Paper | Title | Other Keywords | Page |
---|---|---|---|
MOZB01 | Construction and Beam Commissioning of CSNS Accelerators | DTL, quadrupole, linac, rfq | 47 |
|
|||
CSNS (China Spallation Neutron Source) is a proton accelerator based facility for delivering spallation neu-trons to users. The main components are 80-MeV linac, 1.6-GeV RCS and neutron production target. The con-struction began in 2011, and now construction of the building and accelerator components is well in progress. Most of the components have been tested and installed into the tunnel. The ion source and RFQ have been suc-cessfully commissioned. The first DTL tank has success-fully completed the beam commissioning, and the beam commissioning for the other three DTL tank will be per-formed before the end of 2016. The RCS commissioning will start in the beginning of 2017. This presentation provides a complete overview of the status of construc-tion and beam commissioning. | |||
![]() |
Slides MOZB01 [11.853 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOZB01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMB012 | A High-Energy-Scrapersystem for the S-DALINAC Extraction - Design and Installation | electron, extraction, linac, vacuum | 101 |
|
|||
Funding: *Funded by Deutsche Forschungsgemeinschaft under grant No. SFB 634 The superconducting Darmstadt linear electron accelerator (S-DALINAC) of the Institute for Nuclear Physics at Technische Universität Darmstadt delivers electron beams in cw-mode with energies up to 130 MeV. The accelerator consists of a 10-MeV injector and a 30-MeV main linac where superconducting 3-GHz microwave cavities are operated at a temperature of 2 K for beam acceleration. With three recirculation beamlines the main linac can be used up to four times. To improve the energy spread and the energy stability of the beam a new scrapersystem has been developed and installed. It changes the extraction beam line into a dispersion-conserving chicane consisting of four dipole magnets and three scrapers. The system includes scraping of x- and y-halo in two positions as well as improving and stabilizing energy spread on a dispersive part. We will present the design of the system and report on its installation into the accelerator complex. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMB037 | Beam Position Monitor Design for Dielectric Wakefield Accelerator In THz Range | wakefield, simulation, polarization, controls | 171 |
|
|||
Dielectric based collinear wakefield accelerator have been broadly selected for the THz accelerator due to its simplicity. In order to move the THz accelerators from the current exploratory research into the practical phase, certain common accelerator components are indispensable. Beam Position Monitor (BPM) is one of them. However, most of conventional BPM techniques are hardly scaled down to THz regime. Here we propose a BPM design which uses the dominant dipole mode excited in the dielectric wakefield accelerators to extract information of the beam position. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB037 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMR029 | Experience with DOROS BPMs for Coupling Measurement and Correction | coupling, electronics, controls, injection | 303 |
|
|||
The Diode ORbit and OScillation System (DOROS) system is designed to provide accurate measurements of the beam position in the LHC. The oscillation part of the system, which is able to provide turn-by-turn data, is used to measure the transverse coupling. Since the system provides high resolution measurements for many turns only small excitations are needed to accurately measure the transverse coupling. In this article we present the performance the system to measure coupling and compare it to the BPMs not equipped with this system. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMR037 | Analysis of Asymmetry Tolerances and Cross-coupling in Cavity BPMs | coupling, cavity, alignment, simulation | 331 |
|
|||
Geometric asymmetries in cavity BPMs result in a coupling between horizontal and vertical signals, which complicates their usage and may affect both the dynamic range and spatial resolution of the system in both directions. Tolerances to several types of geometric asymmetries have been analysed using a 3D electromagnetic field solver (GdfidL). We report on some of the results and discussed the possible impact of the considered geometrical distortions. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR037 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMW012 | Study for a 162.5 MHz Window-Type RFQ | rfq, Windows, cavity, simulation | 423 |
|
|||
A window type of four vane radio-frequency quadrupole accelerator has been designed to accelerate 50 mA deuteron beam from 50 keV to 1 MeV. It will operate at 162.5 MHz in CW mode. Compared to the traditional four-vane RFQ, the window-type RFQ is more compact and has higher mode separation without π-mode stabilizing loops or dipole rods. A detailed full 3D model including vane modulation was developed. For the purpose of high shunt impedance, high quality factor and low power dissipation, the RF structure design was optimized by using electromagnetic simulations. Following the EM design optimization, an aluminium model of the window-type RFQ was fabricated and tested. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOR011 | Impedance Localization Measurements using AC Dipoles in the LHC | impedance, quadrupole, betatron, optics | 614 |
|
|||
The knowledge of the LHC impedance is of primary importance to predict the machine performance and allow for the HL-LHC upgrade. The developed impedance model can be benchmarked with beam measurements in order to assess its validity and limit. This is routinely done, for example, moving the LHC collimator jaws and measuring the induced tune shift. In order to localize possible unknown impedance sources, the variation of phase advance with intensity between beam position monitors can be measured. In this work we will present the impedance localization measurements performed at injection in the LHC using AC dipoles as exciter as well as the underlying theory. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOW001 | Status of the 1.3 GeV Booster Synchrotron for Generating High Energy Gamma Rays at Tohoku University | vacuum, controls, operation, booster | 701 |
|
|||
The reconstruction work of accelerator complex for the Great East Japan Earthquake in March 2011 had been conducted in Research Center of Electron Photon Science, Tohoku University. Since restoration of the user machine time in 2013, the approved beam time have been regularly implemented as scheduled. Currently, the 1.3 GeV Booster STorage (BST) ring has been well utilized to generate the high energy gamma-rays as before the disaster. The high energy gamma-rays were produced via Bremsstrahlung by inserting an internal target wire to the beam orbit after the beam acceleration. Since the user machine time was recovered, there were some improvements so far, i.e. realignment of synchrotron magnets, orbit correction in energy ramping process by updating the control of power supplies for steering magnets etc., which brought an increase of the beam current in the maximum energy. Present operational status and recent progress of beam performance in the BST ring are reported. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOW052 | Status of the Preparation to the Commissioning of the ThomX Storage Ring | storage-ring, injection, electron, controls | 833 |
|
|||
Funding: Work is supported by the French Agence Nationale de la Recherche as part of the program EQUIPEX under reference ANR-10-EQPX-51, the Ile de France region, CNRS-IN2P3 and Université Paris Sud XI ThomX is a compact Compton based X-ray source under construction at LAL in Orsay (France). The ThomX facility is composed by a 50-70 MeV linac, a transfer line and a 18 meters long Storage Ring (SR). The Compton scattering between the 50 MeV electron bunch of 1 nC and the 30 mJ laser pulses stacked in the Fabry-Perot cavity results in the production of photons with energies (up to 90 keV) with a maximum flux of 1013 photons/s. The ThomX construction will start shortly aiming to be completed in the middle of 2017. The preparation to the SR commissioning as far as a control system and beam physics applications are concerned is progressing gradually in order to prepare and test all the tools well ahead the start of the machine. The SR commissioning will face with many challenges providing the low energy, compactness, the nonlinear beam dynamics, the limited beam storage and need for the precision and stabilization in the Interaction Region. Several techniques used at the Synchrotron Light Sources should be modified/adapted to meet all the specificity of the ThomX. This is a report on preparation of the ThomX SR commissioning, its status, planning, main challenges and expectations. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW052 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY002 | Towards Beam-Dynamics Simulations Including More Realistic Field Descriptions for the HESR | multipole, dynamic-aperture, quadrupole, lattice | 847 |
|
|||
The High Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) placed in Darmstadt (Germany). The HESR is designed for antiprotons with a momentum range from 1.5 GeV/c to 15 GeV/c, but will as well be suitable to provide heavy ion beams with a momentum range from approximately 0.6 GeV/c to 5.8 GeV/c. To guarantee smooth operation it is crucial to verify and improve the design with beam-dynamics simulations. Particularly the dynamic aperture is calculated as a measure of quality. Complementary to previous beam dynamics calculations based on frequency map analysis*, the dynamic aperture is calculated using a variant of the Lyapunov exponent. The first bending and focusing magnets have been delivered and the magnetic fields measured recently. So the modeled assumptions regarding the multipole imperfections of these elements are now replaced by values based on measurements. This contribution contains the inclusion of the measured values as well as the the tracking-based dynamic aperture calculations.
* D.M. Welsch, A. Lehrach, B. Lorentz, R.Maier, D. Prasuhn, R.Tölle: "Investigation and Optimization of Transverse Non-Linear Beam Dynamics in the High-Energy Storage Ring HESR"; IPAC'10 |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY011 | Estimating the Transverse Impedance in the Fermilab Recycler | impedance, proton, quadrupole, vacuum | 867 |
|
|||
Impedance could represent a limitation of running high intensity bunches in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this, studies have been performed measuring the tune shift as a function of bunch intensity allowing the transverse impedance to be derived. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY060 | Performance Analysis for the New g-2 Experiment at Fermilab | simulation, storage-ring, injection, experiment | 996 |
|
|||
The new g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment to a precision of ±0.14 ppm ─ a fourfold improvement over the 0.54 ppm precision obtained in the g-2 BNL E821experiment. Achieving this goal requires the delivery of highly polarized 3.094 GeV/c muons with a narrow ±0.5% Δp/p acceptance to the g-2 storage ring. In this study, we describe a muon capture and transport scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we describe its basic features. Then, we detail its performance numerically by simulating the pion production in the (g-2) production target, the muon collection by the downstream beamline optics as well as the beam polarization and spin-momentum correlation up to the storage ring. The sensitivity in performance of our proposed channel against key parameters such as magnet apertures and magnet positioning errors is analyzed | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY060 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOAB01 | Optimization of the Dechirper for Electron Bunches of Arbitrary Longitudinal Shapes | wakefield, electron, simulation, controls | 1054 |
|
|||
Dechirper is a passive device composed of a vacuum chamber of two corrugated, metallic plates with an adjustable gap. By introducing a small offset in the dechirper with respect to the reference axis, one might generate transverse wakefields and use the dechirper as a deflector. Understanding the interactions between electron beams of various longitudinal shapes with the wakefields generated by the dechirper is important to assess the feasibility of the dechirper for use as a deflector. Recently, using a set of alpha-BBO crystals, shaping of laser pulses and electron bunches on the order of ps is tested at the Injector Test Facility (ITF) of Pohang Accelerator Laboratory (PAL). Furthermore, we have investigated propagation of electron bunches of arbitrary longitudinal shapes through the dechirper. In the numerical simulations, we observed that the arbitrary electron beams were successful deflected except for lethal beam shape problems. Hence, in this work, we study optimization of the dechirper for electron bunches of arbitrary longitudinal shapes, using analytical theory and numerical simulations with the ASTRA and ELEGANT codes. | |||
![]() |
Slides TUOAB01 [1.631 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOAB01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOAB02 | Conditions for CSR Microbunching Gain Suppression | emittance, lattice, synchrotron, synchrotron-radiation | 1057 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The coherent synchrotron radiation (CSR) of a high brightness electron beam traversing a series of dipoles, such as transport arcs, may result in phase space degradation. On one hand, the CSR can perturb electron transverse motion in dispersive regions along the beamline, causing emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching gain enhancement. For transport arcs, several schemes have been proposed* to suppress the CSR-induced emittance growth. Similarly, several scenarios have been introduced** to suppress CSR-induced microbunching gain, which however mostly aim for linac-based machines. In this paper we try to provide sufficient conditions for suppression of CSR-induced microbunching gain along a transport arc, analogous to*. Several example lattices are presented, with the relevant microbunching analyses carried out by our semi-analytical Vlasov solver***. The simulation results show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. We expect this analysis can shed light on lattice design approach that could suppress the CSR-induced microbunching gain. *D.Douglas et al, JLAB-ACP-14-1751, S.DiMitri et al, PRL (2013), R.Hajima, NIMA (2004), Y.Jiao et al, PRSTAB (2014) **Z.Huang et al, PRSTAB (2004), Saldin et al, NIMA (2004) ***C.Tsai et al, FEL'15 |
|||
![]() |
Slides TUOAB02 [6.484 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOAB02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOBB01 | Demonstration of Current Profile Shaping using Double Dog-Leg Emittance Exchange Beam Line at Argonne Wakefield Accelerator | emittance, quadrupole, experiment, wakefield | 1065 |
|
|||
Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. We present current profile shaping results, aberrations on the shaped profile, and its suppression. | |||
![]() |
Slides TUOBB01 [5.032 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBB01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOCB03 | Magnet Development for SPring-8 Upgrade | sextupole, alignment, quadrupole, undulator | 1093 |
|
|||
One of the features for newly designed magnets for the SPring-8 major upgrade plan* is permanent magnet based dipole magnets for substantial energy saving. The new dipole magnets have been designed to be equipped with (i) a field variable function by controlling magnetic flux into a beam axis, (ii) a nose structure on iron poles for smooth B-field transition in the longitudinal gradient field, and (iii) a nearly zero temperature coefficient of magnet circuit with the help of a shunt alloy**. Demagnetization due to radiation is also a critical issue. At SPring-8, demagnetization process has been intensively studied, and the effect has been considered in the design of dipole magnets. Although electromagnet based multi-pole magnets are rather conventional technologies, yet new magnets need to be designed to fit in the next generation high packing factor lattice with as reasonably lower energy consumption as possible. Magnet alignment will be a key development as well; in order to secure adequate dynamic apertures, magnets ought to be aligned within tens of microns. Current design and recent progress in the developments of magnets and alignment schemes will be presented.
