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Abstract
The software SixTrack provides symplectic proton track-

ing over a large number of turns. The code is used for the
tracking of beam halo particles and the simulation of their
interaction with the collimators to study the efficiency of the
LHC collimation system. Tracking simulations for heavy-
ion beams require taking into account the mass to charge
ratio of each particle because heavy ions can be subject
to fragmentation at their passage through the collimators.
In this paper we present the derivation of a Hamiltonian
for multi-isotopic heavy-ion beams and symplectic tracking
maps derived from it. The resulting tracking maps were im-
plemented in the tracking software SixTrack. With this mod-
ification, SixTrack can be used to natively track heavy-ion
beams of multiple isotopes through a magnetic accelerator
lattice.

INTRODUCTION
The magnetic lattice of a heavy-ion collider, such as the

CERN Large Hadron Collider [1], is matched to guide and
store beams of a specific particle type. The LHC collima-
tion system [2] is less efficient for heavy-ion beams than
for proton beams, because a wide range of ion fragments
escapes the collimators and is lost in the aperture of the su-
perconducting magnets. The collimation losses can quench
the cold LHC magnets and could soon become a limiting
factor for the achievable heavy-ion beam intensity [3]. Ac-
curate simulations of the cleaning efficiency are required to
determine the best collimator settings and ensure the safe op-
eration of the machine [4]. These studies are carried out by
means of tracking simulations of the beam halo particles and
the ion fragments generated in the collimators. The particle
tracks are compared to the aperture to determine precisely
their loss location. The former standard tool for heavy-ion
collimation simulation, ICOSIM [5], used tracking maps
taking into account dispersive effects in linear approxima-
tion. This formalism can be inaccurate for particles with
large momentum offsets [6].
Higher accuracy can be expected from full symplectic

tracking of the different ions through the magnetic lattice.
The tracking must include dispersion from chromatic effects
(momentum dispersion) and the isotopic dispersion due to
the mass to charge ratio of the different isotopes. A simple
manner to provide this is the usage of a symplectic mono-
isotopic tool and simulate particles of the reference species
with rigidities equivalent to the heavy-ion to be tracked [6].
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Native tracking of different heavy-ion species, however, re-
quires an underlying mathematical formalism which takes
into account the mass and charge of the main beam and the
secondary isotopes, as well as their physical momenta and
ion species.

In this article, we describe a generalized Hamiltonian for
multi-isotopic particle beams which is exploited to derive
thin-lens symplectic tracking maps for the implementation
in the particle tracking code SixTrack [7].

THE ACCELERATOR HAMILTONIAN
Coordinate System and Basic Definitions
Figure 1 shows the curvlinear coordinate system used

in SixTrack. The trajectory of the reference particle is
parametrized by s = s(t), the length of the ideal trajectory
measured from a reference point. The particle trajectory is
defined by the coordinates (x, y, z) of a right-handed orthog-
onal system, whose origin moves with the reference particle
in s [8]. The ideal trajectory may be bent by a bending radius
ρ0 =

1
hx
. Consider the trajectory of an arbitrary particle of

Figure 1: Accelerator coordinate system (x, y, z)
parametrized by s. The radius of the bent trajectory
is ρ0=

1
hx
. Figure taken from [9].

rest mass m and charge Ze (with the charge multiplicity Z
and elementary charge e) moving at the normalized speed
β = v

c through a magnetic field B. The trajectory is bent by
a bending radius ρ, which is related to the magnetic field
and the particle momentum and charge as:

Bρ =
P
Ze

. (1)

The particle momentum can be written as P = mβcγ with
the relativistic γ = (1 − β2)−1/2. The bending radius ρ0 of
the reference particle, with its physical properties defined
by the parameters m0, Z0, β0, is related to ρ as follows:

ρ

ρ0
=

(1 + δ)
χ

, χ =
m0

m
Z
Z0
, (1 + δ) =

β γ

β0 γ0
. (2)
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The quantity χ defines the mass to charge ratio of the ion
relative to the reference particle.

