Keyword: injection
Paper Title Other Keywords Page
MOYAA01 Commissioning of the MAX IV Light Source storage-ring, emittance, lattice, vacuum 11
 
  • M. Eriksson, E. Al-Dmour, Å. Andersson, M.A.G. Johansson, S.C. Leemann, L. Malmgren, P.F. Tavares, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  This presentation reports on the beam commissioning status of MAX IV, experience gained and lessons learned, as well as future plans.  
slides icon Slides MOYAA01 [6.682 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOYAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB025 The Development of 16-Electrode Monitor for Measurement of the Multipole-Moment quadrupole, coupling, impedance, proton 140
 
  • Y. Nakanishi, A. Ichikawa, A. Minamino, K.G. Nakamura, T. Nakaya
    Kyoto University, Kyoto, Japan
  • T. Koseki, H. Kuboki
    KEK, Tokai, Ibaraki, Japan
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: This work was supported by MEXT KAKENHI Grant Number 25105002, Grant-in-Aid for Scientific Research on Innovative Areas titled 'Unification and Development of the Neutrino Science Frontier'
In the J-PARC main ring, the beam intensity is greatly increased to 750 kW or more in near future. Even the beam intensity become higher, the beam loss must be kept at the same level as present. Aiming to make the cause of beam loss clear, we have been developing the beam monitor to measure the beam size. The quadrupole moment is related to the beam size. In principle, monitors with more than four electrodes can measure the quadrupole moment. In addition, two monitors located at the places with different beta functions can measure the emittances and beam sizes, providing the horizontal and vertical beta functions. To obtain more precise quadrupole moment and higher multipoles, we are developing the multi-electrode monitor, tentatively, with 16 electrodes. As a reference of 16-electrode monitor, two 4-electrode BPMs are investigated to measure quadrupole moments. We will present the measurement result of 4-electrode monitors and the status of the development of the 32-electrode monitor.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB045 Development of FPGA-based Bunch-by-Bunch Beam Current Monitor FPGA, storage-ring, feedback, LabView 193
 
  • Liu, C.S. Liu, Q. Luo, B.G. Sun, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China 11575181, 11375178. And by the Fundamental Research Funds for the Central Universities WK2310000046, WK2310000056
Bunch-by-bunch (BxB) beam current measurement is an important method to study filling pattern of injection and beam instability threshold for multi-bunch operation storage ring, also, necessary equipment for top-up injection. A high-speed high-precision ADC and FPGA are used to construct the bunch-by-bunch beam current measurement system. FPGA reads data from ADC, and transfer the data to PC via USB. A LabVIEW program is running on PC to process the data, and communicates with other accelerator equipment with EPICS by CA Lab. Besides the bunch-by-bunch beam current measurement, the BxB longitudinal tune is measured by the system, and other potential bunch-by-bunch beam diagnostics study could be done in future, like bunch-by-bunch beam life etc., to improve the performance of the storage ring of Hefei light source.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB048 Bunch Length Measurement at Bunch by Bunch in Harmonics Method at Shanghai SSRF Storage Ring experiment, storage-ring, electron, synchrotron-radiation 199
 
  • L.W. Duan, Y.B. Leng, R.X. Yuan
    SINAP, Shanghai, People's Republic of China
  • N. Zhang
    SSRF, Shanghai, People's Republic of China
 
  Harmonics method in frequency domain is an effective and inexpensive bunch length measurement method. With advances in technology, it is possible to do bunch length measurement at bunch by bunch using electronic method. We design and make an electronic system to realize metering at bunch by bunch, and believe it has reasonable bunch length resolution. All selected harmonic signals will be mixed down to 500 MHz and digitized at bunch-by-bunch rate by a multi-channel DBPM processor. The primary beam experiment results will be presented and discussed in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB052 On-axis Injection using a Sin Wave RF Kicker kicker, storage-ring, lattice, emittance 211
 
  • B.C. Jiang, Y.B. Leng, S.Q. Tian, L.Y. Yu, M.Z. Zhang, Q.L. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  On-axis injection is one of the critical issues for an ul-tra-low emittance storage ring which holds a rather small dynamic aperture. In order to reduce the challenges of the fast pulsed kicker design, a sin wave RF kicker is studied which is suitable for longitudinal on-axis injection. Since the injected bunch is longitudinally apart from the stored bunches, the location of the stored bunches can be at the π knot of the sin wave, while the injected bunches are launched at a phase around π/2+n·π. At this situation the injected bunches will receive a transverse kick, however the store bunches are almost un-affected.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB060 Upgrade of the LHC Schottky Monitor, Operational Experience and First Results pick-up, proton, ion, emittance 226
 
  • M. Betz, O.R. Jones, T. Lefèvre, M. Wendt
    CERN, Geneva, Switzerland
 
  The LHC Schottky system allows the measurement of beam parameters such as tune and chromaticity in an entirely non-invasive way by extracting information from the statistical fluctuations in the incoherent motion of particles. The system was commissioned in 2011 and provided satisfactory beam-parameter measurements during LHC run 1 for lead-ions. However, for protons its usability was substantially limited due to strong interfering signals originating from the coherent motion of the particle bunch. The system has recently been upgraded with optimized travelling-wave pick-ups and an improved 4.8~GHz microwave signal path, with the front-end and the triple down-mixing chain optimized to reduce coherent signals. Design and operational aspects for the complete system are shown and the results from measurements with LHC beams in Run II are presented and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR002 Bunch by Bunch Position Measurement and Analysis at PLS-II kicker, operation, betatron, pick-up 232
 
  • J. Lee, M.-H. Chun, I. Hwang, D.T. Kim, G. Kim, T.-Y. Lee, D.C. Shin, S. Shin
    PAL, Pohang, Republic of Korea
 
  Beam dynamic phenomena described by bunch-by-bunch motion are important issues for a storage ring and are described by various theoretical formalisms. Direct measurements of the beam position related to different dynamical mechanisms are a useful information to accelerator optimization. In PLS-II, 20 GHz sampling oscilloscope synchronized with injection event (or triggered by beam loss signal) is used to measure direct bunch by bunch motion. Based on the measured data, the principal component analysis had been performed to get the insight into beam dynamic phenomena such as couple bunch instability and beam oscillation due to kicker leakage. In this paper, we will describe the measurement method and the result of analysis for coupled bunch instability.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR014 Beam Diagnostics Overview for Collector Ring at FAIR diagnostics, ion, antiproton, pick-up 255
 
  • Yu. A. Rogovsky, E.A. Bekhtenev, M.I. Bryzgunov, O.I. Meshkov, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
  • E.A. Bekhtenev, Yu. A. Rogovsky, D.B. Shwartz
    NSU, Novosibirsk, Russia
  • O. Chorniy
    GSI, Darmstadt, Germany
 
  The Collector Ring (CR) is a dedicated storage ring in the FAIR project, where the main emphasis is laid on the effective stochastic precooling of intense secondary beams of stable ions, rare isotopes or antiprotons. A complex operation scheme with several types of operational cycles with beams in CR starting from injection, RF gymnastics, stochastic cooling then, and finishing to extraction is foreseen. Beam parameters changes significantly during the cycles. This demands an exceptional high dynamic range for the beam instrumentation. Non-destructive methods are mandatory for high currents as well as for the low current secondary beams due to the low repetition rate. Precise measurements of all beam parameters and automatic steering with short response time are required due to the necessary exploitation of the full ring acceptances. An overview of the challenges and solutions for various diagnostic installations will be given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR029 Experience with DOROS BPMs for Coupling Measurement and Correction coupling, dipole, electronics, controls 303
 
  • T. Persson, J.M. Coello de Portugal, A. Garcia-Tabares, M. Gąsior, A. Langner, T. Lefèvre, E.H. Maclean, L. Malina, J. Olexa, P.K. Skowroński, R. Tomás
    CERN, Geneva, Switzerland
  • J. Olexa
    STU, Bratislava, Slovak Republic
 
  The Diode ORbit and OScillation System (DOROS) system is designed to provide accurate measurements of the beam position in the LHC. The oscillation part of the system, which is able to provide turn-by-turn data, is used to measure the transverse coupling. Since the system provides high resolution measurements for many turns only small excitations are needed to accurately measure the transverse coupling. In this article we present the performance the system to measure coupling and compare it to the BPMs not equipped with this system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR031 Investigation of Injection Losses at the Large Hadron Collider with Diamond Based Particle Detectors kicker, proton, flattop, detector 310
 
  • O. Stein, W. Bartmann, F. Burkart, B. Dehning, V. Kain, R. Schmidt, D. Wollmann
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
 
  During the operation of the Large Hadron Collider (LHC) in 2015, increased injection losses were observed. To minimize stress on accelerator components in the injection regions of the LHC and to guarantee an efficient operation these losses needed to be understood and possible mitigation techniques should be studied. Measurements with diamond particle detectors revealed the loss structure with ns-resolution for the first time. Based on these measurements, recaptured beam from the Super Proton Synchrotron (SPS) surrounding the nominal bunch train was identified as the major contributor to the injection loss signals. Methods to reduce the recaptured beam in the SPS were successfully tested and verified with the diamond particle detectors. In this paper the detection and classification of LHC injection losses are described. The methods to reduce these losses and verification measurements are presented and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR033 Characterization of Beam Properties Using Synchrotron Light at Taiwan Photon Source synchrotron, booster, storage-ring, photon 316
 
  • C.Y. Liao, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.-C. Kuo, H.-J. Tsai, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a third-generation 3-GeV synchrotron light facility, located in National Synchrotron Radiation Research Center (NSRRC) at Hsinchu Science Park. After overcoming many challenges, the storage beam current attained 520 mA in 2015 December. The synchrotron light monitors, including X-ray and visible light, are important diagnostic tools to characterize the various machine conditions. The booster beam dynamics during ramping and the beam properties of the storage ring were studied with synchrotron light. The results of measurements are presented in this report.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW011 The Second Harmonic RF System for J-PARC MR Upgrade cavity, impedance, operation, proton 420
 
  • C. Ohmori, K. Hara, K. Hasegawa, M. Toda, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
  • M. Nomura, T. Shimada, F. Tamura, M. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  Power upgrade scenario of J-PARC Main Ring includes replacement of RF cavities with higher field gradient using magnetic alloy cores, FT3L than the present ones. It also need to install the second harmonic RF cavity in the other section where dedicated water system for RF cavities is not available. Installation scenario of the second harmonic RF will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY002 Simulation and Experimental Studies of a 2.45GHz Magnetron Source for an SRF Cavity with Field Amplitude and Phase Controls controls, cavity, LLRF, SRF 514
 
  • H. Wang, T. E. Plawski, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • A. Dudas, M.L. Neubauer
    Muons, Inc, Illinois, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and NP STTR Grant DE-SC0013203.
Phase lock to an SRF cavity by using injection signal through output waveguide of a magnetron has been demonstrated [1, 3]. Amplitude control using magnetic field trimming and anode voltage modulation has been studied using MATLAB/Simulink simulations [2]. Based on these, we are planning to use an FPGA based digital LLRF system, which allows applying various types of control algorithms in order to achieve the required accelerating field stability. Since the 1497 MHz magnetron is still in the design stage, the proof of principle measurements of a commercial 2450 MHz magnetron are carried out to characterize the anode I-V curve, output power (the tube electronic efficiency), frequency dependence on the anode current (frequency pushing) and the Rieke diagram (frequency pulling by the reactive load). Based on early Simulink simulation, experimental data and extension of the Adler equation governing injection phase stability by Chen's model, the specification of the new LLRF control chassis for both 2450 and 1497MHz systems are presented in this paper.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR003 Simulation Studies and Measurements of Beam Instabilities Caused by the Kicker Impedance at High Intensities in the 3-GeV RCS of J-PARC simulation, impedance, kicker, betatron 589
 
  • P.K. Saha, H. Harada, N. Hayashi, H. Hotchi, M. Kinsho, M. Nomura, Y. Shobuda, F. Tamura, N. Tani, Y. Watanabe, M. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  The transverse impedance of the extraction kickers is a significant beam instability source in the 3-GeV Rapid Cycling Synchrotron of J-PARC. ORBIT code was developed for space charge and beam instability simulations by successfully introducing realistic time dependent machine parameters. The beam instability at high intensities, especially at the designed 1 MW beam power was found be very critical. As there was no practical measure yet to reduce the kicker impedance, a detail simulation studies were done in order to determine realistic machine parameters to suppress the beam instability. The simulation results were found to be very consistent with measurements to successfully accomplish 1 MW beam power. The simulation and beam study results in detail are presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR004 Recent Progress of 1-MW Beam Tuning in the J-PARC 3-GeV RCS resonance, emittance, scattering, power-supply 592
 
  • H. Hotchi, H. Harada, S. Kato, M. Kinsho, K. Okabe, P.K. Saha, Y. Shobuda, F. Tamura, N. Tani, Y. Watanabe, K. Yamamoto, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The J-PARC 3-GeV RCS started 1 MW beam test from October 2014, and successfully achieved a 1 MW beam acceleration in January 2015. Since then, a large fraction of our effort has been focused on reducing and managing beam losses. This paper presents the recent progress of 1 MW beam tuning, especially focusing on our approaches to beam loss issues, such as space-charge induced beam loss and foil scattering beam loss during charge-exchange injection, etc.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR008 Beam Induced RF Heating in LHC in 2015 impedance, operation, vacuum, monitoring 602
 
  • B. Salvant, O. Aberle, M. Albert, R. Alemany-Fernandez, G. Arduini, J. Baechler, M.J. Barnes, P. Baudrenghien, O.E. Berrig, N. Biancacci, G. Bregliozzi, J.V. Campelo, F. Carra, F. Caspers, P. Chiggiato, A. Danisi, H.A. Day, M. Deile, D. Druzhkin, J. F. Esteban Müller, S. Jakobsen, J. Kuczerowski, A. Lechner, R. Losito, A. Masi, N. Minafra, E. Métral, A.A. Nosych, A. Perillo Marcone, D. Perini, S. Redaelli, F. Roncarolo, G. Rumolo, E.N. Shaposhnikova, J.A. Uythoven, C. Vollinger, A.J. Välimaa, N. Wang, M. Wendt, J. Wenninger, C. Zannini
    CERN, Geneva, Switzerland
  • M. Bozzo
    INFN Genova, Genova, Italy
  • J.F. Esteban Müller
    EPFL, Lausanne, Switzerland
  • N. Wang
    IHEP, Beijing, People's Republic of China
 