* H. Tanaka et al., SPring-8 Upgrade Project, in the abstracts. ** T. Taniuchi et al., Proc. of IPAC2015, WEPMA050. |
|||
![]() |
Slides TUOCB03 [4.014 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOCB03 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB001 | Magnets for the ESRF-EBS Project | quadrupole, permanent-magnet, sextupole, octupole | 1096 |
|
|||
A major upgrade project known as ESRF-EBS, Extremely Brilliant Source is planned at the European Synchrotron Radiation Facility (ESRF) in the coming years. A new storage ring will be built, aiming to decrease the horizontal emittance and to improve the brilliance and coherence of the X-ray beams. The lattice of the new storage ring relies on magnets with demanding specifications: dipoles with longitudinal gradient (field ranging from 0.17 T up to 0.67 T), strong quadrupoles (up to 90 T/m), combined function dipole-quadrupoles with high gradient (0.57 T and 37 T/m), strong sextupoles and octupoles. The design of these magnets is based on innovative solutions; in particular, the longitudinal gradient dipoles are permanent magnets and the combined dipole-quadrupoles are single-sided devices. The design of the magnets is finished and prototypes of innovative magnets have been built. The procurement of the magnets has started. Call for Tenders have been sent to a pre-qualified short list of magnet manufacturers. The longitudinal gradient dipoles will be assembled and measured in house. The design of the magnets, the prototype results and procurement status will be presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB002 | Status of THOMX Storage-ring Magnets | quadrupole, sextupole, storage-ring, electron | 1100 |
|
|||
The THOMX facility is a compact X-Ray source based on the Compton back scattering aiming at a flux of 1011 to 1013 ph/s in the range of energy from 40 to 90 keV. Due to the compactness and the expected stability of this machine, high requirements are set for all magnets in terms of design and manufacturing. First, the design optimization of the magnets is presented, leading to high performance in terms of harmonics. Issues regarding the cross-talk between quadrupole and sextupole fields are then discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB003 | ILSF Booster Magnets for the New Low Emittance Lattice | booster, sextupole, quadrupole, extraction | 1104 |
|
|||
Iranian light source facility is a 3 GeV storage ring with a booster ring which is supposed to work at 150Kev injection energy and guide the electrons to the ring energy 3GeV. In this paper magnet design of the booster ring is discussed. It consists of 50 combined bending magnets in 1 type, 50 quadrupoles and 15 sextupoles in 1 family. Using POISSON, Maxwell Ansys and Radia codes, two and three dimensional pole and yoke geometry was designed, also cooling and electrical calculations have been done. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB004 | ILSF Low Emittance Storage Ring Magnets | sextupole, quadrupole, multipole, storage-ring | 1107 |
|
|||
The Iranian Light Source Facility (ILSF) is a new 3 GeV synchrotron radiation laboratory in the design stage. The ILSF storage ring (SR) is based on a Five-Bend Achromat lattice providing an ultr-alow horizontal beam emittance of 0.48 nm-rad. The ring is consisting of 100 pure dipole magnets, 320 quadrupoles and 320 sextupoles. In this paper, we present some design features of the SR magnets and discuss the detailed physical and mechanical design of these electromagnets. The physical designs have been performed relying on two dimensional codes POISSON [1] and FEMM [2]. Three dimensional RADIA [3] and MERMAID [4] were practiced too, to audit chamfering values and get the desired magnetic length. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB004 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB006 | The Magnetic Measurement of Conventional Magnets for Free-Electron Laser Project of Chinese Academy of Engineering Physics | electron, collimation, FEL, laser | 1115 |
|
|||
The project of free electron laser is worked together completed by CAEP(Chinese Academy of Engineering Physics)and IHEP(Institute of High Energy Physics, China). Conventional magnet of the project includes a total of three deflecting dipole magnet, an analysis of dipole magnet, and two quadrupole magnets. All of magnets to complete the measurement by IHEP Hall measuring equipment. The measurement trajectory of integral magnetic field for deflection dipole magnet is arc and arc tangent direction, using Labview software written a new measurement procedures, the Hall probe directly read absolute value of the three-axis(X, Y, Z) coordinate point (relative to the Hall probe in terms of absolute zero) measurement functions, Not only achieve the purpose of measuring the trajectory can be freely combined, but also effectively eliminate the accumulated error of Hall mobile devices. All measurement results of conventional magnets have reached the physical design requirements, and each magnet were carried out more than twice the measurement, the reproducibility of the measurement results are better than one-thousandth, fully meet the design claim of CAEP. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB013 | PAL-XFEL Magnet Design and Magnetic Measurement | quadrupole, multipole, undulator, laser | 1136 |
|
|||
We have designed and tested magnets for PAL-XFEL of 10GeV in Pohang, Korea. These magnets consist of 6 families of 52 dipole magnets, 11 families of 236 quadrupole magnets, and 4 families of 108 corrector magnets. Two hall probe benches are used to measure the magnetic field. This paper reviews the main parameters of these magnets and the results of magnetic field measurements. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB013 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB018 | Magnetic Measurements of SESAME Storage Ring Dipoles at ALBA | injection, alignment, multipole, storage-ring | 1148 |
|
|||
Funding: This work is partially supported by the EC under the CESSAMag project, FP7 contract 338602. In this work we present the results of the measurement campaign of the main bending magnets of the SESAME storage ring, that were fully characterized at ALBA-CELLS magnetic measurements facility. A total of 17 combined function dipoles ' 16 series magnets plus a pre-series one ' has been tested and characterized. This campaign has been performed using a dedicated Hall probe bench. The main measurements include the transfer function at the center of the magnet and field maps of the three components of the field in a plane around the nominal trajectory of the electron beam, at two different operating currents. In this paper we describe the experimental setup and procedures, before reporting the main results, including statistics of magnet-to-magnet reproducibility and integrated field quality. Finally, we show how the measured data can be exploited for an optimal 3D alignment of the dipoles in the machine. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB019 | Detailed Characterization of MEBT Quadrupoles for the Linear IFMIF Prototype Accelerator (LIPAc) | quadrupole, multipole, acceleration, synchrotron | 1151 |
|
|||
Funding: This work has been funded by the Spanish Ministry of Economy and Competitiveness under the Agreement as published in BOE, 16/01/2013, page 1988 The IFMIF-EVEDA* Linear IFMIF Prototype Accelerator (LIPac) is a 9 MeV, 125 mA CW deuteron accelerator to validate the technology to be used in the future IFMIF accelerator. The acceleration of deuterons will be done through two stages. The matching between them will be done in the Medium Energy Beam Transport line (MEBT). In this section, the transverse focusing of the beam is carried out by five quadrupole magnets with integrated steerers, grouped in one triplet and one doublet**. These magnets have been designed by CIEMAT, and manufactured by the Spanish company ANTECSA. After manufacturing, they were fully characterized at ALBA-CELLS magnetic measurements facility. In this paper we describe the characterization bench used to measure the magnets, the measurement protocol and the alignment procedure, as well as the results obtained and the iteration process followed in order to shim the magnets to fulfill with beam dynamics requirements. * A. Mosnier et al., proceedings of IPAC10, MOPEC056, p.588, Kyoto, Japan (2010) ** C. Oliver, et alt, proceedings of IPAC11, WEPO014, p. 2424, San Sebastián, Spain (2011) |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB021 | SLAC FACET-II Positron Damping Ring Magnet Design | lattice, positron, damping, magnet-design | 1154 |
|
|||
The FACET-II facility, currently being designed at SLAC, will contain a small ~20 m circumference, 335 MeV, positron damping ring. The ring has to fit in the existing linac tunnel, meaning that a compact lattice with short distances between magnets is required. The detailed magnet design is done in Opera-3d, with a finite element model of a full damping ring arc being simulated. This article presents this magnet design in a relatively early stage, with iteration between magnet and lattice design currently in progress. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB023 | MAX IV 3 GeV Storage Ring Magnet Block Production Series Measurement Results | storage-ring, lattice, octupole, synchrotron | 1157 |
|
|||
The MAX IV 3 GeV storage ring magnets are integrated "magnet block" units consisting of several consecutive magnet elements precision-machined out of a common solid iron block. In the 3 GeV ring, there are 140 magnet blocks containing a total of 1320 magnet elements. During the manufacturing phase of the project, a field measurement was performed for each magnet element, by Hall probe and/or by rotating coil. This article presents an overview of the magnetic field measurement results that were obtained for the full production series. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB023 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB025 | Conceptual Design of Storage Ring Magnets for a Diffraction Limited Light Source Upgrade of ALS, ALS-U | lattice, sextupole, quadrupole, magnet-design | 1161 |
|
|||
Funding: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Lawrence Berkeley National Laboratory (LBNL) has been engaged in an internal laboratory directed research and development project to define a suitable accelerator physics lattice to support the diffraction limited upgrade of the Advanced Light Source*. Diffraction limited lattices require strong focusing elements throughout. Magnetics design is challenging in that the high gradient magnetic structures are required to operate in close proximity. Lattice development requires a coordinated engineering design effort to ensure the lattice design feasibility. We will present a review of the results of our magnet scoping studies as well as conceptual design specifications for the ALS-U lattice dipole, quadrupole, and sextupole magnet systems. Additionally we will present a conceptual design of refined super-bend magnets for the ALS-U lattice including a discussion of their potential impact on beam emittance. * C. Steier, et al. Progress of the R&D towards a Diffraction Limited Upgrade of the Advanced Light Source, Proceedings of IPAC 2015, |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB031 | From Design Towards Series - The Superconducting Magnets for FAIR | quadrupole, superconducting-magnet, sextupole, ion | 1167 |
|
|||
The Facility for Anti-proton and Ion Research (FAIR-project) is now under construction. The heavy ion synchrotron SIS100 and the Super Fragment Separator (Super-FRS) use mainly superferric magnets as beam guiding elements. We present the design status of the magnets next to the experience obtained on the first magnets which were produced for SIS100. Finally we give an overview of the preparation for the series production and testing of the cryomagnetic modules. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB032 | Magnetic Field Characterisation of the First Series Dipole Magnet for the SIS100 Accelerator of FAIR | multipole, superconductivity, sextupole, ion | 1171 |
|
|||
The procurement of the SIS100 dipoles was contracted without building and testing an appropriate model magnet. So the thorough test of the first of series magnet is the key issue for the final realisation of the complete series production. The core of these tests is the measurement and analysis of the magnetic field of the first dipole. We describe the adapted measurement technics next to a detailed analysis of the obtained field quality and point out the critical issues of the series production | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB035 | Developments of HTS Magnets towards Application to Accelerators | operation, neutron, target, cyclotron | 1180 |