Elementary transformations of Eq. (2) show that δ in the
multi-isotopic case is not the well-known relativemomentum
offset, but the relative offset of the momentum per mass unit:

δ =
P m0

m − P0

P0
. (3)

This definition ensures also that δ is a small quantity, while,
for the case of heavy ions, the relative momentum offset can
be larger by two orders of magnitude. Both χ and δ quantify
the dispersive offset of the particle trajectory caused by the
magnets in the machine. Note that for the mono-isotopic
case m → m0 and Z → Z0 the two Eqs. (2) and (3) yield
the well known expressions in which δ is the relative offset
of the full momentum.

The Multi-Isotopic Accelerator Hamiltonian
Consider a physical system described by the canonical

coordinates p, q with p = {px, py, pz } and q = {x, y, z}.
After the transformation of the independent variable from t
to s(t), the accelerator Hamiltonian for the set of canonical
variables (x, px ), (y, py ), (−t, E) is given by [10]

H̃ = −pz = −ZeAz

−

√
(E − Zeφ)2

c2 − m2c2 − (px−ZeAx )2 − (py−ZeAy )2,

(4)

where φ is the scalar potential and Ai the electromag-
netic vector potential, defining the magnetic field vector
B = ∇ × A. The canonical momenta pi are defined as

pi = mγq̇i + ZeAi . (5)

In order to be capable of performing a series expansion of
the right hand side of Eq. (4), we apply a normalization to
obtain small quantities in the square root

pi → p̃i =
pi
P0

m0

m
H̃ → H̄ =

H̃
P0

m0

m
, (6)

Ze Ai → χai = χ
Z0eAi

P0
E → Ẽ =

E
P0

m0

m
. (7)

The normalization with respect to the mass is essential to
fulfill the requirement of obtaining small quantities, because
the masses of the different ions moving in the accelerator
can differ significantly. Note that the definition of the nor-
malized vector potential ai is identical to the definition for
the mono-isotopic case [11]. Instead of incorporating it into
the definition of ai , the magnetic rigidity change for isotopes
different from the reference particle is taken into account by
the additional factor χ = m0

m
Z
Z0
. This allows the usage of

the vector potentials well known from the derivation of the
mono-isotopic tracking maps [12, 13].

Assuming that a gauge can be found, such that φ = 0, the
new Hamiltonian yields

H̄ = −χaz (8)

−

√√
m2

0

m2
*
,

E2 − m2c4

P2
0 c2

+
-
− (p̃x − χax )2 − (p̃y − χay )2 ,

(9)

Using the relativistic energy-momentum relation and Eq. (3),
the Hamiltonian can be written as

H̄ = −χaz −
√

(1 + δ)2 − (p̃x − χax )2 − (p̃y − χay )2 .

(10)

The normalized canonical longitudinal momentum is still
large. A more elegant description can be obtained by means
of a transformation of the canonical variables

(x, p̃x ), (y, p̃y ), (−t, E) → (X, Px ), (Y, Py ), (σ, pσ ) . (11)

This transformation is provided by a generating function of
second type [11]:

F2 = x Px + y Py + (s − β0 c t)
(
pσ +

E0

β0 P0 c

)
. (12)

The old (p̃i , qi) and new (Pi , Qi) coordinates, as well as
the old (H̄) and new (K) Hamiltonian are related by the
following relations:

p̃i =
∂F2

∂qi
Qi =

∂F2

∂Pi
K = H̄ +

∂F2

∂s
= H̄ + pσ .

(13)

The transformed variables are then defined as follows:

X = x , Y = y , σ = s − β0ct , (14)

Px = p̃x , Py= p̃y , pσ =
m0
m E − E0

β0P0c
. (15)

Including a last transformation for convenience Pi → pi ,
K → H, the final multi-isotopic Hamiltonian in a straight
coordinate system yields

H = pσ −
√

(1 + δ)2 − (px− χax )2 − (py− χay )2 − χaz .