  Following the recurrent beam induced RF issues that perturbed LHC operation during LHC Run 1, a series of actions were put in place to minimize the risk that similar issues would occur in LHC Run 2: longitudinal impedance reduction campaign and/or improvement of cooling for equipment that were problematic or at the limit during Run 1, stringent constraints enforced on new equipment that would be installed in the machine, tests to control the bunch length and longitudinal distribution, additional monitoring of temperature, new monitoring tools and warning chains. This contribution reports the outcome of these actions, both successes as well as shortcomings, and details the lessons learnt for the future runs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR021 Space Charge Studies with High Intensity Single Bunch Beams in the CERN SPS emittance, brightness, resonance, space-charge 644
 
  • H. Bartosik, F. Schmidt
    CERN, Geneva, Switzerland
  • A. Oeftiger
    EPFL, Lausanne, Switzerland
  • M. Titze
    HZB, Berlin, Germany
 
  In order to reach the target beam parameters of the LHC injectors upgrade (LIU) project the beam degradation due to losses and emittance growth on the long injection plateau of the SPS needs to be minimized. A detailed study of the dependence of losses, transverse emittance blow-up and transverse beam tail creation as function of the working point is presented here for a high brightness single bunch beam with a vertical space charge tune spread of about 0.2 on the 26 GeV injection plateau. The beam behaviour close to important betatron resonances is characterised and a region in the tune diagram with minimal beam degradation is identified. Implications about the performance for LIU beams are discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR022 Beam Dynamics Observations of the 2015 High Intensity Scrubbing Runs at the Cern Sps electron, operation, octupole, emittance 648
 
  • H. Bartosik, G. Iadarola, K.S.B. Li, L. Mether, A. Romano, G. Rumolo, M. Schenk
    CERN, Geneva, Switzerland
 
  Beam quality degradation caused by e-cloud effects has been identified as one of the main performance limitations for high intensity LHC beams with 25 ns bunch spacing in the SPS. In view of the beam parameters targeted with the LHC injectors upgrade (LIU) project, about two weeks of SPS machine time in 2015 were devoted to dedicated scrubbing runs with high intensity LHC 25 ns and dedicated 'doublet' beams in order to study the achievable reduction of e-cloud effects and quantify the consequent beam performance improvements. This paper describes the main observations concerning the coherent instabilities and beam dynamics limitations encountered as well as a detailed characterisation of the performance reach with the highest beam intensity presently available from the pre-injectors.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR023 Flat Bunches with a Hollow Distribution for Space Charge Mitigation space-charge, synchrotron, emittance, resonance 652
 
  • A. Oeftiger, H. Bartosik, A. Findlay, S. Hancock, G. Rumolo
    CERN, Geneva, Switzerland
  • A. Oeftiger
    EPFL, Lausanne, Switzerland
 
  Funding: CERN, Doctoral Studentship EPFL, Doctorate
Longitudinally hollow bunches provide one means to mitigate the impact of transverse space charge. The hollow distributions are created via dipolar parametric excitation during acceleration in CERN's Proton Synchrotron Booster. We present simulation work and beam measurements. Particular emphasis is given to the alleviation of space charge effects on the long injection plateau of the downstream Proton Synchrotron machine, which is the main goal of this study.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR024 Evolution of High Intensity Beams in the CERN PS Booster after H Injection and Phase Space Painting emittance, space-charge, booster, lattice 656
 
  • M. Cieslak-Kowalska, J.L. Abelleira, E. Benedetto, C. Bracco
    CERN, Geneva, Switzerland
 
  With the LHC Injector Upgrade (LIU) project, the injection energy of PS Booster (PSB) ' first circular accelerator in the LHC injector chain ' will be raised from 50 MeV to 160 MeV and the present multiturn injection will be upgraded to H injection with transverse and longitudinal painting. In the scope of this project, it is planned to double the beam intensities, profiting from the fact that the βγ2 factor will be two times larger (0.35 at 50 MeV and 0.71 at 160 MeV), so the resulting tune spread driven by a direct space charge should remain similar. This paper describes the feasibility to double the intensity of high intensity and large emittance beams, looking into the evolution under space charge and taking into account losses constrains in the ring and in the extraction lines.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR025 3D Emittances Tailoring Techniques and Optimization with Space Charge for the Future CERN PS Booster Operations with Linac4 emittance, coupling, simulation, linac 660
 
  • V. Forte, J.L. Abelleira, E. Benedetto, C. Bracco, M. Cieslak-Kowalska, G.P. Di Giovanni
    CERN, Geneva, Switzerland
 
  In the frame of the LIU (LHC Injectors Upgrade) project, the CERN PS Booster is going to be renovated to host a new H charge-exchange injection from the Linac4. One important feature of the new injection scheme is the possibility to tailor a wide range of 3D emittances for CERN's different users in an intensity span in the order of 5·109 to 1.6·1013 protons per PSB ring. This paper gives an overview of 3D multi-turn injection techniques, focusing on the future LHC beams, which aim at reaching high brightness, and on highest intensity beams (ISOLDE), where losses are the main concern. Complete RF capture simulations and transverse injection maps, including space charge effects, are presented and also intended to be used during the commissioning with Linac4.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR042 Beam Dynamics Modeling of Drift-tube Linacs with CST Particle Studio DTL, simulation, rfq, linac 689
 
  • S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  The CST Studio provides convenient tools for self-consistent 3D modeling of accelerators, even large ones. Here we demonstrate this approach for the LANSCE drift-tube linac (DTL) taken as an example. The RF fields in 3D models of full DTL tanks are calculated and tuned with MicroWave Studio (MWS). Beam dynamics in the DTL is modeled with Particle Studio for bunches and bunch trains with realistic initial beam distributions using the MWS-calculated RF fields and quadrupole magnetic fields. The output beam parameters and locations of particle losses are calculated and compared for different beam distributions. Our main emphasis is on the formation of low-energy tails (longitudinal halo) and their interaction with regular bunches. Such effects are usually not taken into account in standard multi-particle phase-space codes.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW052 Status of the Preparation to the Commissioning of the ThomX Storage Ring storage-ring, dipole, electron, controls 833
 
  • I. Chaikovska, C. Bruni, S. Chancé, A.R. Gamelin, H. Monard
    LAL, Orsay, France
  • A. Loulergue
    SOLEIL, Gif-sur-Yvette, France
 
  Funding: Work is supported by the French Agence Nationale de la Recherche as part of the program EQUIPEX under reference ANR-10-EQPX-51, the Ile de France region, CNRS-IN2P3 and Université Paris Sud XI
ThomX is a compact Compton based X-ray source under construction at LAL in Orsay (France). The ThomX facility is composed by a 50-70 MeV linac, a transfer line and a 18 meters long Storage Ring (SR). The Compton scattering between the 50 MeV electron bunch of 1 nC and the 30 mJ laser pulses stacked in the Fabry-Perot cavity results in the production of photons with energies (up to 90 keV) with a maximum flux of 1013 photons/s. The ThomX construction will start shortly aiming to be completed in the middle of 2017. The preparation to the SR commissioning as far as a control system and beam physics applications are concerned is progressing gradually in order to prepare and test all the tools well ahead the start of the machine. The SR commissioning will face with many challenges providing the low energy, compactness, the nonlinear beam dynamics, the limited beam storage and need for the precision and stabilization in the Interaction Region. Several techniques used at the Synchrotron Light Sources should be modified/adapted to meet all the specificity of the ThomX. This is a report on preparation of the ThomX SR commissioning, its  status, planning, main challenges and expectations.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW055 Injection Using a Non-linear Kicker Located in the Existing Injection Straight at Diamond Storage Ring septum, kicker, storage-ring, optics 840
 
  • B. Singh, M. Apollonio, R. Bartolini, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
  • A. Alekou, R. Bartolini, T. Pulampong
    JAI, Oxford, United Kingdom
 
  Injection studies using a non-linear kicker for the Diamond storage ring have been carried out previously*. These studies have been recently extended to investigate whether the non-linear kicker can be located in the injection straight downstream of the septum and outside the existing dipole kicker bump. If so, injection with a non-linear kicker becomes independent of the optics used, making it suitable for use in both standard and low alpha mode. With this configuration, the existing injection scheme could also be left in place, leaving open the possibility to study both schemes in situ before potentially removing the existing dipole kickers at a later date. In order to operate with the non-linear kicker, the injected beam needs to exit the transfer line at an angle of 3mrad; this has been successfully demonstrated during machine development time. The concept and feasibility studies of this scheme are presented in this paper.
* T. Pulampong, et al., Proc. IPAC 2013, Shanghai, WEPWA065, (2013)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY001 MedAustron Synchrotron RF Commissioning for Medical Proton Beams acceleration, synchrotron, proton, cavity 844
 
  • C. Schmitzer, F. Farinon, A. Garonna, M. Kronberger, T.K.D. Kulenkampff, C. Kurfürst, S. Myalski, S. Nowak, F. Osmić, L.C. Penescu, M.T.F. Pivi, P. Urschütz, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
 
  MedAustron is a medical accelerator facility for hadron therapy cancer treatment using protons and carbon ions. The Synchrotron is driven by a 0.47-3.26 MHz Finemet® loaded wideband cavity powered by 12x 1kW solid state amplifiers connected to a digital Low Level RF system. It was developed in collaboration with CERN and put to operation at MedAustron in early 2014. The main Synchrotron RF (sRF )commissioning steps for proton beams involved the setup of the adiabatic capture process, the setup of the frequency and voltage ramps and feedback loops for fast acceleration and the RF jump for extraction. The adiabatic capture process was optimized in terms of energy and voltage mismatch by analyzing longitudinal empty bucket scans after beam injection into the synchrotron. The acceleration ramp optimization was based on calculations using a software tool developed in-house and adapted experimentally to minimize losses at injection and during acceleration. This paper provides an overview of the acceleration system and describes the commissioning process of the sRF system and the related beam commissioning efforts at MedAustron.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY007 High Energy Booster Options for a Future Circular Collider at CERN booster, collider, extraction, hadron 856
 
  • L.S. Stoel, M.J. Barnes, W. Bartmann, F. Burkart, B. Goddard, W. Herr, T. Kramer, A. Milanese, G. Rumolo, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
 
  In case a Future Circular Collider for hadrons (FCC-hh) is constructed at CERN, the tunnels for SPS, LHC and the 100 km collider will be available to house a High Energy Booster (HEB). The different machine options cover a large technology range from an iron-dominated machine in the 100 km tunnel to a superconducting machine in the SPS tunnel. Using a modified LHC as reference, these options are compared with respect to their energy reach, magnet technology and filling time of the collider. Potential issues with beam transfer, reliability and beam stability are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY059 LHC Injectors Upgrade (LIU) Project at CERN ion, proton, linac, brightness 992
 
  • E.N. Shaposhnikova, J. Coupard, H. Damerau, A. Funken, S.S. Gilardoni, B. Goddard, K. Hanke, L. Kobzeva, A.M. Lombardi, D. Manglunki, S. Mataguez, M. Meddahi, B. Mikulec, G. Rumolo, R. Scrivens, M. Vretenar
    CERN, Geneva, Switzerland
 
  A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LIU roadmap and revised performance objectives of the main upgrades, including the work status and outlook in terms of the required installation and commissioning stages.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY060 Performance Analysis for the New g-2 Experiment at Fermilab simulation, storage-ring, experiment, dipole 996
 
  • D. Stratakis, M.E. Convery, C. Johnstone, J.A. Johnstone, J.P. Morgan, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • J.D. Crmkovic, W. Morse, V. Tishchenko
    BNL, Upton, Long Island, New York, USA
  • N.S. Froemming
    University of Washington, CENPA, Seattle, USA
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Korostelev
    Lancaster University, Lancaster, United Kingdom
 
  The new g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment to a precision of ±0.14 ppm ─ a fourfold improvement over the 0.54 ppm precision obtained in the g-2 BNL E821experiment. Achieving this goal requires the delivery of highly polarized 3.094 GeV/c muons with a narrow ±0.5% Δp/p acceptance to the g-2 storage ring. In this study, we describe a muon capture and transport scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we describe its basic features. Then, we detail its performance numerically by simulating the pion production in the (g-2) production target, the muon collection by the downstream beamline optics as well as the beam polarization and spin-momentum correlation up to the storage ring. The sensitivity in performance of our proposed channel against key parameters such as magnet apertures and magnet positioning errors is analyzed  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXA01 Status and Future Upgrade of J-PARC Accelerators linac, operation, extraction, hadron 999
 
  • M. Kinsho
    JAEA/J-PARC, Tokai-mura, Japan
 
  The linac energy reached to 400 MeV as a design value and also a beam current was upgraded to 50 mA by replacing a new ion source. At the 3 GeV synchrotron, a high power beam of 8.41x1013 protons per pulse was demonstrated, which was equivalent to 1 MW when the repetition would be 25 Hz. At the main ring, beam loss was reduced by suppression of transverse instabilities and so on. The beam power for both the neutrino experiment and hadron experimental facility is increasing to reduce beam loss. J-PARC accelerators each have their own upgrade plan to increase beam power. The progress and future plan of J-PARC accelerators are reported in this paper.  
slides icon Slides TUXA01 [11.427 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUXA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAA03 Long Term Plans to Increase Fermilab's Proton Intensity to Meet the Needs of the Long Baseline Neutrino Program proton, linac, booster, experiment 1010
 
  • E. Prebys, P. Adamson, S.C. Childress, P. Derwent, S.D. Holmes, I. Kourbanis, V.A. Lebedev, W. Pellico, A. Romanenko, V.D. Shiltsev, E.G. Stern, A. Valishev, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work is supported by the US Department of Energy under contract No. De-AC02-07CH11359.
The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of roughly 2.5 MW at 120 GeV, which is roughly five times the current maximum power. This poster outlines the staged plan to achieve the required power over the next 15 years.
 
slides icon Slides TUOAA03 [4.129 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOAA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB007 Research and Development of the Pulse Bump Magnet for the Injection System in CSNS/RCS neutron, radiation, high-voltage, synchrotron 1118
 
  • L. Huo, M.Y. Huang, W. Kang, Y.Q. Liu, J. Qiu, L. Wang, S. Wang
    IHEP, Beijing, People's Republic of China
 