|
|||
We have been developing magnets utilizing first generation HTS wire for this decade. HTS materials have advantages over LTS materials. Magnets can be operated at 20 K or higher temperature and the cooling structure becomes simpler. Owing to a large margin in operating temperature, it is possible to excite HTS magnets by AC or pulsed currents without quenching. After successful performance tests of proto type models, two magnets have been fabricated for practical use. A cylindrical magnet generates a magnetic field higher than 3.5 T at the center to polarized 210 neV neutrons. A dipole magnet is excited by pulse currents in order to deliver accelerated beams to two target stations by time sharing. Their design and operational performance are discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB037 | Instruments and Methods for the Magnetic Measurement of the Super-FRS Magnets | quadrupole, sextupole, cryogenics, octupole | 1183 |
|
|||
The Super-FRS is a new fragment separator to be built as part of the Facility for Antiproton and Ion Research (FAIR) [\ref{fairweb}] at Darmstadt. The acceptance tests and magnetic measurements of the superferric separation dipoles and multiplets (containing quadrupole and higher-order magnets) will be performed at CERN in collaboration with GSI/FAIR [\ref{abstractfacility}]. This paper presents the methods and challenges of the magnetic field measurements, and the required instruments for measuring the transfer function, field quality, and magnetic axis. A prototype for each system has been produced in order to validate the measurement methods, the instruments, and the mechanical integration. In this paper will present the design and production of the prototypes, the design of the instruments for the series measurements, and the results of the metrological characterization. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB037 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB038 | Degradation of the Insulation of the LHC Main Dipole Cable when Exposed to High Temperatures | superconducting-magnet, operation, laser, high-voltage | 1186 |
|
|||
Funding: Research supported by the High Luminosity LHC project The energy stored in the LHC beams is substantial and requires a complex machine protection system to protect the equipment. Despite efficient beam absorbers, several failure modes lead to some limited beam impact on superconducting magnets. Thus it is required to understand the damage mechanisms and limits of superconducting magnets due to instantaneous beam impact. This becomes even more important due to the future upgrade of CERNs injector chain for the LHC that will lead to an increase of the beam brightness. A roadmap to perform damage tests on magnet parts has been presented previously*. The polyimide insulation of the superconducting cable is identified as one of the critical elements of the magnet. In this contribution, the experimental setup to measure the insulation degradation of LHC main dipole cables due to exposure to high temperature is described. Compressed stacks of insulated Nb-Ti cables have been exposed to a heat treatment within an Argon atmosphere. After each heat treatment, high-voltage measurements verified the dielectric strength of the insulation. The results of this experiment provide an upper damage limit of superconducting magnets due to beam impact. * Experimental Setups to Determine the Damage Limit of Superconducting Magnets for Instantaneous Beam Losses, V. Raginel et al, IPAC'15 |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB038 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB042 | Sweet Spot Designs for Interaction Region Septum Magnets | hadron, quadrupole, shielding, electron | 1196 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. A fundamental consideration in designing a high energy collider Interaction Region with electron beams is to avoid production of excessive experimental detector background due to synchrotron radiation. Circumventing such radiation is especially problematic with colliding beams having quite different magnetic rigidities as occurs in both electron-hadron and asymmetric-momentum electron colliders where one must shield an incoming electron beam from the strong magnetic fields needed to focus the other beam. After reviewing some magnetic configurations used to date, we introduce a new 'sweet spot' coil concept that was invented for the eRHIC project proposed at BNL. Sweet spot coils have conductors arranged so that there is an open, low field strength path through the main high field superconducting coil structure. Sweet spot configurations tend to be more efficient than other active and passive shielding solutions. Dipole and quadrupole sweet spot magnet designs examples are presented in this paper along with ongoing R&D to implement and test these concepts. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB051 | Commisioning of Facility for Assembling and Tests of Superconducting Magnets | booster, collider, quadrupole, synchrotron | 1215 |
|
|||
The NICA accelerator complex will consist of two injector chains, the new 600 MeV/u superconducting (SC) booster synchrotron, the existing SC synchrotron Nuclotron, and the new SC collider having two rings each of 503 m in circumference. The building construction of the new test facility for simultaneous cryogenic testing of the SC magnets on 6 benches is completed at the Laboratory of High Energy Physics. Premises with an area of 2600 m2 were prepared, equipment for magnets assembly and tests are installed. Three helium satellite refrigerators with each capacity of 100 W were commissioned 2 of 6 test benches for magnets testing are assembled and commissioned. NICA booster magnets fist cryogenic tests are done. The results are discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB051 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR023 | First Operational Experience of HIE-Isolde | detector, ion, experiment, target | 1284 |
|
|||
The High Intensity and Energy ISOLDE project (HIE-ISOLDE)* is a major upgrade of the ISOLDE facility at CERN. The energy range of the post-accelerator will be extended from 2.85 MeV/u to 9.3 MeV/u for beams with A/q = 4.5 (and to 14.3 MeV/u for A/q = 2.5) once all the cryomodules of the superconducting accelerator are in place. The project has been divided into different phases, the first of which (phase 1a) finished in October 2015 after the hardware and beam commissioning were completed**. The physics campaign followed with the delivery of both radioactive and stable beams to two different experimental stations. The characteristics of the beams (energies, intensities, time structure and beam contaminants) and the plans for the next experimental campaign will be discussed in this paper.
* The HIE-ISOLDE Project, Journal of Physics: Conference Series 312. ** HIE-ISOLDE First Commissioning Experience, IPAC'16 ** Beam Commissioning of the HIE-ISOLDE Post-Accelerator, IPAC'16 |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR023 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR031 | Implementation and Preliminary Test of Electron Beam Ion Sources at KOMAC | ion, electron, rfq, ion-source | 1311 |
|
|||
Funding: This work has been supported through KOMAC operation fund of KAERI by Ministry of Science, ICT and Future Planning. Electron beam ion source (EBIS) has been one of widely used table-top devices for the production of highly charged ions by electron impact ionization. An EBIS employs a magnetically compressed, high energy and density electron beam to sequentially ionize atoms or ions with a low charge state*. At KOMAC, we have a compact room-temperature operated EBIS. It is additionally constructed with a magnetic mass spectrometer and a Faraday Cup to measure charge spectra. Using this measurement setup, preliminary tests are performed to find suitable operational potentials in the EBIS for a stable production of highly charge ions. In future, we aim to build an EBIS based pre-injector with a radio frequency quadrupole. It has advantages of having a simple operation and a large number of ion species**. For this, we intend to improve and modify the current EBIS design to incorporate with existing setups at KOMAC. * M. A. Levin et al., Phys. Scr. T22, 157-163 (1988) ** J. Alessi et al., EBIS Pre-Injector Project Conceptual Design Report, Brookhaven National Laboratory (2005) |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR058 | An Upgrade for the 1.4 MeV/u Gas Stripper at the GSI UNILAC | target, ion, injection, heavy-ion | 1394 |
|
|||
The GSI UNILAC will serve as part of an injector system for the future FAIR facility, currently under construction in Darmstadt, Germany. For this, it has to deliver short-pulsed, high-current, heavy-ion beams with highest beam quality. An upgrade for the 1.4 MeV/u gas stripper is ongoing to increase the yield of uranium ions in the desired charge state. The new setup features a pulsed gas injection synchronized with the beam pulse transit to increase the effective density of the stripper target while keeping the gas load for the differential pumping system low. Systematic measurements of charge state distributions and energy-loss were conducted with 238U-ion beams and different stripper gases, including H2 and He. By using H2 as a stripper gas, the yield into the most populated charge state was increased by over 50%, compared to the current stripper. Furthermore, the high gas density, enabled by the pulsed injection, results in increased mean charge states. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR058 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW001 | SPPC Parameter Choice and Lattice Design | lattice, collider, proton, quadrupole | 1400 |
|
|||
In this paper we showed a systematic method of appropriate parameter choice for a circular pp collider by using analytical expression of beam-beam tune shift limit started from given design goal and technical limitations. Based on parameters scan, we obtain a set of parameters for SPPC with different circumferences like 54km, 78km or 100km and different energies like 70TeV or 100TeV. We also showed the first version of SPPC lattice although it needs lots of work to do and to be optimized. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW004 | Assessment and Mitigation of the Proton-Proton Collision Debris Impact on the FCC Triplet | shielding, detector, quadrupole, proton | 1410 |
|
|||
The Future Circular hadron Collider (FCC-hh), which is designed to operate at a centre-of-mass energy of 100 TeV and to deliver ambitious targets in terms of both instantaneous and integrated luminosity, poses extreme challenges in terms of machine protection during operation and with respect to long-term damages. Energy deposition studies are a crucial ingredient for its design. One of the relevant radiation sources are collision debris particles, which de- posit their energy in the interaction region elements and in particular in the superconducting magnet coils of the final focus triplet quadrupoles, to be protected from the risk of quenching and deterioration. In this contribution, the collision debris will be characterised and expectations obtained with FLUKA will be presented, including magnet lifetime considerations. New techniques including crossing angle gymnastics for peak dose deposition mitigation (as recently introduced in the framework of the LHC operation), will be discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW004 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW005 | Characterization of the Radiation Field in the FCC-hh Detector | detector, shielding, neutron, radiation | 1414 |
|
|||
As part of the post-LHC high-energy program, a study is ongoing to design a new 100 km long hadron collider, which is expected to operate at a centre-of-mass energy of 100 TeV and to accumulate up to 30 ab−1, with a peak instantaneous luminosity that could reach 30 1034cm−2s−1. In this context, the evaluation of the radiation load on the detector is a key step for the choice of materials and technologies. In this contribution, a first detector concept will be presented. At the same time, fluence distributions, relevant for detector occupancy, and accumulated damage on materials and electronics will be shown. The effectiveness of a possible shielding configuration, intended to minimise the background in the muon chambers and tracking stations, will be presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW005 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW006 | Power Deposition in LHC Magnets Due to Bound-Free Pair Production in the Experimental Insertions | ion, luminosity, simulation, heavy-ion | 1418 |
