ion accelerator power supplies.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW019 Concept and Design of the Injection Kicker System for the FAIR SIS100 Synchrotron vacuum, kicker, operation, pulsed-power 3582
 
  • I.J. Petzenhauser, U. Blell, P.J. Spiller
    GSI, Darmstadt, Germany
  • L.O. Baandrup, H. Bach, N. Hauge, K.F. Laurberg
    Danfysik A/S, Taastrup, Denmark
  • G. Blokesch, M. Osemann
    Ampegon PPT GmbH, Dortmund, Germany
 
  The SIS100 synchrotron at GSI, Germany is designed for acceleration of protons and ions. For the injection into the synchrotron a kicker magnet system, which consists of 6 ferrite kicker magnet modules, installed in one vacuum tank with a required vacuum quality better than 10-9 Pa, will be needed. The magnetic field should be 118 mT in a 65 mm gap. These kicker magnet modules will be supplied with 6 separate pulser circuits. Each pulser has to produce a pulse current of up to 7 kA at a PFL (pulse forming line) voltage of 80kV at an impedance of 5.7 Ohm. The rise time has to be 130 ns and the variable pulse length is between 0.5 to 2.0 μs. The design concept for this kicker system from Ampegon PPT and DANFYSIK and the specific challenges will be described.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW023 Simulation of an Accelerator Pulse Power Supply with an Active Rectifier Using SIMPLORER simulation, power-supply, controls, heavy-ion 3594
 
  • F.J. Wu, D.Q. Gao, M. Li
    IMP/CAS, Lanzhou, People's Republic of China
 
  In this paper, a simulation model of an accelerator pulse power supply with an active rectifier (voltage-type SVPWM rectifier) was set up based on the C-Model function in SIMPLORER 8.1, which is a simulation software belonging to the ANSOFT corporation. We introduce a SVPWM rectifier into an accelerator pulse power supply to solve its problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in it now. Components of control strategies developed in C language were built up and inserted into the simulation project. The simulation results indicate that an accelerator pulse power supply with a SVPWM rectifier can solve the problems above well. For all the control strategies were developed in C language, they can be transplanted into the digital signal processor (DSP) nearly without change for the prototype controlling. So it provides a basis for development of the experimental prototype.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW029 Feasibility Study of the Fast SPS Ion Injection Kicker System simulation, injection, kicker, flattop 3607
 
  • A. Ferrero Colomo, P. Burkel, D. Comte, L. Ducimetière, T. Kramer, V. Senaj, L. Sermeus, F.M. Velotti
    CERN, Geneva, Switzerland
 
  As part of the upgrade project for ions the rise time of the injection kicker system into the SPS needs to be improved. The changes being studied include the addition of a fast Pulse Forming Line parallel to the existing Pulse Forming Network for the fast kicker magnets MKP-S. With the PFL an improved magnetic field rise time of 100 ns is targeted. Two different configuration utilizing a 2nd thyratron or two fast diode stacks have been outlined in the past. This paper presents the recent progress on the analogue circuit simulations for both options as well as measurements carried out on a test system. Modelling, optimization and simulation of the entire system with diodes and a second configuration with two thyratron switches are outlined. Measurement results are given and the feasibility of the upgrade is discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY003 Design of the RISP Vacuum Systems vacuum, linac, simulation, cryomodule 3657
 
  • D. Jeon, J.H. Cho, K.B. Lim, H.J. Son, J. Song, S.W. Yoon
    IBS, Daejeon, Republic of Korea
  • H.S. Choi, T. Ha
    PAL, Pohang, Republic of Korea
  • S.R. In
    KAERI, Daejon, Republic of Korea
  • B.C. Kim, K.P. Kim, K.M. Kim, Y.S. Kim
    NFRI, Republic of Korea
 
  The vacuum requirement of the RISP heavy ion accel-erator facility has been derived that meets the beam loss requirement and the vacuum system design is carried out using the 3D Molflow+ code verifying the vacuum re-quirement. We used realistic outgassing values of the materials of the vacuum chambers and beam pipes. We are designing detailed vacuum system specification and configuration including pumps, gate valves, and vacuum gauges along with the interlock system and differential pumping stations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY006 Analysis and Testing of a New RF Bridge Concept as an Alternative to Conventional Sliding RF Fingers in LHC vacuum, operation, impedance, alignment 3660
 