  The H stripping painting injection is adopted in the Rapid Cycling Synchrotron (RCS) of China Spallation Neutron Source (CSNS). Painting injection is realized by eight pulse bump magnets. The pulse bump magnet is the key of the performance of painting, as well as the beam loss control. The manufacture and the field measurement of the eight pulse bump magnets have been completed. In the development of the magnets, some key technical problems on fabrication of coil were solved, and the field measurement results show that the magnets fulfil the design specification.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB017 The Injection Septum Magnet for the Collector Ring (FAIR) septum, vacuum, operation, lattice 1145
 
  • P.Yu. Shatunov, D.E. Berkaev, I. Koop, E.P. Semenov, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
  • A. Dolinskyy, S.A. Litvinov
    GSI, Darmstadt, Germany
  • Yu. A. Rogovsky
    Budker INP & NSU, Novosibirsk, Russia
 
  Collector Ring is one of the key installations of the FAIR project (Darmstadt, Germany). It is dedicated for stochastic cooling of incoming beams of antiprotons and rare ions. Additionally there is a mode of operation for experiments in the ring. Beams for all modes of operation are injected through one transfer channel. Extremely high acceptance of the ring (240 mm*mrad) leads to large apertures of all magnetic elements including the septum magnet. Meanwhile planned parameters of the magnetic field and magnetic field quality are comparatively strict. The present state of the design of the pulsed injection septum for the CR is presented in this article together with the concept of the injection system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB018 Magnetic Measurements of SESAME Storage Ring Dipoles at ALBA dipole, alignment, multipole, storage-ring 1148
 
  • J. Marcos, J. Campmany, V. Massana
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • A. Milanese, C. Petrone, L. Walckiers
    CERN, Geneva, Switzerland
 
  Funding: This work is partially supported by the EC under the CESSAMag project, FP7 contract 338602.
In this work we present the results of the measurement campaign of the main bending magnets of the SESAME storage ring, that were fully characterized at ALBA-CELLS magnetic measurements facility. A total of 17 combined function dipoles ' 16 series magnets plus a pre-series one ' has been tested and characterized. This campaign has been performed using a dedicated Hall probe bench. The main measurements include the transfer function at the center of the magnet and field maps of the three components of the field in a plane around the nominal trajectory of the electron beam, at two different operating currents. In this paper we describe the experimental setup and procedures, before reporting the main results, including statistics of magnet-to-magnet reproducibility and integrated field quality. Finally, we show how the measured data can be exploited for an optimal 3D alignment of the dipoles in the machine.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB048 Compensation of Beam Induced Effects in LHC Cryogenic Systems cryogenics, controls, electron, simulation 1205
 
  • B. Bradu, E. Blanco Viñuela, G. Ferlin, B. Fernández Adiego, G. Iadarola, P. Plutecki, E. Rogez, A. Tovar González
    CERN, Geneva, Switzerland
 
  This paper presents the different control strategies deployed in the LHC cryogenic system in order to compensate the beam induced effects in real-time. LHC beam is inducing important heat loads along the 27 km of beam screens due to synchrotron radiations, image current and electron clouds. These dynamic heat loads disturb significantly the cryogenic plants and automatic compensations are mandatory to operate the LHC at full energy. The LHC beam screens must be maintained in an acceptable temperature range around 20 K to ensure a good beam vacuum, especially during beam injections and energy ramping where the dynamic responses of cryogenic systems cannot be managed with conventional feedback control techniques. Consequently, several control strategies such as feed-forward compensation have been developed and deployed successfully on the machine during 2015 where the beam induced heat loads are forecast in real-time to anticipate their future effects on cryogenic systems. All these developments have been first entirely modeled and simulated dynamically to be validated, allowing then a smooth deployment during the LHC operation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB052 High Intensity Beam Test of Low Z Materials for the Upgrade of SPS-to-LHC Transfer Line Collimators and LHC Injection Absorbers experiment, simulation, proton, radiation 1218
 
  • F.L. Maciariello, O. Aberle, M.E.J. Butcher, M. Calviani, R. Folch, V. Kain, K. Karagiannis, I. Lamas Garcia, A. Lechner, F.-X. Nuiry, G.E. Steele, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injector Upgrade (LIU) and High-Luminosity LHC (HL-LHC) project, the collimators in the SPS-to LHC transfer lines will undergo important modifications. The changes to these collimators will allow them to cope with beam brightness and intensity levels much increased with respect to their original design parameters: nominal and ultimate LHC. The necessity for replacement of the current materials will need to be confirmed by a test in the High Radiation to Materials (HRM) facility at CERN. This test will involve low Z materials (such as Graphite and 3-D Carbon/Carbon composite), and will recreate the worst case scenario those materials could see when directly impacted by High luminosity LHC (HL-LHC) or Batch Compression Merging and Splitting (BCMS) beams. Thermo-structural simulations used for the material studies and research, the experiment preparation phase, the experiment itself, pre irradiation analysis (including ultrasound and metrology tests on the target materials), the results and their correlation with numerical simulations will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR012 Investigation of Central Region Design of 10MeV AVF Cyclotron cyclotron, ion, ion-source, acceleration 1253
 
  • M. Afkhami Karaei, H. Afarideh, S. Azizpourian, R. Solhju
    AUT, Tehran, Iran
  • J.-S. Chai, M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  Recently, studies on the central region of 10 MeV AVF Cyclotron have been done at AmirKabir University of Technology. In this study, the aim of the cyclotron design is to accelerate the ions up to 10MeV energy. The cyclotron, consist of four sector magnets and 2 RF cavities which will be operated at 71 MHz. The internal PIG ion source is used in this cyclotron. The purpose of this work is to investigate the behavior of trajectories of ions in the magnetic and electric fields at the center of the cyclotron. The electric and magnetic field distribution was designed by OPERA-3DTOSCA. In order to solve the equation of motion, numerical code was written in C++ program that used the conventional Rung-Kutta method. The obtained results of simulation were the horizontal and vertical motion of an ion in the center of cyclotron, and motion of the center of the orbits.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR028 Spin Correlations Study for the New g-2 Experiment at Fermilab experiment, storage-ring, simulation, quadrupole 1301
 
  • D. Stratakis, J.D. Crnkovic, W. Morse, V. Tishchenko
    BNL, Upton, Long Island, New York, USA
 
  The muon g-2 experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model (SM) calculation. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. Achieving this goal, however, requires the delivery of highly polarized 3.094 GeV/c muons with a narrow ±0.5% Δp/p acceptance to the g-2 storage ring. In this study, we examine systematic errors that can arise from correlations between muon spin and transverse coordinates for the new g-2 experiment. To achieve this goal we perform end-to-end spin tracking simulations from the production target up to the ring injection point and compare our findings against the results from the Brookhaven experiment. We detail similarities and differences.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR039 The Development of a New High Field Injection Septum Magnet System for Main Ring of J-Parc septum, operation, power-supply, flattop 1337
 
  • T. Shibata, K. Ishii, H. Matsumoto, N. Matsumoto, T. Sugimoto
    KEK, Ibaraki, Japan
  • K. Fan
    HUST, Wuhan, People's Republic of China
 
  We are improving the Main Ring (MR) for beam power of 750 kw which is the first goal of J-PARC. The repetition period of the fast extraction must be short to 1.3 second from the current period of 2.48 second for the improvement of the beam power. It is necessary to exchange a high field injection septum magnet which will be installed at the injection line from RCS to MR and its power supply, because the current injection septum system can not be operated with 1.3 second repetition. Since confirmed the large leakage field around current circling beam line of the injection magnet, we must improve the shielding structure which make low leakage field. We started the development of the new injection septum magnet and its power supply in 2013. It can operate with 1 Hz repetition and the low leakage field which its order is 10-4 of the gap field. The new Injection septum magnet and the new power supply were constructed in Winter of 2014. We had many improvement of the magnet and power supply. We will install the new injection septum magnet system in this summer. In this presentation, we will report the detail of the results of its performance.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR046 Sources of Emittance Growth at the CERN PS Booster to PS Transfer emittance, kicker, optics, betatron 1352
 
  • W. Bartmann, J.L. Abelleira, F. Burkart, B. Goddard, J. Jentzsch, R. Ostojić
    CERN, Geneva, Switzerland
 
  The CERN PS Booster (PSB) has four vertically stacked rings. After extraction from each ring, the bunches are recombined in two stages, comprising septum and kicker systems, such that the accumulated bunch train is injected through a single line into the PS. Bunches from the four rings go through a different number of vertical bends, which leads to differences in the betatron and dispersion functions due to edge focussing. The fast pulsed systems at PSB extraction, recombination and PS injection lead to systematic errors of delivery precision at the injection point. These error sources are quantified in terms of emittance growth and particle loss. Mitigations to reduce the overall emittance growth at the PSB to PS transfer within the LHC injectors upgrade are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR048 SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time ion, kicker, damping, proton 1360
 
  • B. Goddard, E. Carlier, L. Ducimetière, G. Kotzian, J.A. Uythoven
    CERN, Geneva, Switzerland
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisation errors, damper performance and SPS non-linear optics behavior. The outlook for deployment is discussed, with the implications for LHC operation and HL-LHC performance.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR049 Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode simulation, kicker, flattop, operation 1363
 
  • T. Kramer, W. Bartmann, J.C.C.M. Borburgh, L. Ducimetière, L.M.C. Feliciano, A. Ferrero Colomo, B. Goddard, L. Sermeus
    CERN, Geneva, Switzerland
 
  Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying the performance of upgrade options have been taken during the last end of the year stop. The paper concludes with an upgrade plan and a brief overview of implementation risks.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR053 Initial Experience with Carbon Stripping Foils at ISIS operation, synchrotron, proton, vacuum 1378
 
  • B. Jones, D.J. Adams, H. V. Smith
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS Facility at the Rutherford Appleton Laboratory is a spallation neutron and muon source based upon a 50 Hz rapid cycling synchrotron accelerating ~3×1013 protons per pulse from 70 to 800 MeV to deliver a mean beam power of 0.2 MW to two target stations. Throughout its 30 years of operation ISIS has developed aluminium oxide foils in-house for H− charge exchange injection. The manufacturing and installation processes for these foils are time consuming, radiologically dose intensive and require a high degree of skill. Commercially available carbon based foils commonly used at other facilities, have the potential to greatly simplify foil preparation and installation in addition to improving beam quality. Similar foils would also be necessary for facility upgrades which increase injection energy to withstand the higher operating temperatures. This paper describes the initial experience of carbon foils in the ISIS synchrotron including issues relating to handling and mounting foils, their performance under beam operation and plans for further development.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR058 An Upgrade for the 1.4 MeV/u Gas Stripper at the GSI UNILAC target, ion, dipole, heavy-ion 1394
 
  • P. Scharrer, W.A. Barth, Ch.E. Düllmann, J. Khuyagbaatar, A. Yakushev
    HIM, Mainz, Germany
  • W.A. Barth, M. Bevcic, Ch.E. Düllmann, L. Groening, K.P. Horn, E. Jäger, J. Khuyagbaatar, J. Krier, P. Scharrer, A. Yakushev
    GSI, Darmstadt, Germany
  • Ch.E. Düllmann
    Johannes Gutenberg University Mainz, Institut of Nuclear Chemistry, Mainz, Germany
  • P. Scharrer
    Mainz University, Mainz, Germany
 
  The GSI UNILAC will serve as part of an injector system for the future FAIR facility, currently under construction in Darmstadt, Germany. For this, it has to deliver short-pulsed, high-current, heavy-ion beams with highest beam quality. An upgrade for the 1.4 MeV/u gas stripper is ongoing to increase the yield of uranium ions in the desired charge state. The new setup features a pulsed gas injection synchronized with the beam pulse transit to increase the effective density of the stripper target while keeping the gas load for the differential pumping system low. Systematic measurements of charge state distributions and energy-loss were conducted with 238U-ion beams and different stripper gases, including H2 and He. By using H2 as a stripper gas, the yield into the most populated charge state was increased by over 50%, compared to the current stripper. Furthermore, the high gas density, enabled by the pulsed injection, results in increased mean charge states.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW014 Improved Aperture Measurements at the LHC and Results from their Application in 2015 alignment, operation, insertion, beam-losses 1446
 
  • P.D. Hermes, R. Bruce, M. Fiascaris, H. Garcia, M. Giovannozzi, A. Mereghetti, D. Mirarchi, E. Quaranta, S. Redaelli, B. Salvachua, G. Valentino
    CERN, Geneva, Switzerland
  • R. Kwee-Hinzmann
    Royal Holloway, University of London, Surrey, United Kingdom
  • E. Quaranta
    Politecnico/Milano, Milano, Italy
 
  A good knowledge of the available aperture in the LHC is essential for a safe operation due to the risk of magnet quenches or even damage in case of uncontrolled beam losses. Experimental validations of the available aperture are therefore crucial and were in the past carried out by either a collimator scan combined with beam excitations or through the use of local orbit bumps. In this paper, we show a first comparison of these methods in the same machine configuration, as well as a new very fast method based on a beam-based collimator alignment and a new faster variant of the collimator scan method. The methods are applied to the LHC operational configuration for 2015 at injection and with squeezed beams and the measured apertures are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW017 Electron Cloud Observations during LHC Operation with 25 ns Beams electron, operation, simulation, cryogenics 1458
 
  • K.S.B. Li, H. Bartosik, G. Iadarola, L. Mether, A. Romano, G. Rumolo, M. Schenk
    CERN, Geneva, Switzerland
 
  While during the Run 1 (2010-2012) of the Large Hadron Collider (LHC) most of the integrated luminosity was produced with 50 ns bunch spacing, for the Run 2 start-up (2015) it was decided to move to the nominal bunch spacing of 25 ns. As expected, with this beam configuration strong electron cloud effects were observed in the machine, which had to be mitigated with dedicated 'scrubbing' periods at injection energy. This enabled to start the operation with 25 ns beams at 6.5 TeV, but e-cloud effects continued to pose challenges while gradually increasing the number of circulating bunch trains. This contribution will review the encountered limitations and the mitigation measures that where put in place and will discuss possible strategies for further performance gain.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW019 First Evaluation of Dynamic Aperture at Injection for FCC-hh dipole, dynamic-aperture, target, simulation 1466
 