|
|||
The peak luminosity achieved during Pb-Pb collisions in the LHC in 2015 (3x1027cm-2s−1) well exceeded the design luminosity and is anticipated to increase by another factor 2 after the next Long Shutdown (2019- 2020). A significant fraction of the power dissipated in ultra-peripheral Pb-Pb collisions is carried by ions from bound-free pair production, which are lost in the dispersion suppressors adjacent to the experimental insertions. At higher luminosities, these ions risk to quench superconducting magnets and might limit their operation due to the dynamic heat load that needs to be evacuated by the cryogenic system. In this paper, we estimate the power deposition in superconducting coils and the magnet cold mass and we quantify the achievable reduction by deviating losses to less sensitive locations or by installing collimators at strategic positions. The second option is considered for the dispersion suppressor next to the ALICE insertion, where a selective displacement of losses to a magnet-free region is not possible. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW015 | Symplectic Tracking of Multi-Isotopic Heavy-Ion Beams in SixTrack | ion, heavy-ion, simulation, quadrupole | 1450 |
|
|||
Funding: Work suppported by the Wolfgang Gentner Programme of the German BMBF The software SixTrack provides symplectic proton tracking over a large number of turns. The code is used for the tracking of beam halo particles and the simulation of their interaction with the collimators to study the efficiency of the LHC collimation system. Tracking simulations for heavy-ion beams require taking into account the mass to charge ratio of each particle because heavy ions can be subject to fragmentation at their passage through the collimators. In this paper we present the derivation of a Hamiltonian for multi-isotopic heavy-ion beams and symplectic tracking maps derived from it. The resulting tracking maps were implemented in the tracking software SixTrack. With this modification, SixTrack can be used to natively track heavy-ion beams of multiple isotopes through a magnetic accelerator lattice. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW016 | Effect of the LHC Beam Screen Baffle on the Electron Cloud Buildup | electron, simulation, shielding, proton | 1454 |
|
|||
Funding: Research supported by the High Luminosity LHC project Electron Cloud (EC) has been identified as one of the major intensity-limiting factors in the CERN Large Hadron Collider (LHC). Due to the EC, an additional heat load is deposited on the perforated LHC beam screen, for which only a small cooling capacity is available. In order to preserve the superconducting state of the magnets, pumping slots shields were added on the outer side of the beam screens. In the framework of the design of the beam screens of the new HL-LHC triplets, the impact of these shields on the multipacting process was studied with macroparticle simulations. For this purpose multiple new features had to be introduced in the PyECLOUD code. This contribution will describe the implemented simulation model and summarize the outcome of this study. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW019 | First Evaluation of Dynamic Aperture at Injection for FCC-hh | injection, dynamic-aperture, target, simulation | 1466 |
|
|||
Funding: This Research and Innovation Action project submitted to call H2020-INFRADEV-1-2014-1 receives funding from the European Union's H2020 Framework Programme under grant agreement no. 654305. In the hadron machine option, proposed in the context of the Future Circular Colliders (FCC) study, the dipole field quality is expected to play an important role, as in the LHC. A preliminary evaluation of the field quality of dipoles, based on the Nb3Sn technology, has been provided by the magnet group. The effect of these field imperfections on the dynamic aperture, using the present lattice design, is presented and first tolerances on the main multipole components are evaluated. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW020 | Status of the Beam Optics of the Future Hadron-Hadron Collider FCC-hh | collider, optics, sextupole, closed-orbit | 1470 |
|
|||
Funding: This work was supported by the HORIZON 2020 project EuroCirCol, grant agreement 654305. Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched a design study for possible future circular collider projects, FCC, to investigate their feasibility for high energy physics research. The study covers three options, a proton-proton collider, a circular e+/e− collider and a scenario for e-p collisions to study deep inelastic scattering. The present paper describes the beam optics and the lattice design of the Future Hadron-Hadron Collider (FCC-hh). The status of the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV cm. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW028 | Bound-Free Pair Production in LHC Pb-Pb Operation at 6.37 Z TeV per Beam | luminosity, experiment, ion, simulation | 1497 |
|
|||
In the 2015 Pb-Pb collision run of the LHC, the power of the secondary beams emitted from the interaction point by the bound-free pair production process reached new levels while the propensity of the bending magnets to quench is higher at the new magnetic field levels. This beam power is about 70 times greater than that contained in the luminosity debris and is focussed on a specific location. As long foreseen, orbit bumps were introduced in the dispersion suppressors around the highest luminosity experiments to mitigate the risk by displacing and spreading out these losses. An experiment designed to induce quenches and determine the quench levels and luminosity limit was carried out to assess the need for special collimators to intercept these secondary beams. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW029 | Tune and Chromaticity Control During Snapback and Ramp in 2015 LHC Operation | injection, controls, sextupole, lattice | 1501 |
|
|||
Because of current redistribution on the superconducting cables, the harmonic components of the magnetic fields of the superconducting magnets in the Large Hadron Collider (LHC) show decay during the low field injection plateau. This results in tune and chromaticity variations for the beams. In the first few seconds of the ramp the original hysteresis state of the magnetic field is restored - the field snaps back. These fast dynamic field changes lead to strong tune and chromaticity excursions that, if not properly controlled, induce beam losses and potentially trigger a beam dump. A feed-forward system applies predicted corrections during the injection plateau and to the first part of the ramp to avoid violent changes of beam conditions. This paper discusses the snapback of tune and chromaticity as observed in 2015, as well as the control of beam parameters during the ramp. It also evaluates the quality of the applied feed-forward corrections and their reproducibility. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW031 | Combined Ramp and Squeeze to 6.5 TeV in the LHC | optics, operation, controls, betatron | 1509 |
|
|||
The cycle of the LHC is composed of an energy ramp followed by a betatron squeeze, needed to reduce the beta- star value in the interaction points. Since Run 1, studies have been carried out to investigate the feasibility of combining the two operations, thus considerably reducing the duration of the operational cycle. In Run 2, the LHC is operating at the energy of 6.5 TeV that requires a much longer cycle than that of Run 1. Therefore, the performance gains from a Combined Ramp and Squeeze (CRS) is more interesting. Merging the energy ramp and the betatron squeeze could result in a gain of several minutes for each LHC cycle. With increasing maturity of LHC operation, it is now possible to envisage more complex beam manipulations; this paper describes the first machine experiment with beam, aiming at validating the combination of ramp and squeeze, which was performed in 2015, during a machine development phase. The operation experience with the LHC run at 2.51 TeV, when CRS down to 4 meters was deployed and a the first results of 2016 run are also reviewed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW036 | Optimizing Chromatic Coupling Measurement in the LHC | coupling, resonance, sextupole, quadrupole | 1520 |
|
|||
Optimizing chromatic coupling measurement in the LHC Chromatic coupling introduces a dependency of transverse coupling with energy. LHC is equipped with skew sextupoles to compensate the possible adverse effects of chromatic coupling. In 2012 a beam-based correction was calculated and applied successfully for the fist time. However, the method used to reconstruct the chromatic coupling was dependent on stable tunes and equal chromaticities between the horizontal and vertical planes. In this article an improved method to calculate the chromatic coupling without these constraints is presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMY016 | Design of a Collection and Selection System for High Energy Laser-driven Ion Beams | laser, ion, quadrupole, proton | 1581 |
|
|||
Funding: ELI-Beamlines Contract n.S14-187, LaserGen(CZ.1.07/2.3.00/30.0057), Ministry of Education of Czech Rep.(reg. No.CZ.1.05/1.1.00/02.0061), the FZU, AVCR, v.v.i and the project financed by ESF and Czech Rep. Laser-target acceleration represents a very promising alternative to conventional accelerators for several potential applications, from the nuclear physics to the medical ones. However, some extreme features, not suitable for multidisciplinary applications, as the wide energy and angular spreads are typical of optically accelerated ion beams. Therefore, beyond the improvements at the laser-target interaction level, a lot of efforts have been recently devoted to the development of specific beam-transport devices in order to obtain controlled and reproducible output beams. In this framework, a three years contract has been signed between INFN-LNS (IT) and Eli-Beamlines-IoP (CZ) to provide the design and the realization of a complete transport beam-line, named ELIMED, dedicated to the transport, diagnostics and dosimetry of laser-driven ion beams. The transport devices will be composed by a set of super-strong permanent magnet quadrupoles able to collect and focus laser driven ions up to 70MeV/u, and a magnetic chicane made of conventional electromagnetic dipole to select particles within a narrow energy range. Here, the design and development of these magnetic systems is described. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOR002 | Residual Ion Dynamics in ThomX Electron Storage Ring | ion, storage-ring, electron, focusing | 1648 |
|
|||
Funding: Work is supported by ANR-10-EQPX-51, by grants from Région Ile-de-France, IN2P3 and Pheniics Doctoral School. ThomX is a compact Compton Backscattering Source (CBS) which is being built in Orsay, France. Ions produced from residual gas in the storage ring can induce several instabilities. However the electron beam stability is crucial to attain the nominal performances foreseen. In order to prevent instabilities ion cleaning is considered. Complete studies of the beam effect on the ions have been undertaken. It shows that there are preferential ion accumulation points depending on the storage ring lattice. This paper will detail the ion longitudinal and transverse dynamics considering the optics of ThomX storage ring. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOR004 | Calculation of Transverse Coupled Bunch Instabilities in Electron Storage Rings Driven By Quadrupole Higher Order Modes | HOM, quadrupole, impedance, damping | 1655 |
|
|||
This paper presents a formula that estimates the growth rate of a transverse coupled bunch instability driven by quadrupole higher order modes (HOMs) in electron storage rings. Thus far, quadrupole HOMs are usually ignored in HOM driven instability studies for electron storage rings due to their weak nature compared to the lower orders. However, they may become relevant when high gradient SC multi-cell cavities with their potentially strong impedance spectrum are operated at high currents in a third generation or future synchrotron light source. An example is BESSY VSR, a scheme where 1.7 ps and 15 ps long bunches (rms) can be stored simultaneously in the BESSY II storage ring[*]. With the presented formula, instability thresholds are discussed for a recent BESSY VSR cavity model and different beam parameters.