  • J. Perez Espinos, C. Garion
    CERN, Geneva, Switzerland
 
  RF fingers are used as transition elements in beam vacuum line interconnections to ensure the continuity of the vacuum system wall within acceptable beam stability requirements. The RF fingers must absorb and compensate longitudinal, angular and transversal misalignments due to both thermal effects, during bake-out or cooldown processes, and mechanical movements during assembly, alignment, commissioning and operation phases. The new RF bridge concept is based on a deformable thin-walled structure in copper beryllium, which fulfils the above requirements without the need of sliding contacts. Mechanical tests have been carried out to characterize the response and the lifetime of such a component under different loading conditions. In addition, finite element models have been used to estimate the behaviour. The influence of different material grades and heat treatments on the reliability is presented. The paper includes a detailed analysis of the prototyping and testing phases that have led to a final design of the system, qualified on a dedicated test bench, for the collimator vacuum modules of LHC.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY008 Mechanical and Vacuum Stability Studies for the LHC Experiments Upgrade vacuum, experiment, detector, simulation 3667
 
  • J. Sestak, G. Bregliozzi, P. Chiggiato
    CERN, Geneva, Switzerland
 
  In April 2015, the Large Hadron Collider (LHC) has entered its second operational period that will last for 3 years with expected end of the operations at the beginning of 2019. Afterward, the LHC will undergo a long shutdown (LS2) for upgrade and maintenance. The four LHC experiments, ATLAS, ALICE, CMS and LHCb, will experience an important upgrade too. From the design point of view, the LS2 experimental beam vacuum upgrade requires multi-disciplinary approach: based on the geometrical envelope defined by experiment, the vacuum chambers size and shape must be optimized. This included Monte Carlo pressure profile simulations and vacuum stability studies in order to meet the specific pressure requests in the interaction region. Together with vacuum studies the structural analysis are performed in order to optimise chambers thickness and position of the operational and maintenance supports. The material selection for vacuum chambers in the experimental area follows the CERN ALARA (as low as reasonably achievable) principle. This paper gives an overview of the LS2 experimental vacuum sectors upgrades. The most extensive design studies, done for the two experiments CMS and ALICE are discussed in detail.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY015 Measurement of the Pressure in the TPS Booster Ring vacuum, booster, electron, storage-ring 3685
 
  • C.M. Cheng, C.K. Chan, G.-Y. Hsiung, Y.T. Huang, I.C. Sheng, L.H. Wu, I.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  The booster ring of Taiwan Photon Source (TPS) is designed to provide full energy injection 3 GeV ramped up from 150 MeV with a small beam emittance. It is a synchrotron accelerator of circumference 496.8 m. The vacuum chamber through the magnets is made of thin stainless-steel tube extruded to an elliptical cross section of inner diameters 35 mm and 20 mm, and thickness 0.7 mm. The other chambers have standard 35CF round tube. The vacuum system was baked in the first installation. Because the residual stress of the stainless-steel elliptical tubing caused the magnetic field to become unstable, all elliptical tubing was removed for annealing to proceed, and reinstalled without baking. The ultimate pressure and data for the residual gas are shown as follows.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY029 Technical Overview of the PAL-XFEL Low-Conductivity Water Cooling System controls, simulation, operation, laser 3718
 
  • B.H. Lee, H.-G. Kim, K.W. Kim, K.R. Kim, S.H. Kim, Y. C. Kim, H.M. Lee, M.S. Lee, H. Matsumoto, I. Mok, C.W. Sung, J. Yang
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J.H. Jeon
    Taeyoung, Seoul, Republic of Korea
  • K.T. Kim
    HMT, Pohang, Republic of Korea
  • I.S. Ko
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Pohang Accelerator Laboratory (PAL) started operation of an X-ray Free Electron Laser (XFEL) based on 10GeV linear accelerator in FY2015. For accurate temperature control of the various XFEL accelerator devices, a low-conductivity water (LCW) cooling system were installed. The LCW pump station generates LCW controlling the temperature variation within ±0.1°C. The LCW is supplied to klystrons including modulators and various control devices. On the other hand, the precision temperature controlled water to minimize temperature variation down to ±0.02°C. This water is supplied to accelerating columns, wave guide and SLED. Therefore, this paper shows the design, construction and operation of the LCW cooling system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY040 Laser Cooling of Relativistic Highly Charged Ions at FAIR laser, detector, synchrotron, vacuum 3747
 