  • B. Dalena, D. Boutin, A. Chancé, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, R. Martin, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: This Research and Innovation Action project submitted to call H2020-INFRADEV-1-2014-1 receives funding from the European Union's H2020 Framework Programme under grant agreement no. 654305.
In the hadron machine option, proposed in the context of the Future Circular Colliders (FCC) study, the dipole field quality is expected to play an important role, as in the LHC. A preliminary evaluation of the field quality of dipoles, based on the Nb3Sn technology, has been provided by the magnet group. The effect of these field imperfections on the dynamic aperture, using the present lattice design, is presented and first tolerances on the main multipole components are evaluated.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW026 Feed-Forward Corrections for Tune and Chromaticity Injection Decay During 2015 LHC Operation operation, hadron, collider, octupole 1489
 
  • M. Solfaroli Camillocci, M. Juchno, M. Lamont, M. Schaumann, E. Todesco, J. Wenninger
    CERN, Geneva, Switzerland
 
  After two years of shutdown, the Large Hadron Collider (LHC) has been operated in 2015 at 6.5 TeV, close to its designed energy. When the current is stable at low field, the harmonic components of the main circuits are subject to a dynamic variation induced by current redistribution on the superconducting cables. The Field Description of the LHC (FiDel) foresaw an increase of the decay at injection of tune (quadrupolar components) and chromaticity (sextupolar components) of about 50% with respect to LHC Run1 due to the higher operational current. This paper discusses the beam-based measurements of the decay during the injection plateau and the implementation and accuracy of the feed-forward corrections as present in 2015. Moreover, the observed tune shift proportional to the circulating beam intensity and it's foreseen feed-forward correction are covered.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW029 Tune and Chromaticity Control During Snapback and Ramp in 2015 LHC Operation controls, sextupole, dipole, lattice 1501
 
  • M. Schaumann, M. Juchno, M. Lamont, M. Solfaroli Camillocci, E. Todesco, J. Wenninger
    CERN, Geneva, Switzerland
 
  Because of current redistribution on the superconducting cables, the harmonic components of the magnetic fields of the superconducting magnets in the Large Hadron Collider (LHC) show decay during the low field injection plateau. This results in tune and chromaticity variations for the beams. In the first few seconds of the ramp the original hysteresis state of the magnetic field is restored - the field snaps back. These fast dynamic field changes lead to strong tune and chromaticity excursions that, if not properly controlled, induce beam losses and potentially trigger a beam dump. A feed-forward system applies predicted corrections during the injection plateau and to the first part of the ramp to avoid violent changes of beam conditions. This paper discusses the snapback of tune and chromaticity as observed in 2015, as well as the control of beam parameters during the ramp. It also evaluates the quality of the applied feed-forward corrections and their reproducibility.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW034 A 200 MHz SC-RF System for the HL-LHC cavity, emittance, luminosity, impedance 1513
 
  • R. Calaga, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the High Luminosity LHC project
A quarter wave β=1 superconducting cavity at 200 MHz is proposed for the LHC as an alternative to the present 400 MHz RF system. The primary motivation of such a system would be to accelerate higher intensity and longer bunches with improved capture efficiency. Advantages related to minimizing electron cloud effects, intra-beam scattering, heating and the possibility of luminosity levelling with bunch length are described. Some considerations related to cavity optimization, beam loading and technological challenges are addressed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW038 RHIC Operation with Asymmetric Collisions in 2015 proton, operation, emittance, cavity 1527
 
  • C. Liu, E.C. Aschenauer, G. Atoian, M. Blaskiewicz, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, X. Gu, T. Hayes, H. Huang, R.L. Hulsart, J.S. Laster, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, G. Narayan, S.K. Nayak, S. Nemesure, P.H. Pile, A. Poblaguev, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, G. Wang, K. Yip, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Collisions with beams of highly asymmetric rigidities (proton-Gold and proton-Aluminum) were provided for the RHIC physics programs in 2015. Magnets were moved for the first time in RHIC prior to the run to accommodate the asymmetric beam trajectories during acceleration and at store. A special ramping scheme was designed to keep the revolution frequencies of the beams in the two rings equal. The unique operational experience of the asymmetric run will be reviewed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY005 A Muon Source Proton Driver at JPARC-based Parameters proton, booster, linac, operation 1550
 
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the U. S. Department of Energy.
An "ultimate" high intensity proton source for neutrino factories and/or muon colliders was projected to be a ~4 MW multi-GeV proton source providing short, intense proton pulses at ~15 Hz. The JPARC ~1 MW accelerators provide beam at parameters that in many respects overlap these goals. Proton pulses from the JPARC Main Ring can readily meet the pulsed intensity goals. We explore these parameters, describing the overlap and consider extensions that may take a JPARC-like facility toward this "ultimate" source. JPARC itself could serve as a stage 1 source for such a facility.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY015 Ultrafast Electron Guns for the Efficient Acceleration using Single-Cycle THz Pulses electron, gun, acceleration, laser 1578
 
  • A. Fallahi, F.X. Kärtner, A. Yahaghi
    CFEL, Hamburg, Germany
  • M. Fakhari
    DESY, Hamburg, Germany
 
  Funding: European Research Council (ERC)
Over the past decades, advances in ultrafast technologies led to the production of intense ultrashort THz to optical pulses reaching single-cycle pulse duration. Using such pulses for electron acceleration offers advantages in terms of higher thresholds for materials breakdown, thus introducing a promising path towards increasing acceleration gradients. Conventional accelerator technology is based on either continuous wave or long pulse operation, where resonant or guiding structures are usually employed. We introduce novel structures for electron acceleration which operate with single-cycle pulses named as single-cycle ultrafast guns. The operating frequencies considered here are at THz wavelengths inspired by the recent progress in the optical generation of intense single-cycle THz pulses. We begin with designing guns for low energy pulses and proceed with structures designed for high energy pulses. More importantly, it is shown that the already achieved THz pulse energies of 20 uJ are enough to realize relativistic fields for electron acceleration. These structures will underpin future devices for fabricating miniaturized electron guns and linear accelerators.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMY026 Electron Beam Generation and Injection From a Pyroelectric Crystal Array acceleration, electron, laser, radiation 1604
 
  • R.B. Yoder, Z. Kabilova, B. Saeks
    Goucher College, Baltimore, Maryland, USA
 
  Novel acceleration structures (e.g. dielectric laser accelerators [DLAs]*) powered by lasers have the potential to greatly reduce the footprint and cost of both industrial linacs and colliders. As these devices have dimensions comparable to optical wavelengths, they require injection of a sub-micron-scale electron bunch to generate high-quality output beams, which are well beyond the capability of conventional rf photocathodes. Photoexcitation and field emission from an array of nanotips, followed by further acceleration and focusing, is a promising approach to achieving the requisite small beam sizes for successful injection. Pyroelectric crystals can provide electrostatic fields of sufficient magnitude and uniformity to enable emission and acceleration. We present an initial design for a low-energy injection module using the accelerating electrostatic fields provided by pyroelectric crystals. The approach is modeled numerically and supported by direct benchtop measurements of pyroelectric fields from a 2-crystal array.
*R. J. England et al., Rev. Mod. Phys. 86, p. 1337 (2014).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW008 Generation of Short Bunch Electron Beam from Compact Accelerator for Terahertz Radiation laser, electron, radiation, detector 1757
 
  • S. Suphakul, T. Kii, K. Masuda, K. Morita, H. Ohgaki, K. Torgasin, H. Zen
    Kyoto University, Kyoto, Japan
 
  We are developing a new compact accelerator system to generate a high power terahertz (THz) radiation at the Institute of Advanced Energy, Kyoto University. THz radiations are produced by injecting ultra-short and intense electron pulses to a short plannar undulator. The bunch compression characteristic by the newly installed chicane was investigated by observation of a coherent part of an optical transition radiation (OTR). As the result, the chicane can compress the electron bunch at the laser injection phase from 10 to 40 degree. The beam energy and relative rms energy spread were also measured and the results were 4.6 MeV and 1.3 %, respectively.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW009 Generation of Coherent Undulator Radiation using Extremely Short Electron Bunch at t-ACTS, Tohoku University radiation, undulator, electron, bunching 1760
 
  • S. Kashiwagi, T. Abe, H. Hama, F. Hinode, T. Muto, I. Nagasawa, K. Nanbu, H. Saito, Y. Shibasaki, K. Takahashi, C. Tokoku
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  An accelerator test facility, t-ACTS, was established at Research Center for Electron Photon Science, Tohoku University, in which an intense coherent terahertz (THz) radiation is generated from an extremely short electron bunch. Velocity bunching scheme in a traveling-wave accelerating structure is employed to produce the short electron bunch, and a production of sub-picosecond electron bunch was demonstrated. A long-period linear undulator, which has 25 periods with a period length of 10 cm and a peak magnetic field of 0.41 T, has been developed to produce intense coherent THz radiation. Properties of the radiation from the THz undulator such as radiation fields, spectrum and angular distribution were numerically investigated based on the parameters of short electron bunch and THz undulator. By optimization of bunch compression, it is possible to extract a coherent radiation of fundamental mode excluding higher-order mode. The detail of the numerical studies for the coherent undulator radiation will be reported in the conference.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW010 Production of Ultra-short Electron Pulse and Observation of Coherent Transition Radiation at t-ACTS, Tohoku University radiation, electron, bunching, detector 1763
 
  • T. Abe, H. Hama, F. Hinode, S. Kashiwagi, T. Muto, I. Nagasawa, K. Nanbu, H. Saito, Y. Shibasaki, K. Takahashi, C. Tokoku
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  A test-Accelerator as Coherent Terahertz Source (t-ACTS) project has been under development at Research Center for Electron Photon Science, Tohoku University. In order to generate a coherent radiation in terahertz (THz) region, it is necessary to produce sub-picosecond electron pulses. Velocity bunching scheme is employed for the short electron pulse production in t-ACTS. We experimentally confirmed the production of short electron pulse under 500 fs by measuring the bunch length using a streak camera. Coherent transition radiation in THz region was produced by which the short electron pulses pass through a vacuum-metal interface. Several radiation properties including spatial distribution, polarization and spectrum were measured and compared with theoretical calculations. The details of the beam experiment at t-ACTS are described.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY022 A Fixed Field Alternating Gradient Accelerator for Helium Therapy ion, proton, acceleration, emittance 1953
 
  • J. Taylor
    IIAA, Huddersfield, United Kingdom
  • T.R. Edgecock, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • S. Green
    University Birmingham, Birmingham, United Kingdom
  • C. Johnstone
    PAC, Batavia, Illinois, USA
 
  A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 nested superconducting rings, treating with helium ions (He2+) and image with hydrogen ions (H2+). Compared to protons, ions deliver a more conformal dose with a significant reduction in range straggling and beam broadening. Carbon ions are currently used and there are no current facilities providing helium therapy. We are investigating the feasibility of an FFAG approach for helium therapy, which has never been previously considered. We investigate emittance and demonstrate that the machine meets isochronicity requirements for fixed frequency RF.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY023 A Compact and High Current FFAG for the Production of Radioisotopes for Medical Applications target, proton, simulation, space-charge 1957
 
  • D. Bruton, R.J. Barlow, T.R. Edgecock, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • C. Johnstone
    PAC, Batavia, Illinois, USA
 
  A low energy Fixed Field Alternating Gradient (FFAG) accelerator has been designed for the production of radioisotopes. Tracking studies have been conducted using the OPAL code, including the effects of space charge. Radioisotopes have a wide range of uses in medicine, and recent disruption to the supply chain has seen a renewed effort to find alternative isotopes and production methods. The design features separate sector magnets with non-scaling, non-linear field gradients but without the counter bends commonly found in FFAG's. The machine is isochronous at the level of 0.3% up to at least 28 MeV and hence able to operate in Continuous Wave (CW) mode. Both protons and helium ions can be used with this design and it has been demonstrated that proton beams with currents of up to 20 mA can be accelerated. An interesting option for the production of radioisotopes is the use of a thin internal target. We have shown that this design has large acceptance, ideal for allowing the beam to be recirculated through the target many times, the lost energy being restored on each cycle. In this way, the production of Technetium-99m, for example, can take place at the optimum energy.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAA01 Transverse Emittance Exchange for Improved Injection Efficiency emittance, resonance, coupling, synchrotron 2028
 
  • P. Kuske, F. Kramer
    HZB, Berlin, Germany
 
  In most cases beam is injected into electron storage rings in the horizontal plane and off-axis. The larger the horizontal emittance of the injected beam the larger the acceptance of the ring has to be. The injected beam is usually delivered by a synchrotron. In case the vertical acceptance of the ring is sufficiently large one can take advantage of the small vertical emittance reached in well aligned and tuned synchrotrons since the transverse emit-tances can be exchanged with the help of skew quadru-pole magnets. A few possible processes will be discussed: emittance exchange with static magnets in the transfer line between synchrotron and ring or emittance exchange in the synchrotron shortly before extraction with time dependent magnets. This could be a suddenly switched-on normal or skew quadrupole magnet or skew quadru-pole fields oscillating at a frequency fulfilling the reso-nance condition. Estimates for these magnets and their design will be given.  
slides icon Slides WEOAA01 [0.852 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAA02 On-axis Beam Accumulation Enabled by Phase Adjustment of a Double-frequency RF System for Diffraction-limited Storage Rings lattice, kicker, synchrotron, storage-ring 2032
 
  • G. Xu, J. Chen, Z. Duan, J. Qiu
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by NSFC (Y4113G005C)
Future synchrotron light sources aim to achieve ultra- low emittances on both transverse planes, approaching or even reaching the diffraction limit of X-ray photon energies. These diffraction-limited storage rings (DLSRs) feature very strong lattice nonlinearities and thus very small dynamic aperture, which exclude off-axis injection schemes. In this paper, we propose a longitudinal on-axis injection scheme, which is based on a double-frequency RF system and in- dependently adjustment of the RF phase of each cavity to enable RF gymnastics. Such a scheme looks feasible with the state-of-art technology of fast injection kicker. Compari- son with other on-axis injection schemes is also discussed.
 
slides icon Slides WEOAA02 [1.712 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBA03 High Brilliance Uranium Beams for FAIR brilliance, emittance, ion, target 2052
 