* A. Jankowiak, J. Knobloch, P. Goslawski, and N. Neumann, eds., BESSY VSR - Technical Design Study, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 2015. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR004 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOR021 | Incoherent Vertical Emittance Growth from Electron Cloud at CesrTA | simulation, electron, emittance, positron | 1707 |
|
|||
Funding: Work supported by the US National Science Foundation PHY-1416318, PHY-0734867, and PHY-1002467, and the U.S. Department of Energy DE-FC02-08ER41538 We report on measurements of electron cloud (EC) induced tune shifts and emittance growth at the Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) with comparison to tracking simulation predictions. The simulations are based on a weak-strong model of the interaction of the positron beam (weak) with the electron cloud (strong), using electric fields computed with established EC buildup simulation codes (ECLOUD). Experiments were performed with 2.1 GeV positrons in a 30 bunch train with 14 ns bunch spacing and 9 mm bunch length, plus a witness bunch at varying distance from the train to probe the cloud as it decays. Measurements of the horizontal and vertical coherent tune shifts and horizontal and vertical bunch size were obtained for a range of train and witness bunch currents, and compared to simulations. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOR026 | Final Design and Status of the Third Recirculation for the S-DALINAC* | recirculation, linac, electron, operation | 1717 |
|
|||
Funding: *Work supported by DFG through CRC 634 and RTG 2128 Since 1991 the twice-recirculating superconducting accelerator S-DALINAC is providing electron beams for nuclear physics experiments. Due to a reduced quality factor of its cavities in comparison to their design values it was not possible to operate the accelerator with its maximum design energy of 130 MeV in cw mode. To provide electron beams of this energy in the future it was decided to add one recirculation beam line in order to use the main linac four times, operating the cavities on decreased accelerating gradients. The necessary modifications consist of several different aspects: A new beamline needs to be installed and other pre-existing beam line sections have to be modified for matching new boundary conditions. These new conditions are mainly a result of beam dynamics simulations and of the design of a new separation dipole magnet, which will bend the different beams energy-dependent in the various recirculation beam lines. We will present the implemented design and give a status report on the project. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOR029 | Study of Fast Instability in Fermilab Recycler | electron, simulation, betatron, proton | 1728 |
|
|||
One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. Various peculiar features of the instability: its occurrence only above a certain intensity threshold, and only in horizontal plane, as well as the rate of the instability, suggest that its cause is electron cloud. We studied the phenomena by observing the dynamics of stable and unstable beam. We found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The findings suggest electron cloud trapping in Recycler combined function mag-nets. Bunch-by-bunch measurements of betatron tune show a tune shift towards the end of the bunch train and allow the estimation of the density of electron cloud and the rate of its build-up. The experimental results are in agreement with numerical simulations of electron cloud build-up and its interaction with the beam. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOW029 | Transverse Cavity Tuning at the Advanced Photon Source | cavity, linac, gun, LabView | 1814 |
|
|||
A 15-cell transverse deflecting cavity based on a SLAC design was fabricated at the Advanced Photon Source and is being prepared for installation into the Injector Test Stand. A beadpull method for tuning was selected in lieu of the nodal position method to minimize the possibility of contamination and surface damage to the irises. The process has been successfully documented for many accelerating mode structures, but there has been limited application to dipole mode structures. In this paper, we will discuss the methodology for tuning and conditioning a 2.8 GHz backward-traveling wave deflecting cavity. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOW053 | Measurement of Terahertz Generation in a Metallic, Corrugated Beam Pipe | radiation, electron, experiment, laser | 1889 |
|
|||
Funding: Work supported by the Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-76SF00515 A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations*. We present results of a measurement of such an arrangement at BNL's Advanced Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 um. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam–-compared to the wavelength of the radiation–-to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation. Our experimental set-up was simple and not optimized for the efficient collection of the radiation by e.g. the use of tapered horns. As such it can be considered a proof-of-principle experiment. * K. Bane and G. Stupakov, NIM A677 (2012) 67-73. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW053 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEXA01 | The ESRF Low-emittance Upgrade | lattice, emittance, vacuum, radiation | 2023 |
|
|||
This talk focuses on novel aspects of the lattice design, describes the technical solutions that have been found for meeting the design goals (including the use of permanent magnet dipoles), outlines the main challenges that will be faced in commissioning and operating the new lattice in a very demanding parameter regime, and discusses how it is hoped to maximize eventual benefits for users while minimizing disruption during the upgrade process. | |||
![]() |
Slides WEXA01 [23.005 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEXA01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMB008 | ESS DTL Mechanical Design and Prototyping. | DTL, simulation, vacuum, linac | 2131 |
|
|||
The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2 MHz with a duty cycle of 4% (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. In this paper the DTL mechanical design and simulations are presented, together with the results obtained from the prototypes of three drift tubes, equipped respectively with Permanent Magnet Quadrupole, Steerer and Beam Position Monitor. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMB028 | High HOM Damping Structure Study for CEPC | cavity, HOM, damping, collider | 2183 |
|
|||
Both large circular collider such as CEPC and high current ERL facility need high HOM damping superconducting cavity. The slotted cavity is an option for such applications. It has three slotted waveguides which can highly damp the HOM and extract high HOM power out. However, the HOM absorbers for such facility are usually put outside of the cryomodule to decrease the influence of HOM power on the cryogenic system. Large slot waveguide need to make smaller transition structure to adapt this situation. A rectangular waveguide to coaxial waveguide structure was designed to the slotted cavity. In this paper, we will show the cavity HOM damping design scheme with this structure. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMB030 | Design Study of a Compact Deflecting Cavity at IHEP | cavity, controls, linac, simulation | 2188 |
|
|||
For the XFEL project proposed by IHEP, a sophisticated beam spreader is required to separate a single beam into multiple beams. One of the deflecting cavities used in the spreader has been investigated and optimized. It is a 325 MHz, compact RF-dipole superconducting cavity, with the transverse R/Q of 2900Ω, geometrical factor G of 88.5 Ω, and the Helium pressure sensitivity df/dp of 3.4 Hz/mbar. At the nominal deflecting voltage of 7MV, the peak electric field Epeak is 41 MV/m and peak magnetic field Bpeak is 48 mT. This paper will present the detailed RF and mechanical designs. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMB053 | Study of Third Harmonic Cavity for Taiwan Photon Source | cavity, vacuum, electron, scattering | 2237 |
|
|||
Taiwan Photon Source (TPS) is a modern light source with 3 GeV electron energy and low emittance. The bunch length is about 3 mm at designed beam current of 500 mA and operating gap voltage of 3.2 MV. The short bunch length results in short Touschek lifetime and high parasitic loss of insertion device (ID). Some of the undulators are operated in vacuum at TPS, therefore the head load become an important issue. To install higher harmonic cavity is a solution for improving the Touschek lifetime and the heat load by lengthening the bunch length. The effect of installing 3rd harmonic cavity for TPS is investigated. The expected maximum elongation factor for bunch lengthening, as well as the effect on the Touschek lifetime and heat load of ID are presented in this paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB053 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMR008 | Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab | optics, electron, operation, controls | 2274 |
|
|||
Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy. The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p+) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMR048 | Hall Element Relative Position and Angle Calibrations for the Cryogenic Permanent Magnet Undulator | undulator, vacuum, cryogenics, permanent-magnet | 2386 |
|
|||
A three dimensions Hall probe will be manufactured for characterizing the magnetic performance of Cryogenic Permanent Magnet Undulator (CPMU) of Chinese High Energy Photon Source and the test facility (HEPS-TF) at Institute of High Energy Physics (IHEP). The positional and angular misalignment errors of the Hall sensors play an important role in the measurement accuracy of CPMU. In order to minimize the misalignment errors, a method of calibrating relative displacements and assembly angles of a 3-D Hall probe is carried out. In this paper, details of the calibration procedures and the data processing are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMR056 | Septum Magnet using a Superconducting Shield | septum, shielding, extraction, radiation | 2402 |
|
|||
A field-free region can be created within a dipole magnet using a superconducting shield, which maintains persistent eddy currents induced during the ramp-up of the magnet. We will study the possibility to realize a high-field superconducting septum magnet using this principle. Properties of different configurations will be presented, and compared to the requirements of the FCC dump system. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW003 | NONLINEAR OPTIMIZATION OF CLIC DRS NEW DESIGN WITH VARIABLE BENDS AND HIGH FIELD WIGGLERS | damping, emittance, dynamic-aperture, sextupole | 2416 |
|
|||
The new design of CLIC damping rings is based on longitudinal variable bends and high field superconducting wiggler magnets. It provides an ultra-low horizontal normalised emittance of 412 nm-rad at 2.86 GeV. In this paper, nonlinear beam dynamics of the new design of the damping ring (DR) with trapezium field profile bending magnets have been investigated in detail. Effects of the misalignment errors have been studied in the closed orbit and dynamic aperture. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW016 | Towards a Small Emittance Design of the JLEIC Electron Collider Ring | emittance, electron, optics, damping | 2457 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The electron collider ring of the Jefferson Lab Electron-Ion Collider (JLEIC) is designed to provide an electron beam with a small beam size at the IP for collisions with an ion beam in order to reach a desired high luminosity. For a chosen beta-star at the IP, electron beam size is determined by the equilibrium emittance that can be obtained through a linear optics design. This paper briefly describes the baseline design of the electron collider ring reusing PEP-II components and considering their parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and reports a few approaches to reducing the equilibrium emittance in the electron collider ring. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW019 | Study of Beam Synchronization at JLEIC | ion, electron, collider, proton | 2463 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The ion collider ring of Jefferson Lab's Electron-Ion Collider (JLEIC) accommodates a wide range of ion energies, from 20 to 100 GeV for protons or from 8 to 40 GeV per nucleon for lead ions. In this medium energy range, ions are not fully relativistic, which means values of their relativistic beta are slightly below 1, leading to an energy dependence of revolution time of the collider ring. On the other hand, electrons with energy 3 GeV and above are already ultra-relativistic such that their speeds are effectively equal to the speed of light. The difference in speeds of colliding electrons and ions in JLEIC, when translated into a path-length difference necessary to maintain the same timing between electron and ion bunches, is quite large. In this paper, we explore schemes for synchronizing the electron and ion bunches at a collision point as the ion energy is varied. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW022 | Multi-Cell RF-Dipole Deflecting and Crabbing Cavity | cavity, electron, proton, ion | 2469 |
|
|||