  • D.F.A. Winters, O. Boine-Frankenheim, L. Eidam, T. Kühl, P.J. Spiller, T. Stöhlker
    GSI, Darmstadt, Germany
  • T. Beck, G. Birkl, D. Kiefer, T. Walther
    TU Darmstadt, Darmstadt, Germany
  • M.H. Bussmann, U. Schramm, M. Siebold
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
  • V. Hannen, D. Winzen
    Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
  • M. Löser
    HZDR, Dresden, Germany
  • X. Ma, W.Q. Wen
    IMP/CAS, Lanzhou, People's Republic of China
 
  An overview of recent laser cooling activities with relativistic heavy ion beams at the ESR (GSI, Darmstadt, Germany) and the CSRe (IMP, Lanzhou, China) storage rings will be presented. Some of the latest results will be shown and new developments concerning xuv-detector systems and cw and pulsed laser systems will be addressed. Finally, plans for laser cooling (& spectroscopy) at the future facility FAIR in Darmstadt will be presented, focusing on the SIS100.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY042 Laser Applications at Accelerators laser, network, electron, accelerating-gradient 3751
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289191.
The LA3NET consortium has developed advanced laser applications for particle accelerators within an international research and training network. It brought together research centers, universities, and industry partners to carry out collaborative research into all the above areas and jointly train the next generation of researchers. This contribution presents selected research highlights from the LA3NET network. It shows how enhanced ionization schemes can provide better ion beams for radioactive beam facilities, and how RF photo injectors can produce high brightness electron beams. It also presents results from studies into ultra-compact, fiber optics-based electron accelerators and new radiation sources based on laser accelerated beams. Finally, it summarizes how electro-optical techniques, laser velocimeters, and laser emittance meters can all help characterize beams with better time and spatial resolution in non-invasive ways.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY013 Signal Archiving System for RISP Heavy-ion Accelerator Control System controls, EPICS, heavy-ion, framework 4113
 
  • S.H. Nam
    Korea University, Seoul, Republic of Korea
  • H. Jang, S. Lee, M.J. Park, C.W. Son, H.J. Son
    IBS, Daejeon, Republic of Korea
  • E.-S. Kim
    Korea University Sejong Campus, Sejong, Republic of Korea
 
  RISP control system uses the EPICS real time distributed control system, which is software framework for stable operation of the accelerator. The output signal from all machines and devices must be archived by EPICS framework, and optimized signal archiver system is needed for each accelerator facility. Signal archiver method using the EPICS framework has three significant ways. First is the classic channel archiver using the file base method and the second is the RDB archiver using the relational database. But classic channel archiver has a problem that the index file containing information of data block corresponding PV data mismatch with real data. Also, there is a problem in the performance of file I/O in RDB archiver. SLAC has developed archiver appliance utility to resolve these problems, and the usage of archiver appliance in EPICS community has gradually increased. RISP choose the archiver appliance to also signal archiver solution. However, archiver appliance is not optimized for our RISP heavy-ion accelerator control system. Thus, we will develop the customized signal archiver system for RISP heavy-ion accelerator control system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY025 From Standby Operation to Patient Treatment in 13 Months: Setting Up the MIT Accelerator Team operation, controls, ion-source, linac 4146
 
  • A. Peters, Th. Haberer
    HIT, Heidelberg, Germany
  • U. Scheeler
    MIT, Marburg, Germany
 
  When the University Hospital Heidelberg took over the responsibility for the Marburg Ionbeam Therapy Centre (MIT), HIT as their daughter company was mandated to build up the operation team, especially for the accelerator. Based on long-standing experiences of HIT a very similar personnel concept was already available to be adapted to the MIT specialties. Within 9 months the directly started hiring process resulted in three technical teams with excellent engineers and technicians but with little or no accelerator experience. In parallel, three accelerator physicists were appointed for the executive team of MIT. Nevertheless for all hired persons a training program was set up consisting of technical instructions, lectures on fundamental accelerator physics and control system basics. These common trainings were complemented by individual skills development schedules for the tasks in the technical teams. HIT accelerator experts substantially carried out the recommissioning but in addition the new MIT employees were trained in designated shifts in the control room. Thus after only 13 months the MIT operation crew was able to operate the accelerator facility from the first patient treatment day on.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY032 The Dual Use of Beam Loss Monitors at FAIR-SIS100: General Diagnostics and Quench Prevention of Superconducting Magnets quadrupole, beam-losses, extraction, simulation 4167
 