  • W.A. Barth, A. Adonin, Ch.E. Düllmann, M. Heilmann, R. Hollinger, E. Jäger, O.K. Kester, J. Khuyagbaatar, J. Krier, E. Plechov, P. Scharrer, W. Vinzenz, H. Vormann, A. Yakushev, S. Yaramyshev
    GSI, Darmstadt, Germany
  • Ch.E. Düllmann, J. Khuyagbaatar, P. Scharrer, A. Yakushev
    HIM, Mainz, Germany
  • Ch.E. Düllmann
    Johannes Gutenberg University Mainz, Institut of Nuclear Chemistry, Mainz, Germany
  • P. Scharrer
    Mainz University, Mainz, Germany
 
  The 40 years old GSI-UNILAC (Universal Linear Accelerator) as well as the heavy ion synchrotron SIS18 will serve as a high current heavy ion injector for the new FAIR (Facility for Antiproton and Ion Research) synchrotron SIS100. Due to an advanced machine investigation program in combination with the ongoing UNILAC upgrade program, a new uranium beam intensity record (10 emA, U29+) at very high beam brilliance was achieved recently in a machine experiment campaign. This is an important step paving the way to fulfill the FAIR heavy ion high intensity beam requirements. Results of high current uranium beam measurements applying a newly developed pulsed hydrogen gas stripper (at 1.4 MeV/u) will be presented in detail.  
slides icon Slides WEOBA03 [2.281 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOBA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR046 Thermal Analysis of the Injection Beam Dump at J-PARC RCS radiation, proton, shielding, synchrotron 2380
 
  • J. Kamiya, M. Kinsho, P.K. Saha, K. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  In the J-PARC accelerator facility, 400 MeV H ions are injected from linac to rapid cycling synchrotron (RCS). A thin graphite foil with the thickness of about 300 ug/cm2 is located at the injection point to strip two electrons from H ion and convert it to proton. The charge stripping efficiency is usually more than 99.7 %. In other words, less than 0.3 % H ions are not accurately exchanged to protons. Most of those remaining H ions or H0 atoms (stripped only one electron from H ion) are eventually converted to protons by second and third graphite foils and transported to the beam dump. This beam dump consists of an iron block with the size of 0.3×0.3×0.4 m3 for beam stop and the iron block with the size of 3×3×2.5 m3 and concrete with the size of 6×6×6 m3 around the iron block for the radiation shielding. The radiation shielding was designed to endure the 4 kW proton beam to the beam dump. In this presentation, we show the thermal analysis of the beam dump and compare it to the real operation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW007 Validation of Off-momentum Cleaning Performance of the LHC Collimation System proton, collimation, beam-losses, alignment 2427
 
  • B. Salvachua, P. Baudrenghien, R. Bruce, H. Garcia, P.D. Hermes, S. Jackson, M. Jaussi, A. Mereghetti, D. Mirarchi, S. Redaelli, H. Timko, G. Valentino, A. Valloni
    CERN, Geneva, Switzerland
  • R. Kwee-Hinzmann
    Royal Holloway, University of London, Surrey, United Kingdom
 
  The LHC collimation system is designed to provide effective cleaning against losses coming from off-momentum particles, either due to un-captured beam or to an unexpected RF frequency change. For this reason the LHC is equipped with a hierarchy of collimators in IR3: primary, secondary and absorber collimators. After every collimator alignment or change of machine configuration the off-momentum cleaning efficiency is validated with loss maps at low intensity. We describe here the improved technique used in 2015 to generate such loss maps without completely dumping the beam into the collimators. The achieved performance of the collimation system for momentum cleaning is reviewed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW011 Stable Spin Direction Investigations in RHIC kicker, extraction, emittance, septum 2442
 
  • F. Méot, H. Huang, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Beam and spin dynamics investigations are part of the preparations and studies regarding RHIC collider runs, they are part as well of the efforts dedicated to improving stored beam polarization, and in view of the eRHIC EIC project. Some recent studies and their outcomes are discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW012 Injection Optics for the JLEIC Ion Collider Ring quadrupole, optics, ion, collider 2445
 
  • V.S. Morozov, Y.S. Derbenev, F. Lin, F.C. Pilat, G.H. Wei, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y. Nosochkov, M.K. Sullivan, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: * Work supported by the U.S. DOE Contract DE-AC02-76SF00515. ** Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required to allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR001 Beam Studies with a New Longitudinal Feedback System at the ANKA Storage Ring feedback, synchrotron, storage-ring, kicker 2658
 
  • E. Blomley, A.-S. Müller, M. Schedler
    KIT, Karlsruhe, Germany
 
  With the now fully commissioned longitudinal feedback system at the ANKA Storage Ring - in addition to the already operational transverse feedback system - the stability throughout the injection process was increased considerably. This opened up the possibility to investigate beam dynamics and limitations during injection more systematically. This paper presents the results of these studies, an overview of the limiting parameters and discusses possible approaches to increase the efficiency of the injection.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW005 Updates on Lattice Modeling and Tuning for the ESRF-EBS Lattice. lattice, dipole, quadrupole, radiation 2818
 
  • S.M. Liuzzo, N. Carmignani, J. Chavanne, L. Farvacque, G. Le Bec, B. Nash, P. Raimondi, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  The ESRF-EBS lattice model is updated to include the effect of magnetic lengths in dipoles, quadrupoles, sextupoles and combined function magnets. The effect of this modification and the updates to the injection cell are considered with particular focus on injection efficiency and Touschek lifetime. The solutions to introduce new sources of radiation suitable for the existing bending magnet radiation beamlines are also presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW007 Status and Prospects of the BESSY II Injector System booster, storage-ring, linac, synchrotron 2826
 
  • T. Atkinson, W. Anders, P. Goslawski, A. Jankowiak, F. Kramer, P. Kuske, D. Malyutin, A.N. Matveenko, A. Neumann, M. Ries, M. Ruprecht, A. Schälicke, T. Schneegans, D. Schüler, P.I. Volz, G. Wüstefeld
    HZB, Berlin, Germany
  • H.G. Glass
    BESSY GmbH, Berlin, Germany
 
  The BESSY II injector system consists of a 50 MeV Linac, installed in preparation for TopUp operation, and a 10 Hz fast-ramping booster synchrotron. The system provides injection efficiencies into the BESSY II storage ring well above 90 % . This contribution reports on the present status, measurements of energy acceptance and other essential beam parameters as well as studies on coupled-bunch-by-bunch instability. Requirements for BESSY-VSR and possible upgrade scenarios are discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW023 Present Status of Accelerators in Aichi Synchrotron Radiation Center synchrotron, radiation, storage-ring, synchrotron-radiation 2877
 
  • Y. Takashima, M. Hosaka, A. Mano
    Nagoya University, Nagoya, Japan
  • Y. Hori, N. Yamamoto
    KEK, Ibaraki, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
  • S. Koda
    SAGA, Tosu, Japan
  • S. Sasaki
    JASRI/SPring-8, Hyogo, Japan
  • T. Takano
    Hitachi Ltd., Ibaraki-ken, Japan
 
  Aichi Synchrotron Radiation Center is the newest synchrotron radiation facility in Japan. The construction was started in 2010 and the facility was opened for public use on March 26, 2013. The circumference of the storage ring is 72 m with the electron energy of 1.2 GeV, the beam current of 300 mA and the natural emittance of about 53 nmrad. The beam is injected from a booster synchrotron with the energy of 1.2 GeV as full energy injection and the top-up operation has been carried out routinely with stored current of 300 mA since opened for public use. We have tested a pulsed multi-pole magnet for improving the deviation of the orbit of stored beam during the top-up beam injection. The storage ring consists of four triple bend cells. Eight of the twelve bending magnets are normal conducting ones. Four of them are 5 T superconducting magnets(superbend) of which bending angle is 12 degrees. The superbends are running without any trouble with refrigerator maintenance once per year. The accelerators have been operated about 1400 hours stable in a year. Eight of the synchrotron radiation beamlines have been operational for public use and other two beamlines are under construction.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW024 Commissioning of SESAME Booster booster, septum, quadrupole, extraction 2880
 
  • M. Attal, I.A. Abid, T.H. Abu-Hanieh, H. Al-Mohammad, M.A. Al-Najdawi, D.S. Foudeh, A. Hamad, E. Huttel, A. Ismail, S.Kh. Jafar, F. Makahleh, M. Mansouri Sharifabad, K. Manukyan, I. Saleh, N.Kh. Sawai, M.M. Shehab
    SESAME, Allan, Jordan
 
  Commissioning of the 800 MeV booster of SESAME light source started in December 2013. The 38.4 m circumference booster is a part of SESAME injector which includes also a 20 MeV classical microtron as a pre-injector that is in operation since 2012. The main results and experience obtained during the commissioning period are reported in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW026 Recent Physical Studies for the HEPS Project lattice, booster, emittance, sextupole 2886
 
  • G. Xu, Z. Duan, Y.Y. Guo, D. Ji, Y. Jiao, X.Y. Li, Y.M. Peng, Q. Qin, J. Qiu, S.K. Tian, J.Q. Wang, N. Wang, Y. Wei, C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS), a kilometre- scale storage ring light source, with a beam energy of 5 to 6 GeV and transverse emittances of a few tens of pm.rad, is to be built in Beijing and now is under design. In this paper we reported the progress and status of the physical studies for the HEPS project, covering issues of storage lattice design and optimization, booster design, injection design, collective effects, error study, insertion device effects, longitudinal dynamics, etc.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW031 Performance of the Vacuum System for the Solaris 1.5 GeV Electron Storage Ring storage-ring, vacuum, electron, synchrotron 2898
 
  • A.M. Marendziak, C.J. Bocchetta, P.B. Borowiec, P. Bulira, L.J. Dudek, P.P. Goryl, K. Karaś, A. Kisiel, W.T. Kitka, M.P. Kopec, M. Madura, R. Nietubyć, M.P. Nowak, M.J. Stankiewicz, A.I. Wawrzyniak, K. Wawrzyniak, J.J. Wiechecki, J. Wikłacz, M. Zając, Z. Zbylut, L. Żytniak
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  Solaris is a third generation light source recently constructed at the Jagiellonian University in Kraków, Poland. The machine was designed by the team at the MAX IV Laboratory. A replica of the 1.5 GeV MAX IV storage ring with a 96 m circumference was successfully built at Solaris and now the facility is in its 3rd phase of commissioning. The average pressure in the storage ring was 1.2·10-10 mbar before beam commissioning and increases to 1.2·10-8 mbar with 511 mA of stored beam current for electron energy of 524 MeV. With 10 A·h accumulated beam dose, beam cleaning has permitted an average pressure of 3·10-10 mbar/mA. In this paper the result of vacuum performance from beam cleaning and the beam lifetime will be presented. Moreover vacuum maintenance procedures will be reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW039 Preliminary Beam Loss Study of TPS during Beam Commissioning radiation, photon, scattering, EPICS 2926
 
  • C.H. Huang, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, D. Lee, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan photon source (TPS) is a 3rd generation and 3 GeV synchrotron light source in NSRRC. Several types of beam loss monitors (BLMs) such as RadFETs and PIN-diode BLMs are installed in the storage ring to understand the beam loss distribution and mechanism during the injection, decay mode, top-up operation and beam trip. Several RadFETs are also installed around the inserting devices to study the beam loss near the linear scalar. The preliminary beam loss study using RadFETs are PIN-diode BLMs in the storage will be summarized in this report.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW049 Physics Design Progress towards a Diffraction Limited Upgrade of the ALS emittance, lattice, brightness, dynamic-aperture 2956
 
  • C. Steier, J.M. Byrd, S. De Santis, H. Nishimura, D. Robin, F. Sannibale, C. Sun, M. Venturini, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.
Improvements in brightness and coherent flux of more than two orders of magnitude are possible using multi bend achromat lattice designs. These improvements can be implemented as upgrades of existing facilities, like the proposed upgrade of the Advanced Light Source. We will describe the progress in the physics design of this upgrade, including lattice evolution, error tolerance studies, simulations of collective effects, and intra beam scattering.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW050 Optimization of the ALS-U Storage Ring Lattice lattice, emittance, storage-ring, quadrupole 2959
 
  • C. Sun, H. Nishimura, D. Robin, F. Sannibale, C. Steier, M. Venturini, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory is proposing the upgrade of its synchrotron light source to reach soft x-ray diffraction limits within the present ALS footprint. The storage ring lattice design and optimization of this light source is one of the challenging aspects for this proposed upgrade. The candidate upgrade lattice needs not only to fulfill the physics design requirements such as brightness, injection efficiency and beam lifetime, but also to meet engineering constraints such as space limitations, maximum magnet strength as well as beamline port locations. In this paper, we will present the approach that we applied to design and optimize a multi-bend achromat based storage ring lattice for the proposed ALS upgrade.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW051 R+D Progress Towards a Diffraction Limited Upgrade of the ALS vacuum, undulator, emittance, storage-ring 2962
 
  • C. Steier, A. Anders, J.M. Byrd, K. Chow, S. De Santis, R.M. Duarte, J.-Y. Jung, T.H. Luo, H. Nishimura, T. Oliver, J.R. Osborn, H.A. Padmore, G.C. Pappas, D. Robin, F. Sannibale, D. Schlueter, C. Sun, C.A. Swenson, M. Venturini, W.L. Waldron, E.J. Wallén, W. Wan, Y. Yang
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.
Improvements in brightness and coherent flux of about two orders of magnitude over operational storage ring based light sources are possible using multi bend achromat lattice designs. These improvements can be implemented as upgrades of existing facilities, like the proposed upgrade of the Advanced Light Source, making use of the existing infrastructure, thereby reducing cost and time needed to reach full scientific productivity on a large number of beamlines. An R&D program was started at LBNL to further develop the technologies necessary for diffraction-limited storage rings. It involves many areas, and focuses on the specific needs of soft x-ray facilities: NEG coating of small chambers, swap-out injection, bunch lengthening, magnets/radiation production, x-ray optics, and beam physics design optimization. Hardware prototypes have been built and concepts and equipment was tested in beam tests on the existing ALS.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW053 CESR Lattice for Two Beam Operations with Narrow Gap Undulators at CHESS undulator, lattice, operation, simulation 2968
 