Single cell superconducting rf-dipole cavities operating at 400 MHz, 499 MHz and 750 MHz have been designed, fabricated and successfully tested at cryogenic temperatures. These cavities have been shown to have attractive rf properties: high deflecting gradients, low electric and magnetic peak surface fields, and high shunt impedance. The single cell rf-dipole geometry has no lower order modes and has widely separated higher order mode spectrum. In this study we are investigating a multi-cell superconducting rf-dipole cavity operating at 952.6 MHz intended for the Jefferson Lab Energy Electron-Ion Collider. The analysis investigates the dependence of beam aperture variation and other cavity parameters on rf properties including cavity gradient, surface fields, shunt impedance and higher order mode separation. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW022 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMY004 | Development of an Injector and a Magnetic Transfer Line in the Framework of Cilex | laser, electron, plasma, acceleration | 2545 |
|
|||
Funding: Investments for the Future program under reference ANR-10-EQPX-25, by the Triangle de la Physique under contract 2011-086TMULTIPLACCELE, 2012-032TELISA, and by the Labex PALM and P2IO. Laser plasma accelerators (LPAs) have proven their capability to produce accelerating gradients three orders of magnitude higher than RF cavity-based accelerators. The present challenges of LPAs are to achieve the beam quality and stability required by users and to show the feasibility of plasma staging for high-energy applications. As one of the experiments planned at the PetaWatt laser APOLLON facility, currently under construction in France, aims at testing the two-stage scheme, a dedicated plasma injector which will be used as the first stage has been developed and tested at the UHI100 facility at CEA Saclay. The electron source, as well as the beam characterization line, will be presented and the first results will be discussed. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY004 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR008 | Development of a High Resolution Beam Position Monitor for NSRRC VUV/THz FEL | cavity, electron, simulation, coupling | 2680 |
|
|||
Beam position monitors (BPM) have been widely used on linear colliders and free electron lasers for beam-based alignment and feedback systems. A laser driven photo-injector system has been constructed in NSRRC. This injector has the capability to deliver short relativistic electron beam at high peak current for novel light source R&D. A 2.4 GHz BPM that can be used for high precision beam position measurement has been designed. The BPM were modified to separate frequency between the horizontal and vertical dipole signals, as well as a reduction of the monopole signal. The design has been simulated by CST. A prototype has been built for verification of theoretical predictions. Microwave bench measurement has been made to compare with the computer simulation results. The progress of our work will be presented in this paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR011 | Lattice Matching with Elegant at ELSA | closed-orbit, lattice, quadrupole, simulation | 2690 |
|
|||
The electron stretcher ring ELSA provides a beam of polarized electrons of up to 3.2 GeV energy. To preserve the initial degree of polarization, several depolarizing resonances have to be compensated during the fast energy ramp of 6 GeV/s. Beam depolarization, caused by crossing these resonances is studied using comprehensive numerical calculations. These depend essentially on a precise model of the actual magnetic field distributions, explicitly taking into account misalignments. Hence it is necessary to match the theoretical lattice to the actual accelerator. In a first step the alignment of all magnets has been examined and improved. This was done by using standard survey equipment and precise electronic spirit levels. In a second step the concept of response matrix fitting is used for further, beam based, lattice matching. Particle tracking and optics calculations are carried out using elegant, a fully 6D accelerator toolbox. Lattice matching is done by repeatedly calling elegant and utilizing a modified Levenberg-Marquardt optimizer. In this contribution we will describe our lattice fitting implementation. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR016 | Pre-alignment of Accelerating Structures for Compact Acceleration and High Gradient using In-situ Radiofrequency Methods | alignment, linac, electromagnetic-fields, wakefield | 2696 |
|
|||
Funding: PACMAN is founded under the European Union's 7th Framework Program Marie Curie Actions, grant PITN-GA-2013-606839 To achieve a high accelerating gradient of 100 MV/m, the CLIC project under study at CERN uses a 23 cm long tapered normal-conducting travelling wave Accelerating Structure (AS) operating at 12 GHz. Minimisation of the long-range wakefields (WF) is assured by damping of the HOM through four radial waveguides in each cell without distorting the accelerating mode. As an extension of them, there are four bent waveguides called WF monitors (WFM) in the middle cell with two RF pick-ups. To obtain a small beam emittance in the collision point, micro-metric pre-alignment of the AS is required. We work to find the electrical centre of the AS through the use of the asymmetry in the RF scattering parameters created by an off-centre conductive wire, stretched along the axis. The accuracy required is of 7 μm with a resolution of 3.5 μm for the WFM signals including the acquisition electronics. Our simulations have shown that a resolution of 1 μm is possible using a calibrated VNA. Measurement results and improvements of the final accuracy will be presented and discussed. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW001 | Sirius Status Report | storage-ring, booster, vacuum, kicker | 2811 |
|
|||
Sirius is a Synchrotron Light Source Facility based on a 4th generation low emittance storage ring that is presently under construction in Campinas, Brazil. During the last year, accelerator activities concentrated on R&D of the various subsystem components. However, the number of components under production or already delivered is also increasing according to planning. The building construction started in the beginning of 2015 and machine commissioning is expected to start mid 2018. In this paper we report on the present status of the project with emphasis on the last year activities. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW003 | Design Considerations of a 7BA-6BA Lattice for the Future Upgrade of SOLEIL | lattice, emittance, optics, sextupole | 2815 |
|
|||
Previous studies indicated that adoption of a combination of 7 and 6BA cells in the existing SOLEIL ring enables reaching the target range of the horizontal emittance below 200 pm·rad as expected, in contrast to fewer dipole solutions such as a combination of 5 and 4BA studied earlier (IPAC 2014). However, the previous 7BA-6BA lattice resulted in having unacceptably strong gradients in quadrupoles and dipoles leading to high natural chromaticities. Several schemes that would allow for an improvement are explored, such as shortening the insertion device straight sections by one or two meters to create more space for the magnetic structure, lowering the dipole fields and the use of anti-bends as proposed by A. Streun. The effectiveness of each scheme is evaluated and the best combined use of them for SOLEIL is investigated. Ways to fulfil the constraints of the existing dipole beam lines are studied by introducing longitudinal gradient bends and/or multipole wigglers. The nonlinear optimisation to maximise the on and off-momentum apertures is made by using genetic algorithm-based numerical codes. A comparison of their performance and the obtained results are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW005 | Updates on Lattice Modeling and Tuning for the ESRF-EBS Lattice. | lattice, injection, quadrupole, radiation | 2818 |
|
|||
The ESRF-EBS lattice model is updated to include the effect of magnetic lengths in dipoles, quadrupoles, sextupoles and combined function magnets. The effect of this modification and the updates to the injection cell are considered with particular focus on injection efficiency and Touschek lifetime. The solutions to introduce new sources of radiation suitable for the existing bending magnet radiation beamlines are also presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW005 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW006 | Hybrid Multi Bend Achromat at 3 GeV for Future 4th Generation Light Sources | lattice, emittance, sextupole, dynamic-aperture | 2822 |
|
|||
Starting from the Hybrid Multi Bend Achromat (HMBA) lattice designed for the 6GeV ESRF-EBS we rescale the lattice energy to 3GeV and optimize the lattice parameters to achieve dynamic apertures sufficient for injection and lifetimes of more than 7h without errors. The rescaling results to an emittance of roughly 140pmrad. Further optimizations of bending magnets longitudinal gradient, optics and sextupole fields show the possibility to further decrease emittance and increase the DA and lifetime. A comparison with other lattice designs is also presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW033 | Commissioning of the Alba Injector With 67 Mev Single Klystron Linac | linac, quadrupole, booster, klystron | 2905 |
|
|||
The 3 GeV ALBA booster normally accelerates an injected beam of 110 MeV, delivered by the linac operating with two independent klystrons. On 2014, the linac waveguide system was upgraded and commissioned to allow operating with either klystron and providing a reduced beam energy of 67 MeV. The commissioning of the booster to capture the beam at a reduced energy and ramp it up to 3 GeV has required a long set-up process of the magnets at 67 MeV beam energy. Due to the dominant effect of the remnant magnetic field in the low energy regime, the scaling of the magnet settings at the beginning of the ramp did not allow to capture the beam, and more precise calibrations were measured on spare quadrupoles to ease its fine tuning. The effect of higher eddy currents induced when the dipoles start ramping, combined with the lower beam rigidity, has been also an issue to tune the dipole waveforms for the 67 MeV - 3 GeV cycle. The encountered problems and their solutions to commission the ALBA injector in this new mode of operation are here presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW034 | Emittance Diagnostics at the Max Iv 3 Gev Storage Ring | radiation, emittance, electron, diagnostics | 2908 |
|
|||
With the MAX IV project in Lund, Sweden an ultralow emittance storage ring light source is going into user operation in 2016. Due to its multibend achromat lattice design the 3 GeV storage ring reaches a horizontal emittance lower than 330 pm rad. Emittance diagnostic will involve two diagnostic beamlines to image the electron beam with infrared and ultraviolet synchrotron radiation from bending dipoles. Placed in locations of different optic functions the beamlines will provide experimental access to both horizontal and vertical emittance and to beam energy spread. Since bunch lengthening with harmonic cavities is essential for machine performance, time resolved measurements with synchrotron radiation for individual longitudinal bunch distributions are of special interest as well. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW044 | Study of a Double Triple Bend Achromat (DTBA) Lattice for a 3 GeV Light Source | lattice, sextupole, optics, quadrupole | 2940 |
|
|||
Starting from the concepts of the Hybrid Multi Bend Achromat (HMBA) lattice developed at ESRF and of the Double-Double Bend Achromat (DDBA) lattice developed at Diamond, we present a new cell that includes all the advantages of the two designs. The resulting Double Triple Bend Achromat (DTBA) cell allows for a natural horizontal emittance of less than 100 pm with a large dynamic aperture and lifetime. It includes two straight sections, for insertion devices, five and three meters long. The lattice is consistent with the engineering design developed for the ESRF-EBS lattice and the layout and user requirements of Diamond. The characteristics of the cell are presented together with the results of the optimisation process. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW045 | Concepts for a Low Emittance-High Capacity Storage Ring for the Diamond Light Source | lattice, emittance, photon, wiggler | 2943 |
|
|||
The Diamond Light Source is investigating several paths for a possible machine upgrade to Diamond II. The exercise is driven by by a joint assessment of the science capabilities opened by a very low emittance ring and the machine design that will underpin them. The consultation is made on a beamline-by-beamline basis and has highlighted a significant preference for lattices that combine both a low emittance and large capacity for IDs. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW048 | Preparations for the Double Double Bend Achromat Installation in Diamond Light Source | sextupole, feedback, vacuum, quadrupole | 2953 |
|
|||
We present the status of preparations for a major installation in the Diamond storage ring which is due to take place in 2016, namely the conversion of one cell of the ring from a double bend achromat (DBA) structure, to a double-DBA, or DDBA. We present results of measurements of the new narrow bore, high strength, quadrupoles and sextupoles, as well as the four new gradient dipoles. Fabrication of entirely new narrow-gap vacuum vessel strings, a mixture of copper and stainless steel is also described. The status of assembly of the two 7m long girders is presented, as well as other preparatory engineering, power supply, controls and high level software work. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOY007 | Simulation of Electromagnetic Scattering Through the E-XFEL Third Harmonic Cavity Module | cavity, simulation, HOM, factory | 3001 |