(16)

In a coordinate system horizontally bent by a radius
ρ0 = 1/hx , the Hamiltonian becomes

H = pσ − (1 + hx x) ·

·

[√
(1 + δ)2 − (px − χax )2 − (py − χay )2 − χas

]
,

(17)

where as is the vector potential in the curvlinear reference
coordinates, defined by:

ps =
m0 γ ṡ

P0
(1 + hx x)2 + (1 + hx x) χas . (18)

In themono-isotopic limit m → m0 and Z → Z0 themulti-
isotopic Hamiltonian becomes the standard Hamiltonian
presented in [11, 14].
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MULTI-ISOTOPIC TRACKING MAPS
With the new accelerator Hamiltonian, generic tracking

maps for multi-isotopic particle beams can be derived using
Hamilton’s equations [12]. Complex vector potentials may
require to expand the Hamiltonian in (px−χax )2+(py−χay )2

(1+δ)2

to first order, as it is done for mono-isotopic beams in [10].

Drift Space
A drift space is defined by the absence of electromagnetic

fields ai = 0. The ideal trajectory is not bent, thus hx = 0
and the exact Hamiltonian yields

H = pσ −
√

(1 + δ)2 − p2
x − p2

y = pσ − pz . (19)

The resulting tracking maps are independent of the ion
species and thus identical to the mono-isotopic case, which
is discussed in detail in [15].

Dipole Magnet
Bending Dipole Using the vector potential of a bending

dipole derived in [12]:

ax = ay = 0 , as = k0

(
x +

hx x2

2

)
, (20)

the expanded Hamiltonian for a horizontal bending dipole
magnet with the normalized strength k0 =

By Z0e

P0
and hx , 0

is given by

H ≈ pσ − (1 + hx x) (1 + δ)+

+
1
2

p2
x + p2

y

(1 + δ)
+ χk0

(
x +

hx x2

2

)
. (21)

The tracking map for a dipole of length L in thin lens approxi-
mation k0L → 0 can be derived using Hamilton’s equations:

px → px + L
[
hx (1 + δ) − k0 χ(1 + hx x)

]
, (22)

py → py , (23)
pσ → pσ . (24)

In the mono-isotopic limit χ → 1, the tracking map yields
the standard expression derived in [13]. In the thin lens
approximation, the quantities x, y, σ remain unchanged.

Kicker Dipole The magnetic kicker dipole provides a
transverse magnetic field, similar to the bending dipole, but
the reference orbit is not bent (hx = 0). Kicker dipoles are
used to control the orbit in a machine. From the Hamiltonian
in Eq. (21) with hx = 0, the following tracking map can be
derived:

px → px − k0 χ L , (25)
py → py , (26)
pσ → pσ . (27)

As expected, due to the isotopic dispersion, the angular kick
in horizontal direction scales linearly with the relative mass
to charge ratio χ.

Quadrupole Magnet
The vector potential of a quadrupole with the normalized

gradient k = Z0e
P0

g is given by

ax = ay = 0 , as = −
1
2

k (y2 − x2) . (28)

Note that the ideal particle is not subject to magnetic forces
in a quadrupole, so the ideal trajectory is straight (hx = 0).
The resulting tracking map for a quadrupole of length L in
thin lens approximation is given by:

px → px − k χLx , (29)
py → py + k χLx , (30)
pσ → pσ . (31)

The focal length of the quadrupole scales linearly with the
relative mass to charge ratio.