  • S. Wang, D. L. Rubin, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work was supported by NSF DMR-0936384 and NSF DMR-1332208.
CESR has operated as a dedicated light source since the conclusion of colliding beam program in 2008. Two undulators with a 6.5mm-vertical gap were installed in Fall 2014, replacing a wiggler in the sextant of CESR that is the home to all CHESS beam lines. In order to operate narrow gap undulators with two beams, CESR pretzel lattice was redesigned so that e- and e+ orbits are coincident in one machine sextant but separated in return arcs. In particular both e- and e+ orbits are on axis through undulators. This "arc-pretzel" lattice has been the basis for undulator operation. To better understand the beam dynamics and improve machine performance, we developed many simulation tools: undulator modeling, injection tracking, etc. With installation of an additional quadrupole near undulators, the CESR lattice will be further modified with a low beta waist in the insertion devices, allowing a more than two fold reduction of local beta functions. This reduction is anticipated to mitigate the effects of small aperture and undulator field errors and to enhance the xray brightness. The characterization of the lattice will be compared with measurements of injection efficiency, tune scans, etc.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW058 Top-off Tests and Controls Optimization operation, controls, booster, timing 2982
 
  • G.M. Wang, M.A. Davidsaver, A.A. Derbenev, R.P. Fliller, Y. Hu, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE No.DE-AC02- 98CH10886
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. As in many other light sources, top-off injection is considered as a standard operation mode resulting in more stable beam intensity to minimize heat load variation on the beamline optics. Top off injection specifications include maintaining the stored beam current within 0.5% and the bunch to bunch charge variation within 20% bands. To make the top off commissioning smooth and efficient, a virtual machine model based on the measured beam properties was developed. The model helped to study robustness of this application operating under different conditions and optimize the input parameters. Once tested the model was transitioned to beam commissioning. To make the beam tests more efficient, the beam lifetime was controlled by adjusting RF voltage and scrapers. In this paper, we'll share the experience from the test stage to machine implementation of the top-off controls.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW059 The NSLS-II Top Off Safety System operation, storage-ring, radiation, controls 2985
 
  • R.P. Fliller, D. Bergman, A. Caracappa, L. Doom, G. Ganetis, Y. Hu, Y. Li, W. Louie, D. Padrazo, O. Singh, J. Tagger, G.M. Wang, Z. Xia
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Top Off operation is the desired mode of operation for 3rd generation light sources to ensure beam current stability for user experiments. However, top off operation introduces the hazard of injecting electrons into the front ends with the beamline shutters open. This hazard can be mitigated with the appropriate safety system. This past year, the NSLS-II has transitioned from decay mode to top off operation with the introduction of the Top Off Safety System (TOSS). Top Off was initially demonstrated September 22, 2015 and become standard mode of operating. In this paper we discuss the top off safety system, operation with the system, and future directions.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW060 Top Off Algorithm Development and Commissioning at NSLS-II operation, storage-ring, target, feedback 2988
 
  • R.P. Fliller, A.A. Derbenev, T.V. Shaftan, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Recently, NSLS-II introduced top off as the standard mode of beam delivery for the users. During top off, we are required to maintain the beam current within ±0.5% of nominal, and the bunch to bunch variation over the train less than 20% for all operating conditions. In this paper, we discuss the algorithm used for top off, simulations of various operating conditions and performance of the algorithm during operations.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY030 First BTF Measurements at the Large Hadron Collider octupole, betatron, damping, simulation 3051
 
  • C. Tambasco, A. Boccardi, X. Buffat, K. Fuchsberger, M. Gąsior, R. Giachino, T. Lefèvre, T.E. Levens, T. Pieloni, M. Pojer, B. Salvachua, M. Solfaroli Camillocci
    CERN, Geneva, Switzerland
  • J. Barranco, C. Tambasco
    EPFL, Lausanne, Switzerland
 
  During the Run I in 2012, several instabilities have been observed at the Large Hadron Collider (LHC) during the Betatron squeeze. The predictions of instability thresholds are based on the computation of the beam Landau damping by calculating the Stability Diagrams (SD). These instabilities could be explained by a deterioration of the SD due to beam-beam resonance excitation which could change the particle distributions. Beam Transfer Functions (BTF) provide a measurement of the Stability Diagram. The BTFs are sensitive to the particle detuning with amplitude as well as to the particle distributions therefore they represent a powerful tool to understand experimentally the stability of beams during the LHC operational cycle. First BTF measurements at the LHC are presented for different machine configurations and settings and compared to predictions.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY036 Progress in Automatic Software-based Optimization of Accelerator Performance linac, software, storage-ring, FEL 3064
 
  • S.I. Tomin, G. Geloni
    XFEL. EU, Hamburg, Germany
  • I.V. Agapov, I. Zagorodnov
    DESY, Hamburg, Germany
  • W.S. Colocho, T.M. Cope, A.B. Egger, D.F. Ratner
    SLAC, Menlo Park, California, USA
  • Y.A. Fomin, Y.V. Krylov, A.G. Valentinov
    NRC, Moscow, Russia
 
  Funding: partial support from Ioffe Roentgen Institute grant EDYN EMRAD
For modern linac- and storage-ring-based light sources certain amount of empirical tuning is used to reach ultimate performance. The possibility to perform such empirical tuning by automatic methods has now been demonstrated by several authors (e.g. I.Agapov et al. in proc IPAC 2015). In this paper we present the progress in development of our automatic optimisation software based on OCELOT and its applications to SASE FEL optimization at FLASH and LCLS, and its potential for storage ring optimization.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY045 Benchmarking the Beam Longitudinal Dynamics Code BLonD simulation, impedance, synchrotron, feedback 3094
 
  • H. Timko, J. F. Esteban Müller, A. Lasheen, D. Quartullo
    CERN, Geneva, Switzerland
 
  The relatively recent Beam Longitudinal Dynamics code BLonD has already been applied to a wide range of studies for all present CERN synchrotrons. Its application area ranges from studies of RF manipulations, over single and multi-bunch interactions with impedance, to the action of feedback loops and RF noise. In this paper, we present benchmarks and comparisons with measurements, theory, or other codes, which have increased greatly the trust in the code. Tests related to bunch-to-bucket transfer, feedback loops, diffusion due to noise injection, as well as collective effects, are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY055 NSLS-II Accelerator Commissioning and Transition to Operations operation, lattice, storage-ring, vacuum 3120
 
  • T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  Over past year NSLS-II has completed accelerator commissioning and enabled operations of first project beam lines. Recently we further optimized the NSLS-II accelerators, increased the beam current to 400 mA without- and to 250 mA with Insertion Devices (IDs), commissioned top-off mode of operations and stabilized beam orbit to below 10% of the beam size in the source points. In this paper we report progress on the NSLS-II accelerator commissioning and operations and plans for future facility developments.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB012 The HMBA Lattice Optimization for the New 3 GeV Light Source lattice, brightness, emittance, storage-ring 3251
 
  • K. Harada, M. Adachi, N. Funamori, T. Honda, Y. Kobayashi, N. Nakamura, K. Oide, H. Sakai, S. Sakanaka, K. Tsuchiya
    KEK, Ibaraki, Japan
 
  For the design study of the HMBA (hybrid multi bend achromat) type most advanced light source, the new storage ring was designed from the lattice of the phase II upgrade project of the ESRF (ESRF II). Although the original 3 GeV test lattice from Dr. Pantaleo Raimondi of ESRF has no problem about the optical and magnetic parameters including the dynamic aperture, we reduce the cell numbers and inserted the short straight sections for the in-vacuum short-gap undulators. After the optimization of the linear and non-linear optics as the original design principle of ESRF II, the altered lattice has the circumference of about 440 m with 16 HMBA cells, the emittance about 440 pm rad with the intra-beam scattering effect at the beam current of 500 mA, and the large dynamic aperture of about 2 cm at the injection point even with the usual magnetic errors.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB018 Candidate Booster Design for the HEPS Project emittance, booster, sextupole, lattice 3263
 
  • Y.M. Peng, Y.Y. Guo, Y. Jiao, Y. Wei, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS), with trans-verse emittances of a few tens of pm.rad, is to be built in the suburbs of Beijing, China. The HEPS booster is a 2 Hz electron synchrotron. It accelerates electron bunches from a 300 MeV linac to a final energy of 6 GeV, and then extracts and injects them into the stor-age ring. We have made a candidate booster design, with a circumference of about 432 m and a natural emittance of about 4 nm.rad at 6GeV, which will be located in a separate tunnel. This lattice has a four-fold symmetry. Each super-period is composed of 13 iden-tical cells and two matching cells. The lattice design and optimization and other considerations are present-ed in a detail.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB030 Operation Improvement by Tuning of Storage Ring at PLS-II kicker, operation, storage-ring, linac 3297
 
  • I. Hwang, M. Kim, T.-Y. Lee, C.D. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  After upgrade of the pohang light source (PLS-II), several problems reduced the quality of the top-up operation. Unbalance of the injection kicker system and it's lack of control had limited the efficiency of the injection from the linac to the storage ring. We tuned the storage ring to improve the injection efficiency and to stabilize the orbit during the injection.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB041 Optics-measurement-based BPM Calibration optics, dipole, factory, focusing 3328
 
  • A. Garcia-Tabares, F.S. Carlier, J.M. Coello de Portugal, A. Langner, E.H. Maclean, L. Malina, T. Persson, P.K. Skowroński, M. Solfaroli Camillocci, R. Tomás
    CERN, Geneva, Switzerland
 
  The LHC beta functions (β) can be measured using the phase or the amplitude of betatron oscillations obtained with beam position monitors (BPMs). Using the amplitude information results in a β measurement affected by BPM calibration. This work aims at calibrating BPMs using optics measurements. For this, βs from amplitude and phase and normalized dispersion obtained from many different measurements in 2015 with different optics and corrections are analyzed. Simulations are also performed to support the analyses.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB044 Limitations on Optics Measurements in the LHC optics, dipole, hadron, luminosity 3339
 
  • P.K. Skowroński, F.S. Carlier, J.M. Coello de Portugal, A. Garcia-Tabares, A. Langner, E.H. Maclean, L. Malina, M. McAteer, T. Persson, R. Tomás
    CERN, Geneva, Switzerland
  • A. Langner
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • L. Malina
    University of Oslo, Oslo, Norway
 
  In preparation of the optics commissioning at an energy of 6.5 TeV, many improvements have been done to cope with the expected reduced signal to noise ratio due to lowered bunch intensities imposed by machine protection considerations. This included, among others, an increase of the flat top duration of the AC dipole excitations, which allowed to use more turn-by-turn data for the analysis. The longer data acquisition revealed slow drifts of the optics, which limited the increased measurement precision. Furthermore, we will present how orbit drifts influenced dispersion measurements and, as a consequence, posed another limitation for the optics correction. In this paper we will discuss the implications of these observations for the measurement and correction of the optics.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR001 Online Suppression of the Sextupole Resonance Driving Terms in the Diamond Storage Ring sextupole, resonance, storage-ring, optics 3381
 
  • I.P.S. Martin, M. Apollonio, R. Bartolini
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Suppression of the sextupole resonance driving terms (RDTs) is a widely used technique for optimising the theoretical on and off-momentum dynamic aperture for electron storage rings. Recently, this technique was applied online to the Diamond storage ring, with suppression of individual RDTs achieved via a sextupole family to RDT response matrix*. In this paper we present recent studies of the method, in which the ability to improve the lifetime and injection efficiency are investigated. An extension of the technique is investigated by combining it with the Robust Conjugate Direction Search (RCDS) optimisation algorithm**.
*J. Bengtsson, et al., Phys. Rev. ST Accel. Beams 18, 074002, (2015).
**X. Huang, et al., Nucl. Instrum. Methods Phys. Res. Sect. A 726, 77, (2013).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR011 Injection Dynamics for Sirius Using a Nonlinear Kicker kicker, storage-ring, booster, accumulation 3406
 
  • L. Liu, X.R. Resende, A.R.D. Rodrigues, F. H. de Sá
    LNLS, Campinas, Brazil
 
  The concept of injection using a single nonlinear kicker has been proposed and tested in several existing storage rings with reduction in the stored beam oscillations during the accumulation process. Despite the good results, this scheme has not yet been adopted for routine operation in these machines due to the reduced injection efficiency. The main cause for reduction in efficiency is precisely the nonlinearity of the kick at the injected beam position and the generally large injected beam size. In this paper we study the injection dynamics in the Sirius storage ring where beam accumulation is based only on the use of a nonlinear kicker. The whole injection system has been optimized from the start for high injection efficiency.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR015 RCDS Optimizations for the ESRF Storage Ring sextupole, optics, emittance, resonance 3420
 
  • S.M. Liuzzo, N. Carmignani, L. Farvacque, B. Nash, T.P. Perron, P. Raimondi, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  The Robust Conjugate Direction Search (RCDS)* optimizer is applied for online optimizations of the ESRF accelerators. This paper presents the successful application of the algorithm in reducing vertical emittance, improving injection efficiency and increasing lifetime. A new set of sextupole settings to increase chromaticity has been obtained with lifetimes comparable to the existing one. This allows to run with double current in a single bunch, and unifies the optics for few bunch (except 4x10 bunches) and multi-bunch modes.
* X. Huang, J. Corbett, J. Safranek, J. Wu, "An algorithm for online optimization of accelerators", Nucl. Instr. Methods, A 726 (2013) 77-83.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR016 Horizontal Phase Space Shaping for Optimized Off-axis Injection Efficiency sextupole, optics, lattice, septum 3424
 
  • S.M. White, S. Lagarde, S.M. Liuzzo, B. Ogier, T.P. Perron, P. Raimondi
    ESRF, Grenoble, France
 
  With the introduction of top-up operation at the ESRF it becomes important to reduce as much as possible any kind of perturbation seen by the users during injection. For this purpose, a novel technique to improve injection efficiency by shaping the horizontal beam phase space to better match the storage ring acceptance and hence reduce the duration of injections was developed. Theoretical concept, simulations and first experimental results are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR022 Non-linear Optimization of Storage Ring Lattice for the SPring-8 Upgrade sextupole, lattice, betatron, optics 3440
 