|
|||
Funding: The work is part of EuCARD-2, partly funded by the European Commission, GA 31245. N.~Y.~Joshi receives additional funding from The Cockcroft Institute of Science and Technology. The European-XFEL is being fabricated in Hamburg to serve as an X-ray Free Electron Laser (FEL) light source. The electron beam will be accelerated through linacs consisting of 1.3 GHz superconducting cavities along a length of 2.1 km. In addition, third harmonic cavities will improve the quality of the beam by linearising the field profile and hence reducing the energy spread. There are eight 3.9 GHz cavities within a single module AH1 of E-XFEL. The beam-excited electromagnetic (EM) field in these cavities can be decomposed into a series of eigenmodes. These modes are, in general, not cut-off between one cavity and the next, as they are able to couple to each other throughout the module. Here for the first time, we evaluate components of the scattering matrix for module AH1. This is a computationally expensive system, and hence we employ a Generalized Scattering Matrix (GSM) technique to allow rapid computation with reduced memory requirements. Verification is provided on reduced structures, which are compared to finite element mesh-based codes. The mode spectrum for the dipole bands of interest in an eight-cavity chain have been calculated and external Q factors for the modes are derived. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY007 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOY016 | Use of Nonuniform Magnets for Emittance Reduction | emittance, lattice, simulation, radiation | 3014 |
|
|||
We study a theoretical minimum emittance (TME) for a non-uniform bending magnet including a three-step bend (sandwich magnet), a dipole with linear ramp of the bend-ing radius and the same but with a central segment of constant field. We derive expression for the minimum emittance and expand it into a power series with respect to the bending angle. A zero-order term naturally gives the uniform magnet TME while higher-order terms are responsible for the emittance reduction. Theoretical re-sults are verified by numerical simulation. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOY026 | Simulation and Measurement of the Beam Breakup Instability in a W-band Corrugated Structure | wakefield, electron, simulation, radiation | 3044 |
|
|||
The corrugated wakefield structure has wide application in electron beam energy manipulation and high frequency RF radiation generation. The transverse wakefield which cause beam breakup (BBU) instability is excited when the drive beam is not perfectly centered through the structure. Here we report on the numerical and experimental investigation of the BBU effect in a W-band corrugated structure, for both cases of short range wakefield and long range wakefield. In the numerical part we develop a point to point (P2P) code that allows rapid and efficiency simulations of the beam dynamics effect by wakefield, which is based on the the particle-wake function coupled dynamics equation of motion. And the experimental measurements of BBU effect are found to be in good agreement with the simulations. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOY034 | Latest Improvements of OPAL | space-charge, electromagnetic-fields, simulation, linac | 3058 |
|
|||
OPAL (Object Oriented Parallel Accelerator Library) is an open source, C++ based tool for charged particle tracking in large accelerator structures and beam lines including 3D space charge, particle matter interaction and FFAG capabilities. The careful parallel design makes it possible to tackle large and complex problems, in a reasonable time frame. The current code status and latest program improvements and upgrades are introduced. One of the provided flavors, OPAL-T, was, so-far, used for relatively simple lattices and was not well suited for more complicated arrangements of elements. One of the major upgrades is the possibility to place elements in 3D space, giving the user a better control in absolute element positioning. The old input format with relative positioning is still supported. We show results of the BERLinPro lattice and compare it with results obtained with elegant. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOY053 | Comparison of Tracking Codes for the Determination of Dynamic Aperture in Storage Rings | dynamic-aperture, lattice, storage-ring, experiment | 3114 |
|
|||
Funding: This work is supported by the U.S. Department of Energy under grant number DE-FG02-08ER41546 Currently there is a great deal of activity towards making precision measurements utilizing storage rings, for example the Muon g-2 experiment at Fermilab, and the Electric Dipole Moment (EDM) program of the JEDI Collaboration. These experiments are intended to perform measurements requiring sub-ppm precision. Of utmost importance in this regard is the ability of tracking codes to treat all nonlinear effects arising from the detailed field distributions present in the system, not the least of which are fringe fields. In previously published work,*,**, we performed parallel tests of various tracking codes in order to compare and contrast the results. In this study, we continue this line of research and extend the scope to parallel-faced dipoles and electrostatic dipoles. * R.Hipple, M. Berz, Microscopy and Microanalysis 21 Suppl. 4 (2015) ** R. Hipple, M.Berz, MODBC3, ICAP 2015, in press. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY053 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THOAA02 | The Development of C-Band Cavity Beam Position Monitor with a Position Resolution of Nano Meter | cavity, electronics, feedback, operation | 3149 |
|
|||
We developed and tested an C-band beam position monitor with position resolution of nano meter in ATF2. The C-band BPM was developed for the fast beam feedback system at the interaction point of ATF in KEK, which C-band beam position monitor called to IPBPM (Interaction Point Beam Position Monitor). The developed IPBPM was measured 26nm with 30% of nominal beam charge of ATF. From the measured beam position resolution, we can expected to 8nm beam position resolution with nominal ATF beam charge condition. In this talk, we will described about the development of IPBPM and the beam test results of nano meter level beam position resolution. | |||
![]() |
Slides THOAA02 [4.806 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOAA02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB002 | Beam Dynamics and Closed Orbit Correction at the Collector Ring | optics, sextupole, antiproton, ion | 3216 |
|
|||
The Collector Ring (CR) has been designed for fast cooling of hot antiproton or ion beams at FAIR. Its ion-optical layout and system design has been recently finalized after careful optimizations aiming at improvement of the beam parameters and machine performance. In this paper we present the simulations of the transverse beam dynamics for the different ion-optical modes of the CR. Particle tracking calculations have been performed to evaluate an influence of the magnet imperfections on the dynamic aperture. The analysis and correction of the closed orbit distortions due to the magnet misalignments is also discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB003 | Orbit Response Matrix Analysis for FAIR Storage Rings | quadrupole, storage-ring, ion, optics | 3219 |
|
|||
The Orbit Response Matrix (ORM) analysis is a method which allows to find the sources of discrepancies between design and real optics of an accelerator machine. In particular, with this technique one retrieves information about gradient errors, dipole corrector gain errors etc. Orbit response matrix is computed by measuring orbit deviations caused by single kicks of corrector magnets. With fitting the matrix one obtains the ion optics which best describes the real accelerator. The ORM analysis, presented in the paper, is employed to find error sources in the FAIR storage rings CR and HESR during and after the beam commissioning. The algorithm itself was implemented in Python programming language with a help of linear algebra libraries. The ORM analysis accuracy as well as its limitations are addressed in the paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB009 | Model Driven Machine Improvement of COSY Based on ORM Data | quadrupole, optics, closed-orbit, lattice | 3240 |
|
|||
The COoler SYnchrotron in Jülich accelerates and stores unpolarized and polarized proton or deuteron beams in the momentum range between 0.3 GeV/c and 3.65 GeV/c [*,**]. This, in combination with its diverse capabilities of phase space cooling and the flexibility of the lattice with respect to ion-optical settings makes COSY an ideal test facility for accelerator technology development. High demands on beam control and beam based measurements have to be fulfilled for future experiments such as the proposed precursor experiment for a direct measurement of the electric dipole moment of the deuteron (see [***] and references within). The analysis of measured orbit response matrices (ORM), which com- prise the focussing structure of the ring, allows for a better understand- ing of machine imperfections such as gradient errors and misalignments of quadrupole magnets. This contribution presents the development of a MAD-X based LOCO (Linear Optics from Closed Orbits) algorithm [****] in a C++ program aiming to calibrate and correct linear optics as well as improving beam control at COSY.
* R. Maier, NIM A 390, 1 (1997). ** S.A. Martin et al., NIM A 236, 249-255 (1985). *** D. Eversmann et al. [JEDI Collaboration], Phys. Rev. Lett. 115, 094801 (2015). **** J. Safranek, NIM A 388, 27 (1997). |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB010 | Dogleg Design for the SINBAD Linac | electron, acceleration, linac, emittance | 3244 |
|
|||
The SINBAD facility (Short and INnovative Bunches and Accelerators at DESY) is foreseen to provide sub-fs to tens of fs electron bunches for the R&D of novel acceleration concepts and applications, e.g. Laser Wake-Field Acceleration (LWFA), Dielectric Laser Acceleration (DLA) and medical imaging. We present the design study of the dogleg at the SINBAD linac, which is capable of delivering ultra-short bunches to the second beamline. The longitudinal dispersion of the dogleg can be finely tuned so that it can either transport the ultra-short bunch produced upstream by velocity bunching, or compress the incoming long bunch. The achievable beam parameters are investigated by start-to-end simulations. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB015 | Muon Charge Separation by Mixed Structure of Dipoles and Solenoids | solenoid, emittance, target, beam-transport | 3257 |
|
|||
A charge separation system comprised by dipoles and solenoids is described which aims to separate positive particles and negative particles apart in secondary beam with a large emittance and huge momentum spread, particularly for mixed-charge muon beams. Nonlinear effect and fringe field effect due to large aperture and large moment range are crucial under this circumstance, which make the charge separation extremely complicated. The design schemes by dipoles and bent solenoids and also simulation results are showed in the paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB021 | Design of the Magnets of the Far-Infrared FEL Project at NSRL | quadrupole, simulation, FEL, electron | 3269 |
|
|||
Funding: National Natural Science Foundation of China (10875118); National Natural Science Foundation of China (11375176) This paper describes the magnetic design of the magnets of the far-infrared free electron laser at NSRL, including dipole magnets and quadrupole magnets with limited installing space. The dipoles are of three different effective lengths and strengths. All the magnets are designed and optimized by using POSSION and OPERA-3D. The end shimming and chamfer are modeled and fully determined by 3D simulation to meet the field uniformity requirement. The design consideration and simulation results are presented in detail. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB041 | Optics-measurement-based BPM Calibration | optics, factory, injection, focusing | 3328 |
|
|||
The LHC beta functions (β) can be measured using the phase or the amplitude of betatron oscillations obtained with beam position monitors (BPMs). Using the amplitude information results in a β measurement affected by BPM calibration. This work aims at calibrating BPMs using optics measurements. For this, βs from amplitude and phase and normalized dispersion obtained from many different measurements in 2015 with different optics and corrections are analyzed. Simulations are also performed to support the analyses. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB042 | Residual Orbit Correction Studies for the FCC-hh | quadrupole, alignment, hadron, photon | 3332 |
|
|||
The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next genera-tion accelerator in high-energy physics as recommended by the European Strategy Group [*]. Preliminary studies have started to estimate the design parameters of FCC-hh. One of these studies is the calculation of the residual orbit in the arcs of the collider. This is very important for the evaluation of the alignment tolerances of the quadru-poles used in the arcs, the dimensioning of the correctors and of the beam screen. Moreover it has an impact on the dynamic aperture of the ring and the field tolerances of the arc multipoles. To perform the simulations, the beam transport code MADX has been used. Systematic studies of the residual orbit and of the correctors' strength de-pendence on the magnets misalignment or field errors are presented and discussed.