Accelerating Cavity
The energy gain ∆E of a particle in an accelerating cavity

with wave number k = ω
c = 2π f can be approximated by

∆E = ZeU sin
(
φ − k

σ

β0

)
, (32)

where U is the average voltage during the particle’s passage
through the cavity [11]. In the approximation of a thin cavity,
the following vector potential can be derived:

Ax = Ay = 0 As = −
U
ω

cos
(
φ − k

σ

β0

)
δ̃(s) , (33)

where δ̃(s) is the Dirac function. Using the substitution
Un =

Z0e
P0c

U, the transfer map for pσ can be deduced as:

pσ → pσ + χUn sin
(
φ − k

σ(s)
β0

)
. (34)

The change in pσ is, as expected, proportional to Ze m0
m .

SUMMARY AND OUTLOOK
This article presents the derivation of an accelerator

Hamiltonian describing the motion of particles of differ-
ent species in the same magnetic lattice. Physically accurate
tracking studies of multi-isotopic heavy-ion beams require
a consistent formalism including the dispersion from chro-
matic effects and the mass to charge ratio relative to the
reference particle χ.
The Hamiltonian is employed for the derivation of sym-

plectic transfer maps for the individual beam line elements.
This allows the native tracking of ions of different species at
their physical momenta instead of using equivalent momenta
of the main beam particles to simulate the ion rigidities.
The tracking maps are implemented in a new version of

SixTrack (Heavy Ion SixTrack [4]) in which heavy ions and
secondary ion fragments scattered out of the collimation
system are tracked for collimation simulations.

TUPMW015 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

1452C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

01 Circular and Linear Colliders

A01 Hadron Colliders



REFERENCES
[1] O. S. Brüning et al. (Eds.), “LHC design report v.1 : The

LHC main ring”, CERN-2004-003-V1 (2004).

[2] R.W.Assmann et al., inProc. of EPAC’06, Edinburgh, United
Kingdom, paper TUODFI01, pp. 986–988 (2006).

[3] P. D. Hermes et al., CERN-ACC-Note-2016-0031 MD,
(2016).

[4] P. D. Hermes et al., “Simulation of heavy-ion beam losses
with the SixTrack-FLUKA active coupling”, presented at
IPAC’16, Busan, Korea, May 2016, paper TUPMW014, this
conference.

[5] H. H. Braun et al., in Proc. EPAC’04, Lucerne, Switzerland,
paper MOPLT010, pp. 551-553, (2004).

[6] P. D. Hermes et al., Nucl. Instr. Meth. Phys. Res. A 819,
73–83, (2016).

[7] F. Schmidt, CERN/SL/94–56 (AP).

[8] H. Wiedemann, “Particle Accelerator Physics”, Springer Ver-
lag, Heidelberg, (2007).

[9] R. De Maria et al., SixTrack Physics Manual,
http://sixtrack.web.cern.ch/SixTrack/doc/
physics_manual/sixphys.pdf

[10] E. D. Courant and H. S. Snyder. “Theory of the
Alternating-Gradient Synchrotron” Annals of Physics, 281(1-
2):360–408,(2000).

[11] A. Wolski, “Beam Dynamics in High Energy Particle Accel-
erators”, World Scientific, pp. 59-80, (2014).

[12] D. P. Barber et al., “A non-linear canonical formalism for the
coupled synchro-betatron motion of protons with arbitrary
energy”, Technical Report 87-36, DESY, (1987).

[13] K. Heinemann et al., “Construction of nonlinear symplectic
six-dimensional thin-lens maps by exponentiation”, Technical
Report 95-189, DESY, (1995).

[14] S. Turner (ed.), Proceedings of CERN Accelerator School:
5th Advanced Accelerator Physics Course, CERN-95-06,
(1995).

[15] M. Fjellström, “Particle Tracking in Circular Accelerators
Using the Exact Hamiltonian in SixTrack”, Master’s thesis,
Lulea University, Sweden, (2013).

Proceedings of IPAC2016, Busan, Korea TUPMW015

01 Circular and Linear Colliders

A01 Hadron Colliders

ISBN 978-3-95450-147-2

1453 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