  • K. Soutome, K.K. Kaneki, Y. Shimosaki, M. Takao
    JASRI/SPring-8, Hyogo-ken, Japan
  • H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  A project of upgrading the SPring-8 facility is ongoing to convert the present storage ring to a high-coherence hard X-ray source (SPring-8-II). To achieve the emittance value of less than 0.2 nmrad at 6 GeV, we adopted a 5-bend achromat lattice with dipoles having longitudinal field gradient. In this lattice the betatron phase between the two dispersion arcs was set to (2n+1)PI to suppress dominant harmful effects of chromaticity-correcting sextupoles. By detuning this phase, optimizing sextupole strengths in a cell and introducing octupoles, we obtained a sufficient dynamic aperture (DA) for beam injection even for the symmetry-broken ring having four long straight sections and a high-beta injection section. However, the off-momentum behavior such as the non-linear chromaticity still needs to be optimized to achieve the momentum acceptance (MA) of 3% or larger. We have thus been investigating the possibility to increase both the DA and MA by introducing several phase-matched sextupole pairs. The presentation will report the obtained results by this approach.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR037 Observations of Resonance Driving Terms in the LHC during Runs I and II resonance, dipole, betatron, dynamic-aperture 3468
 
  • F.S. Carlier, J.M. Coello de Portugal, E.H. Maclean, T. Persson, R. Tomás
    CERN, Geneva, Switzerland
 
  Future operations of the LHC will require a good understanding of the nonlinear beam dynamics. In 2012, turn-by-turn measurements of large diagonal betatron excitations in LHC Beam 2 were taken at injection energy. Spectral analysis of these measurements shows an anomalous octupolar spectral line at frequency -Qx-2Qy in the horizontal motion. The presence of this spectral line, as well as other lines, was confirmed by measurements taken for LHC Beam 1 and Beam 2 during the commissioning in 2015. We take a close look at the various spectral lines appearing in the LHC transverse motion in order to improve the LHC nonlinear model.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR039 Commissioning of Non-linear Optics in the LHC at Injection Energy dipole, octupole, optics, operation 3476
 
  • E.H. Maclean, F.S. Carlier, J.M. Coello de Portugal, A. Garcia-Tabares, A. Langner, L. Malina, T. Persson, P.K. Skowroński, R. Tomás
    CERN, Geneva, Switzerland
 
  Commissioning of the nonlinear optics at injection in the LHC was carried out for the first time in 2015 via beam-based methods. Building upon studies performed during Run I, corrections to the nonlinear chromaticity and detuning with amplitude were obtained. These corrections were observed to reduce beam-loss during measurement of linear optics.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR042 Design Guidelines for the Injector Complex of the FCC-ee collider, linac, booster, optics 3488
 
  • Y. Papaphilippou, F. Zimmermann
    CERN, Geneva, Switzerland
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • K. Oide
    KEK, Ibaraki, Japan
  • L. Rinolfi
    JUAS, Archamps, France
  • D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
 
  The design of the injector of the FCC-ee, a high-luminosity e+/e circular collider of 100 km in the Geneva area, is driven by the required particle flux for ring filling or top-up and for a variety of energies, from 45.5 to 175 GeV. In this paper, a set of parameters of the injector complex is presented, fulfilling the collider needs for all running scenarios. In particular, the challenges of the booster ring design are detailed, focusing on issues of optics, layout, low bending fields, injection schemes to the collider for maximizing transfer efficiency and synchrotron radiation handling.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR048 Analysis of Nonlinear Effects for IDs at the SPS Storage Ring electron, coupling, storage-ring, quadrupole 3512
 
  • S. Krainara, P. Klysubun, S. Kongtawong, T. Pulampong, P. Sudmuang, P. Sunwong
    SLRI, Nakhon Ratchasima, Thailand
 
  Funding: Synchrotron Light Research Institute (Public Organization)
To generate intense and high energy synchrotron radiation at the Siam Photon Source (SPS) 1.2 GeV storage ring, two insertion devices (IDs), namely, a 2.2 T hybrid multipole wiggler (MPW) and a 6.5 T superconducting wavelength shifter (SWLS), have been installed and operated since 2013. The angular kicks due to the nonlinear effects generated by the IDs represented by kick maps were used in our analysis. The optics distortion was compared to the ones obtained from calculation using hard-edge model and measurement results. In order to investigate the effects of IDs on the beam dynamics, Frequency Map Analysis (FMA) was employed. The effects of the IDs and their compensation are presented herewith.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR050 Studies to Install a Multipole Wiggler by Removing a Chromatic Sextupole in the Diamond Storage Ring sextupole, optics, lattice, emittance 3518
 
  • B. Singh, M. Apollonio, R. Bartolini, E. Koukovini-Platia, I.P.S. Martin, T. Pulampong, R.P. Walker
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Investigations are underway for the possible use of an achromat to install a short multipole wiggler by removing a chromatic sextupole in cell-11 of the storage ring. The effect on emittance and energy spread are found to be small, however the impact on lifetime and injection are very significant if the chromaticity is corrected normally (globally). The MOGA genetic algorithm is used to optimize the lifetime and injection efficiency in this case. We used local mirror chromatic sextupole and other chromatic sextupole family for chromaticity correction in which case the genetic algorithm found solution that restores lifetime and injection efficiency. In this paper the results of MOGA simulations using various schemes for chromaticity correction and test results in presently operational optics will be discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR052 Compact, Microtron-Based Gamma Source microtron, cathode, electron, cavity 3522
 
  • R.J. Abrams, M.A.C. Cummings, R.P. Johnson, S.A. Kahn, G.M. Kazakevich
    Muons, Inc, Illinois, USA
 
  Funding: This work was supported U.S. DOE SBIR Grant DE-SC0013795.
The conceptual design of a prototype S-band pulsed, 9.5 MeV compact microtron with type-II injection is described. Estimates of parameters such as beam current and cathode lifetime, and comparisons with X-band and C-band parameters are presented. The electron beam can be extracted at various energies up to 9.5 MeV. Estimated yields of gammas produced at 6.5 MeV operation and estimated yields of gammas and neutrons produced at 9.5 MeV are presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW021 Performance of a Compensation Kicker Magnet for J-PARC Main Ring timing, kicker, pick-up, proton 3588
 
  • T. Sugimoto, K. Ishii, H. Matsumoto, T. Shibata
    KEK, Ibaraki, Japan
  • K. Fan
    HUST, Wuhan, People's Republic of China
 
  Four lumped-type kicker magnets have been equipped in the J-PARC MR (Main Ring) to inject 8 proton bunches. To increase beam power, the bunch length will be increased up to 350 ns that will restricts the rise time of the injection kicker to be less than 250 ns. We have already developed a method to improve the rising time to 200 ns*. However, two reflection pulses are appeared at the waveform tail, which will kick the circulating bunches and induce coherent oscillation leading to beam loss. To compensate reflection pulses, we decide to install two new lumped-type kicker magnets, which are excited independently making operation flexible. A ceramic vacuum duct with TiN coating is inserted in the compensation kickers. Magnetic field measurement and coupling impedance measurement have been carried. In this paper, the results of both these measurements and performance study using proton beam will be discussed.
* T.Sugimot et.al, "Upgrade of the Injection Kicker System for J-PARC Main Ring", MOPME069, IPAC14, Dresden, Germany, 2014.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW028 High Voltage Performance of Surface Coatings on Alumina Insulators kicker, high-voltage, vacuum, impedance 3603
 
  • A. Adraktas, M.J. Barnes, H.A. Day, L. Ducimetière
    CERN, Geneva, Switzerland
 
  Alumina insulators and dielectrics are required for a variety of applications in particle accelerators. Their use in high voltage devices, both pulsed and DC, is well established as both insulation and mechanical support. In accelerator equipment the alumina is usually used in ultra-high vacuum and hence charge accumulation can be an issue, especially when the alumina is near to the beam. To address challenges regarding surface flashover and high secondary electron yield in high intensity accelerators, surface treatments and coatings are being considered. This paper presents predictions of the influence of surface coatings, on alumina insulators, upon electric field.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW029 Feasibility Study of the Fast SPS Ion Injection Kicker System simulation, ion, kicker, flattop 3607
 
  • A. Ferrero Colomo, P. Burkel, D. Comte, L. Ducimetière, T. Kramer, V. Senaj, L. Sermeus, F.M. Velotti
    CERN, Geneva, Switzerland
 
  As part of the upgrade project for ions the rise time of the injection kicker system into the SPS needs to be improved. The changes being studied include the addition of a fast Pulse Forming Line parallel to the existing Pulse Forming Network for the fast kicker magnets MKP-S. With the PFL an improved magnetic field rise time of 100 ns is targeted. Two different configuration utilizing a 2nd thyratron or two fast diode stacks have been outlined in the past. This paper presents the recent progress on the analogue circuit simulations for both options as well as measurements carried out on a test system. Modelling, optimization and simulation of the entire system with diodes and a second configuration with two thyratron switches are outlined. Measurement results are given and the feasibility of the upgrade is discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW031 Current and Future Beam Thermal Behaviour of the LHC Injection Kicker Magnet impedance, kicker, simulation, coupling 3615
 
  • H.A. Day, M.J. Barnes, L. Ducimetière, L. Vega Cid, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  During Run 1 of the LHC the injection kicker magnets caused occasional operational delays due to beam induced heating with high bunch intensity and short bunch lengths. Significant upgrades were carried out to the injection kicker magnets during long shutdown 1, including a new design of beam screen to reduce the beam induced heating. Nevertheless these kicker magnets may limit the performance of HL-LHC unless additional, mitigating, measures are taken. Hence extensive simulations have been carried out to predict the distribution of the beam induced power deposition within the magnet and detailed thermal analyses carried out to predict the temperature profiles. To benchmark the simulations the predicted temperatures are compared with observables in the LHC. This paper reports on observations of the thermal behaviour of the magnet during run 2 of the LHC, with 25ns beam. In addition the measurement data is used to extrapolate temperature rise for the beam parameters expected for high-luminosity LHC.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW033 Operational Experience of the Upgraded LHC Injection Kicker Magnets kicker, vacuum, operation, impedance 3623
 
  • M.J. Barnes, A. Adraktas, G. Bregliozzi, S. Calatroni, H.A. Day, L. Ducimetière, B. Goddard, V. Gomes Namora, V. Mertens, B. Salvant, J.A. Uythoven, L. Vega Cid, W.J.M. Weterings, C. Yin Vallgren
    CERN, Geneva, Switzerland
 
  During Run 1 of the LHC the injection kicker magnets caused occasional operational delays due to beam induced heating with high bunch intensity and short bunch lengths. In addition, sometimes there were also sporadic issues with microscopic unidentified falling objects, vacuum activity and electrical flashover of the injection kickers. An extensive program of studies was launched and significant upgrades were carried out during long shutdown 1. These upgrades include a new design of a beam screen to both reduce the beam coupling impedance of the kicker magnet, and to significantly reduce the electric field associated with the screen conductors, hence decreasing the probability of electrical breakdown in this region. In addition new cleaning procedures were implemented and equipment adjacent to the injection kickers and various vacuum components were modified. This paper presents operational experience of the injection kicker magnets during Run 2 of the LHC and assesses the effectiveness of the various upgrades.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW038 Prototyping of the ALS-U Fast Kickers kicker, impedance, coupling, vacuum 3637
 
  • G.C. Pappas, S. De Santis, J.-Y. Jung, T.H. Luo, C. Steier, C.A. Swenson, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Prototyping of major components for the ALS-U kickers is in progress. A tapered stripline kicker has been built for installation and testing in the ALS, and multiple modulator options to meet the fast rise time required for swap out injection have been considered. High voltage feedthroughs that are matched into the multi GHz range are also being studied.
* Pappas et al., "Fast Kicker Systems for ALS-U", Proc. of IPAC'14, Dresden, Germany, MOPME083.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW042 Overview of Driver Technologies for Nanosecond TEM Kickers impedance, operation, controls, kicker 3645
 
  • A.K. Krasnykh
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported in part by US Department of Energy under contract DE-AC02-76SF00515 and in part by US Department of Energy under contract DE-AC02-06CH11357
Overview of modern methods, circuits, and practical realizations for multi MW peak power pulsers will be presented. All used pulser components are manufactured by the US national industry and they are available for design and pulser fabrication. Two concepts will be discussed: (1) an approach is based on assistance of a nonlinear transmission line with ferromagnetic media and (2) an approach is based on assistance of special diodes which are working in a specific mode of operation. In both approaches the nonlinear characteristic of switching media (ferromagnetic and solid state plasma) are employed in final stage of the pulser to form the multi MW level nanosecond pulses.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY019 LHC Injection Protection Devices, Thermo-mechanical Studies through the Design Phase operation, kicker, proton, impedance 3698
 
  • I. Lamas Garcia, N. Biancacci, G. Bregliozzi, M. Calviani, M.I. Frankl, L. Gentini, S.S. Gilardoni, A. Lechner, A. Perillo-Marcone, B. Salvant, N.V. Shetty, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The TDI is a beam intercepting device installed on the two injection lines of the LHC. Its function is to protect the superconducting machine elements during injection in the case of a malfunction of the injection kickers. The TDIS, which will replace the TDI, is foreseen to be installed for high luminosity operation. Due to the higher bunch intensities and smaller beam emittances expected, and following the operational experiences of the TDI, a complete revision of the design of the jaws must be performed, with a main focus on the material selection. Furthermore, the new TDIS will also improve the TDI reliability by means of a robust design of the jaw positioning mechanism, the efficiency of the cooling circuit and by reducing its impedance. A simplified installation procedure and maintenance will also be an important requirement for the new design. This paper introduces the main characteristics of the TDI as LHC injection protection device, showing the needs and requirements for its upgrade. It also discusses the thermo-mechanical simulations that are supporting and guiding the design phase and the material selection, and describes the modifications to be implemented, so far, for this new device.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR018 Comissioning of Upgraded VEPP-2000 Injection Chain positron, electron, booster, linac 3811
 
  • D.E. Berkaev, A.V. Andrianov, K.V. Astrelina, V.V. Balakin, A.M. Barnyakov, O.V. Belikov, M.F. Blinov, D.V. Bochek, D. Bolkhovityanov, F.A. Emanov, A.R. Frolov, K. Gorchakov, Ye.A. Gusev, A.S. Kasaev, E. Kenzhbulatov, I. Koop, I.E. Korenev, G.Y. Kurkin, N.N. Lebedev, A.E. Levichev, P.V. Logatchov, A.P. Lysenko, D.A. Nikiforov, V.P. Prosvetov, Yu. A. Rogovsky, S.L. Samoylov, A.I. Senchenko, P.Yu. Shatunov, Y.M. Shatunov, D.B. Shwartz, A.A. Starostenko, I.M. Zemlyansky, Yu.M. Zharinov
    BINP SB RAS, Novosibirsk, Russia
  • F.A. Emanov, Yu. A. Rogovsky, A.I. Senchenko, A.A. Starostenko
    NSU, Novosibirsk, Russia
 