  • S. Damjanovic, P. Kowina, C. Omet, M. Sapinski, M. Schwickert, P.J. Spiller
    GSI, Darmstadt, Germany
 
  In view of the planned coverage of the FAIR-SIS100 synchrotron with beam loss monitors (BLMs), FLUKA studies were performed aiming at two goals: i) evaluation of the sensitivity of the LHC-IC type detectors to the potential beam losses at SIS100; ii) estimation of the BLM quench prevention threshold via the correlation between the energy deposition inside the superconducting coils and the BLM active volume. A full spectrum of ion species and energies to be accelerated with SIS100 were considered in the simulations, showing a great sensitivity to the beam losses. An interesting finding of this study was that, for the same beam loss location, the quench prevention thresholds were almost identical for all ion species/energies including protons.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY033 SIS100 Availability and Machine Protection dipole, septum, proton, extraction 4171
 
  • C. Omet, H. Kisker, M.S. Mandakovic, D. Ondreka, P.J. Spiller, R.J. Steinhagen
    GSI, Darmstadt, Germany
 
  For the future FAIR driver accelerator, SIS100, a detailed System-FMEA (Failure Modes and Effects Analysis) according to IEC 61508 has been done. One the one hand, this has been done to identify possible shortcomings for machine protection and on the other hand to predict the machine's availabilty for beam on target. The methodology for the analysis and the main failure modes currently known for the machine and its environment are described in detail. An estimate of the total machine's availability is given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY050 Time Response of a Gridded X-ray Beam Ionization Chamber electron, experiment, radiation, photon 4220
 
  • Y.H. Xu, Z.H. Sun
    DongHua University, Songjiang, People's Republic of China
  • D.V. Campen, W.J. Corbett
    SLAC, Menlo Park, California, USA
  • C.L. Li
    East China University of Science and Technology, Shanghai, People's Republic of China
  • W.J. Zhang
    University of Saskatchewan, Saskatoon, Canada
 
  Recently, Quick-Scanning Extended X-ray Absorption Spectroscopy (QEXAS) has become an important tool for in-situ characterization of materials and measurement of associated electronic structure. In this case the time response of the ionization chamber affects the measurement resolution and therefore overall performance of the QEXAS system. Common parallel-plate ionization chambers have a step-response rise time of about 0.1 sec, which does not meet the requirements of QEXAS. To speed up the response, we constructed a gridded ionization chamber with variable bias voltage and optional background gas (N2 or He, respectively). To characterize the system we used a high-frequency beam chopper upstream of the ionization chamber and a high-speed, low-noise preamplifier to measure the step response of the chamber as a function of bias voltage and background gas conditions.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXAA01 Korea Heavy Ion Medical Accelerator Project synchrotron, extraction, proton, cyclotron 4243
 
  • G.B. Kim, G. Hahn, W.T. Hwang, H. Yim
    KIRAMS, Seoul, Republic of Korea
  • J.G. Hwang, C.H. Kim, C.W. Park
    KIRAMS/KHIMA, Seoul, Republic of Korea
 
  The Korea Heavy Ion Medical Accelerator (KHIMA) project is to develop 430-MeV/u heavy ion accelerator and therapy systems for medical applications. The accelerator system includes ECRIS, injector linac, synchrotron, beam transport lines, and treatment systems. The accelerator system is expected to provide stable beams very reliably, and there should be special cares and strategies in the machine construction and operations. This presentation covers all issues mentioned above.  
slides icon Slides FRXAA01 [10.869 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-FRXAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRYAA01 Progress of the RAON Heavy Ion Accelerator Project in Korea ISOL, target, heavy-ion, rfq 4261
 
  • S.C. Jeong
    IBS, Daejeon, Republic of Korea
 
  The RAON heavy ion accelerator facility is under construction in Korea. With a 400-kW superconducting linac as the workhorse, the facility is to establish the In-flight Fragment (IF) and Isotope Separation On-Line (ISOL) facilities to support advanced science researches. Beam dynamics studies have progressed to cover start-to-end simulations including machine errors. There has been significant progress in sub-system prototype studies including 28-GHz ECR ion source, superconducting cavities and magnets, and IF target. This talk presents recent progress and status of the project.  
slides icon Slides FRYAA01 [14.434 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-FRYAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)