  The upgrade of VEPP-2000 e+e collider injection chain includes the connection to BINP Injection Complex (IC) via newly constructed transfer line K-500 as well as upgrade of the booster synchrotron BEP to the energy of 1 GeV. Modernization has started in the middle of 2013 and now the electron and positron beams with highly increased production rate together with top-up injection from BEP are ready to feed VEPP-2000 ring and provide design luminosity at the whole energy range limited only by beam-beam effects. The design and operation experience of IC damping ring, 250 m transfer channel and booster BEP dealing with 2.6 T magnets at top energy will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR020 Status of VEPP-4M Collider photon, experiment, storage-ring, detector 3818
 
  • E.B. Levichev, O.I. Meshkov, P.A. Piminov, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
 
  At present the VEPP-4 storage ring facility provides varied experimental programs including HEP, nuclear physics, synchrotron radiation, polarized electron/positron beam research, etc. Until now, the studies were mainly performed at the beam energy below 2 GeV but a strong interest of experimentalists encourages us to increase the beam energy up to 5 GeV. Reliable and high-performance operation at high energy is a challenge for the machine. Here we discuss the recent experimental results at the low energy, and prospects and constraints of the energy ramp.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR048 Beam Losses at CERNs PS and SPS Measured with Diamond Particle Detectors extraction, detector, septum, kicker 3898
 
  • F. Burkart, W. Bartmann, B. Dehning, E. Effinger, M.A. Fraser, B. Goddard, V. Kain, O. Stein
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
  • O. Stein
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Diamond particle detectors have been used in the LHC to measure fast particle losses with a nanosecond time resolution. In addition, these detectors were installed in the PS and the SPS. The detectors are mounted close to the extraction septum of the PS (transfer line to SPS) and the SPS (transfer lines TI2 and TI8 to LHC). Mainly, they monitor the losses occurring during the extraction process but the detectors are also able to measure turn-by-turn losses in the accelerators. In addition, detailed studies concerning losses due to ghost bunches were performed. This paper will describe the installed diamond detector setup, discuss the measurement results and possible loss mitigations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR049 Considerations for the Injection and Extraction Kicker Systems of a 100 TeV Centre-of-Mass FCC-hh Collider kicker, extraction, impedance, collider 3901
 
  • T. Kramer, M.J. Barnes, W. Bartmann, F. Burkart, L. Ducimetière, B. Goddard, V. Senaj, T. Stadlbauer, D.G. Woog
    CERN, Geneva, Switzerland
  • D. Barna
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
 
  A 100 TeV center-of-mass energy frontier proton collider in a new tunnel of ~100 km circumference is a central part of CERN's Future Circular Colliders (FCC) design study. One of the major challenges for such a machine will be the beam injection and extraction. This paper outlines the recent developments on the injection and extraction kicker system concepts. For injection the system requirements and progress on a new inductive adder design will be presented together with first considerations on the injection kicker magnets. The extraction kicker system comprises the extraction kickers itself as well as the beam dilution kickers, both of which will be part of the FCC beam dump system and will have to reliably abort proton beams with stored energies in the range of 8 Gigajoule. First concepts for the beam dump kicker magnet and generator as well as for the dilution kicker system are described and its feasibility for an abort gap in the 1 μs range is discussed. The potential implications on the overall machine and other key subsystems are outlined, including requirements on (and from) dilution patterns, interlocking, beam intercepting devices and insertion design.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR050 New Working Point for CERN Proton Synchrotron multipole, resonance, proton, focusing 3905
 
  • F. Sperati, A. Beaumont, S.S. Gilardoni, D. Schoerling, M. Serluca, G. Sterbini
    CERN, Geneva, Switzerland
 
  The LHC High-luminosity project requests high brightness and intensity beams from the CERN Proton Synchrotron (PS). The generation of such beams is limited due to resonance effects at injection. The impact of resonances can be minimized by performing appropriate correction with dedicated magnets and by optimizing the tune working point. Currently the tune working point at injection is naturally set by the quadrupolar component generated by the one hundred combined function normal conducting magnets installed in the PS, and slightly corrected by low energy quadrupole magnets. In this paper, a study is presented exploiting the use of the available five auxiliary individually powered circuits to adjust the quadrupolar and higher-order multipole components for changing the tune integer at injection. Due to the non-linear contribution of each circuit to the magnetic field distribution a finite-element magnetic model was prepared to predict the required currents in the auxiliary coils. The magnetic model was benchmarked with magnetic measurements and then tested in the PS machine during dedicated machine development times.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR054 Analysis of the SPS Long Term Orbit Drifts extraction, closed-orbit, operation, dipole 3914
 
  • F.M. Velotti, C. Bracco, K. Cornelis, L.N. Drøsdal, M.A. Fraser, B. Goddard, V. Kain, M. Meddahi
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessity to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW029 Single Electron Extraction at the ELSA Detector Test Beamline electron, extraction, synchrotron, detector 4002
 
  • F. Frommberger, N. Heurich, W. Hillert, T. Schiffer, M.T. Switka
    ELSA, Bonn, Germany
 
  The Electron pulse Stretcher Facility ELSA delivers polarized and non-polarized electrons with an adjustable beam energy of 0.5 - 3.2 GeV to external experimental stations. Extraction currents available range down from 1 nanoampere to several atto-amperes provided by single electron extraction. Especially the high energy physics community requires detector test stations with electron tagging rates between 100 Hz to 100 kHz, imposing particular requirements for stable minimum-current extraction from the storage ring. These requirements are met with the implementation of a low-injection mode for the booster synchrotron and photomultiplier-based stored current monitoring, providing feedback for a selectable limit of the injected current. A homogeneous extraction current with duty factor > 80% is routinely granted by the excitation of a 3rd integer optical resonance. The setup of the low-current injection system and measurements of the extraction properties at the preliminary detector test beamline are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW032 Experimental Test on the TPS Booster Injection Scheme Exploration and the Associated Bunch Train Analysis booster, kicker, septum, operation 4008
 
  • H.-P. Chang, C.L. Chen, C.-S. Fann, K.T. Hsu, S.Y. Hsu, K.-K. Lin, K.L. Tsai
    NSRRC, Hsinchu, Taiwan
 
  In order to explore the tuning range of injection septum and kicker for TPS booster operation, an experimental test on the designed injection scheme has been performed. Tuning of these injection units is based on the top-up operation process for storage ring vacuum cleaning purpose. It is set for a fast beam accumulation in the storage ring where the stored beam variation range is selected for efficient operation consideration. The measurement results of booster beam current variation while tuning of injection septum and kicker are presented. A preliminary analysis concerning the observation of deteriorated phase space acceptance in the TPS booster is given in this report. This study also includes an effort to extend the present available operation bunch train for TPS booster. It shows that the increase of the booster beam current by bunch train tuning indicates an upper bound of about 400 ns.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW033 Transient Orbit of Injection in Taiwan Light Source Storage Ring kicker, storage-ring, factory, network 4012
 
  • H.C. Chen, H.H. Chen, K.T. Hsu, C.H. Huang, S.J. Huang, C.H. Kuo, A.P. Lee, J.A. Li, Y.K. Lin
    NSRRC, Hsinchu, Taiwan
 
  Top-up operation has been started since many years ago at Taiwan Light Source Storage Ring (SR). For this operation it is important to reduce the beam injections should not excite the oscillation of stored beams. For further reduction of these oscillations, corrections with kicker-magnets are used. The details of the study will be reported in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW034 TLS Booster Injection Scheme Exploration booster, septum, kicker, electron 4016
 
  • H.H. Chen, H.-P. Chang, H.C. Chen, S.J. Huang, C.H. Kuo, A.P. Lee, J.A. Li, K.-K. Lin, Y.K. Lin
    NSRRC, Hsinchu, Taiwan
 
  In this paper, the booster injection efficiency and the parameter working range related to key components in-cluding septum magnet and kicker magnet for Taiwan Light Source (TLS) injector operation are introduced. Booster injection scheme for different lattice is explored by machine study plan using injector property. The study result may be used by the operator as booster injection parameter fine tuning reference. It is also helpful for the advanced injection scheme exploration.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW036 Evaluation of Immutability against Radiation-induced Demagnetization for a Hybrid Wiggler with NdFeB Magnets at the Canadian Light Source radiation, wiggler, electron, operation 4022
 
  • C.K. Baribeau, D. Bertwistle, L.O. Dallin, J.M. Vogt, W.A. Wurtz
    CLS, Saskatoon, Saskatchewan, Canada
 
  The BioXAS beamline at Canadian Light Source installed a hybrid wiggler in 2013. Quantitative studies building on the experience of other facilities suggest the wiggler's NdFeB magnets are at risk of demagnetization due to radiation induced by the synchrotron's 2.9 GeV electrons. We use a phenomenological model to convert simulated peak demagnetizing fields into a radiation dose corresponding to a chosen %-demagnetization, and compare against an estimated dose per year due to injected beam. We find that injecting with the wiggler closed will cause 1% demagnetization in sections of its magnet blocks within 2 years of operation, assuming a worst case scenario. The wiggler has thus far been forced open for injections, but this will cease to be an option when CLS moves to top-up operation. In a related test, qualitative measurements of radiation during injections with the wiggler closed were taken by covering its magnets in Polaroid film. We find that radiation drops significantly when the injection efficiency is well-tuned. Our results suggest the wiggler will not receive damaging levels of radiation at closed gap so long as the injection system remains optimized.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW050 Upgrade of Septum Magnets of the Transfer Line in TPS septum, power-supply, simulation, booster 4057
 
  • C.S. Yang, C.-H. Chang, Y.L. Chu, J.C. Huang, C.-S. Hwang, J.C. Jan, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a 3-GeV light source. The full current of the storage beam and commissioning of insertion devices are still in progress. An improved injection between the booster ring (BR) and the storage ring (SR) was implemented to increase the efficiency of injection and the reliability of the electrical parts. A DC septum (length 0.8 m) was replaced with an AC septum (length 1 m, type C) to decrease the leakage field and to relax the loading of the power supply. Mapping the field with mu-metal shielding was also implemented to diminish the leakage field from the AC septum. The lattice of the transfer line between the booster ring and the storage ring, BTS, was also rearranged to meet the new injection requirements. The performance of the AC septum with mu-metal shielding and the upgrade of the BTS lattice are discussed in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY001 Implementation of a New Ramp Computation Scheme for the Magnet Power Supplies at ELSA controls, power-supply, electron, extraction 4085
 
  • D. Proft, W. Hillert
    ELSA, Bonn, Germany
 
  At the ELSA electron stretcher facility new power supply control units have been commissioned. These require a new software interface for set-point calculation based on the accelerator and timing model. Goal of the new scheme is a strict separation of the bidirectional ramp computation into an accelerator model dependent, a magnet dependent and a power supply dependent part. This introduces possible calibration/correction factors on each layer, thus allowing easy component replacement of the power supplies, the control units or even the magnets without the need for recalibration of the whole chain. In this contribution we will provide insights into the implementation of the new modeling scheme.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY019 Design and Implementation of Control Interface and Timing Support of TPS Phase-I Beamlines EPICS, controls, timing, status 4128
 
  • C.Y. Wu, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.H. Huang, D. Lee, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) with low emittance provides extremely bright X-rays. Seven advanced phase-I beamlines of TPS are being constructed and commissioned. The control interfaces for a beamline or experimental station and support from the accelerator control system are designed and are being implemented. The beamline control interface and supports include a beamline interlock status monitor, accelerator timing transmission, broadcast of accelerator operating status, transmission of the beam-current reading and control of insertion devices. This report summarizes the efforts in implementing the beamline EPICS IOC and support from the accelerator control system during beamline commissioning in TPS phase-I.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY027 Commissioning Status of SuperKEKB Injector Linac electron, gun, emittance, linac 4152
 
  • M. Satoh, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, Y. Enomoto, S. Fukuda, Y. Funakoshi, K. Furukawa, T. Higo, H. Honma, N. Iida, M. Ikeda, H. Iwase, H. Kaji, K. Kakihara, T. Kamitani, H. Katagiri, S. Kazama, M. Kikuchi, H. Koiso, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, Y. Ohnishi, S. Ohsawa, F. Qiu, I. Satake, D. Satoh, Y. Seimiya, T. Shidara, A. Shirakawa, M. Suetake, H. Sugimoto, T. Suwada, M. Tanaka, M. Tawada, Y. Yano, K. Yokoyama, M. Yoshida, R. Zhang, X. Zhou
    KEK, Ibaraki, Japan
 
  The SuperKEKB main ring is currently being constructed for aiming at the peak luminosity of 8 x 1035 cm-2s−1. The electron/positron injector linac upgrade is also going on for increasing the intensity of bunch charge with keeping the small emittance. The key upgrade issues are the construction of positron damping ring, a new positron capture system, and a low emittance photo-cathode rf electron source. The injector linac beam commissioning started in the October of 2013. In this paper, we report the present status and future plan of SuperKEKB injector commissioning.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY045 Commissioning of the Machine Protection Systems of the Large Hadron Collider Following its First Long Shutdown operation, dipole, hadron, beam-losses 4203
 
  • D. Wollmann, R. Schmidt, J.A. Uythoven, J. Wenninger, M. Zerlauth
    CERN, Geneva, Switzerland
 
  During the first long shutdown of the Large Hadron Collider (LHC) extending for more than 18 months, most Machine Protection Systems (MPS) have undergone significant changes, and upgrades. A full re-commissioning of the MPS was performed at the end of the shutdown and during the LHC beam commissioning in 2015. To verify the correct functioning of all protection-relevant systems with beam, a step-wise intensity ramp-up was performed, reaching at the end of 2015 a record stored beam energy of ~280 MJ per beam, nearly 80% of the value in the design report. This contribution summarizes the results of the MPS commissioning, the intensity ramp-up and the continuous follow-up during operation, focusing mainly on near misses and false triggers and their proposed mitigations. A strategy to minimize risks during machine development periods for future operation of the LHC, when the protection parameters are modified for several tests, is discussed. The machine protection strategy for the LHC run in 2016 is presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)