[*] A. Ball et al., EDMS-0134202. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB044 | Limitations on Optics Measurements in the LHC | optics, injection, hadron, luminosity | 3339 |
|
|||
In preparation of the optics commissioning at an energy of 6.5 TeV, many improvements have been done to cope with the expected reduced signal to noise ratio due to lowered bunch intensities imposed by machine protection considerations. This included, among others, an increase of the flat top duration of the AC dipole excitations, which allowed to use more turn-by-turn data for the analysis. The longer data acquisition revealed slow drifts of the optics, which limited the increased measurement precision. Furthermore, we will present how orbit drifts influenced dispersion measurements and, as a consequence, posed another limitation for the optics correction. In this paper we will discuss the implications of these observations for the measurement and correction of the optics. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB045 | Comparison of Optics Measurement Methods in ESRF | optics, lattice, storage-ring, sextupole | 3343 |
|
|||
The N-BPM and the Amplitude methods, which are used in the LHC for beam optics measurement, were applied to the ESRF storage ring. We compare the results to the Orbit Response Matrix (ORM) method that is routinely used in the ESRF. These techniques are conceptually different since the ORM is based on the orbit response upon strength variation of steering magnets while the LHC techniques rely on the harmonic analysis of turn-by-turn position excited by a kicker or an AC dipole. Finally, we compare these methods and show the differences in their performance in the ESRF environment. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB055 | A FODO Beam Line Design for nuPIL | lattice, optics, detector, proton | 3375 |
|
|||
Funding: Fermi National Accelerator Laboratory The Fermilab Deep Underground Neutrino Experiment (DUNE) was proposed to determine the neutrino mass hierarchy and demonstrate leptonic CP violation. The current design of the facility that produces the neutrino beam (LBNF) uses magnetic horns to collect pions and a decay pipe to allow them to decay. In this paper, a design of a possible alternative for the conventional neutrino beam in LBNF is presented. In this design, a FODO magnet beam line is used to collect the pions from the downstream face of a horn, bend them by ∼ 5.8 degrees and then transport them in a straight beam line where they decay to produce neutrinos. The idea of using neutrinos from the PIon beam Line (nuPIL) provides flavor-pure neutrino beams that can be well understood by implementing standard beam measurement technology. The neutrino flux and the resulting δCP sensitivity from the FODO nuPIL are also presented in the paper. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB055 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR005 | Systematic Errors Investigation in Frozen and Quasi-Frozen Spin Lattices of Deuteron EDM Ring | lattice, sextupole, storage-ring, experiment | 3394 |
|
|||
The search for the electric dipole moment (EDM) in the storage ring raises two questions: how to create conditions for maximum growth of the total EDM signal of all particles in bunch, and how to differentiate the EDM signal from the induced magnetic dipole moment (MDM) signal. The T-BMT equation distinctly addresses each issue. Because the EDM signal is proportional to the projection of the spin on the direction of the momentum, it is desirable to freeze the spin direction of all particles in a bunch along momentum. It can be successfully implemented in the Quasi Frozen (QFS) and Frozen (FS) Spin structures. However, in case of magnet misalignments, the induced MDM signal may arise in the same plane as the EDM signal and thereby prevent its registration. In this paper, we analyze the effect of errors together with the spin-tune decoherence of all particles in the bunch for FS and QFS options. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR005 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR006 | Muon Beam Tracking and Spin-Orbit Correlations for Precision g-2 Measurements | target, simulation, proton, experiment | 3397 |
|
|||
The main goal of the Muon g-2 Experiment (g-2) at Fermilab is to measure the muon anomalous magnetic moment to unprecedented precision. This new measurement will allow to test the completeness of the Standard Model (SM) and to validate other theoretical models beyond the SM. The close interplay of the understanding of particle beam dynamics and the preparation of the beam properties with the experimental measurement is tantamount to the reduction of systematic errors in the determination of the muon anomalous magnetic moment. We describe progress in developing detailed calculations and modeling of the muon beam delivery system in order to obtain a better understanding of spin-orbit correlations, nonlinearities, and more realistic aspects that contribute to the systematic errors of the g-2 measurement. Our simulation is meant to provide statistical studies of error effects and quick analyses of running conditions for when g-2 is taking beam, among others. We are using COSY, a differential algebra solver developed at Michigan State University that will also serve as an alternative to compare results obtained by other simulation teams of the g-2 Collaboration. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR013 | A New Optics for Sirius | emittance, optics, quadrupole, lattice | 3413 |
|
|||
We report on the latest optics modifications for the 3 GeV Sirius electron storage ring presently under construction at the Brazilian Synchrotron Light Laboratory, LNLS. Although the basic parameters are set and frozen, improvements in the magnetic lattice and beam optics are still being implemented. In particular, the central dipole in the 5BA cell has been replaced by an all-permanent-magnet dipole with a thin superbend in the center with peak magnetic field of 3.2 T and the operation mode has now symmetry 5, with 15 low βx straight sections and 5 high βx sections. The 3 GeV ring bare lattice emittance is now 0.25 nm.rad. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR013 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR026 | SESAME Storage Ring Beam Dynamics in View of the Results of its Magnet Measurements | quadrupole, storage-ring, multipole, alignment | 3446 |
|
|||
SESAME storage ring magnets have been recently constructed and measured. The storage ring beam dynamics is reviewed in this article in view of these results. Moreover it is shown how the optical impact of dipoles main field errors is more mitigated by sorting dipoles in the storage ring in addition to the alignment optimization method suggested by magnetic measurement outcome. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR037 | Observations of Resonance Driving Terms in the LHC during Runs I and II | resonance, injection, betatron, dynamic-aperture | 3468 |
|
|||
Future operations of the LHC will require a good understanding of the nonlinear beam dynamics. In 2012, turn-by-turn measurements of large diagonal betatron excitations in LHC Beam 2 were taken at injection energy. Spectral analysis of these measurements shows an anomalous octupolar spectral line at frequency -Qx-2Qy in the horizontal motion. The presence of this spectral line, as well as other lines, was confirmed by measurements taken for LHC Beam 1 and Beam 2 during the commissioning in 2015. We take a close look at the various spectral lines appearing in the LHC transverse motion in order to improve the LHC nonlinear model. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR037 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR038 | Non-Linear Errors in the Experimental Insertions of the LHC | insertion, multipole, coupling, dynamic-aperture | 3472 |
|
|||
Correction of nonlinear magnetic errors in low-β insertions can be of critical significance for the operation of a collider. This is expected to be of particular relevance to LHC Run II and the HL-LHC upgrade, as well as to future colliders such as the FCC. Current correction strategies for these accelerators have assumed it will be possible to calculate optimized local corrections through the insertions using a magnetic model of the errors. To test this assumption the nonlinear errors in the LHC experimental insertions have been examined via feed-down and amplitude detuning. It will be shown that while in some cases the magnetic measurements provide a sufficient description of the errors, in others large discrepancies exist which will require beam-based correction techniques. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR038 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR039 | Commissioning of Non-linear Optics in the LHC at Injection Energy | injection, octupole, optics, operation | 3476 |
|
|||
Commissioning of the nonlinear optics at injection in the LHC was carried out for the first time in 2015 via beam-based methods. Building upon studies performed during Run I, corrections to the nonlinear chromaticity and detuning with amplitude were obtained. These corrections were observed to reduce beam-loss during measurement of linear optics. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR041 | Implementation of High Order Symplectic Integrators with Positive Steps in Tracking Programs | quadrupole, lattice, multipole, storage-ring | 3484 |
|
|||
The symplectic integrators CSABAν & CSBABν are used in order to calculate single particles dynamics in accelerators and storage rings. These integrators present only positive steps and can be accurate up to the high order. They are compared with already existing splitting methods of MAD-X with respect to their impact on various beam dynamics quantities, for different beam elements. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR044 | Short Term Dynamic Aperture with AC Dipoles | dynamic-aperture, resonance, simulation, operation | 3496 |
|
|||
The dynamic aperture of an accelerator is determined by its non-linear components and errors. Control of the dynamic aperture is important for a good understanding and operation of the accelerator. The AC dipole, installed in the LHC for the diagnostic of linear and non-linear optics, could serve as a tool for the determination of the dynamic aperture. However, since the AC dipole itself modifies the non-linear dynamics, the dynamic aperture with and without AC dipole are expected to differ. This paper will report the results of studies of the effect of the AC dipole on the dynamic aperture. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR053 | Influence of Magnet Multipole Field Components on Beam Dynamics in the JLEIC Ion Collider Ring | multipole, dynamic-aperture, ion, collider | 3525 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515. To get a luminosity level of a few 1033 cm-2ses−1 at all design points of the Jefferson Lab Electron Ion Collider (JLEIC) project, small β* values in both horizontal and vertical planes are necessary at the Interaction Point (IP) in the ion collider ring. This also means large β in the final focus area, chromaticity correction sections, etc. which sets a constraint on the field quality of magnets in large beta areas, in order to ensure a large enough dynamic aperture (DA). In this context, limiting multipole field components of magnets are surveyed to find a possible compromise between the requirements and what can be realistically achieved by a magnet manufacturer. This paper describes that work. Moreover, non-linear field dedicated correctors are also studied to provide semi-local corrections of specific multipole field components. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR053 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW010 | PAL-XFEL Dipole Magnet Power Supplies | controls, quadrupole, power-supply, operation | 3555 |
|
|||
Total 632 magnet power supplies (MPSs) are under operating in PAL-XFEL. These magnet power supplies can be categorized as three types - corrector, quadrupole and dipole. The dipole MPSs are ranging from 110A/80V bipolar PS to 310A/200V unipolar PS. The long term stability of bipolar power supply is 10 ppm with 250 A 40V output for gun solenoid. The three types of dipole MPSs are developed for PAL-XFEL. Precise measurement results show that all power supplies meet the required specifications. The long term operation stability of the MPSs are appeared to be sufficient for a stable operation of the PAL-XFEL. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW015 | A Digtal Regulation Controller Prototype for the TPS Booster Power Supplies | controls, booster, power-supply, feedback | 3570 |
|
|||
In the newly built TPS (Taiwan Photon Source), the AC power supplies of the Booster ring are required to operate in DC and AC mode with accuracy. Especially in AC mode, during the booster ramping process, the current ramping profiles of the Quadruple Magnets have to track that of the Dipole AC power supply with precise phase and amplitude to maximize the beam energy boost efficiency. At present, analog current commands for all the booster power supplies with relative phase and amplitude information are generated externally. The current ramping profiles are pre-calculated and calibrated in a centralized manner. In this paper, an auto-calibration process using Curve-Fitting algorithm is proposed. In the new process, the current ramping profile data is first stored digitally in each power supply and then outputted to each power supply with a synchronous trigger signal in hope to eliminate the signal integrality problem inherent in analog signals , so that the beam energy boost up could be more reliable and efficient. The new proposed method has been implemented and tested successfully and will be applied to the booster power supplies to test its performance in the future. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW016 | Dipole Power Supply for the Storage Ring of Taiwan Photon Source | power-supply, storage-ring, booster, controls | 3573 |
|
|||
The performance of the TPS dipole power supply for the dipole magnets in the TPS storage ring is important. As the output current of the power supply follows the beam current for operation at 3 GeV, the power supply must deliver enormous energy to the dipole magnets. The target energy corresponds to 700 A at 800 V. The dipole supply for the TPS storage ring is a unipolar switching power supply, also called a bulk power supply. The TPS dipole power supply modulates the output current regulated by the PWM signal. The switching device is an IGBT module working at frequency 2 kHz. A PID controller and a DCCT are used for feedback control of the output current. We obtained an optimal control gain with long-term stability of the output current under 10 ppm. The performance of the TPS storage ring dipole supply can thus satisfy the TPS requirement. The beam current generates 3 GeV in the TPS ring. This paper reports the excellent results. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMY032 | Air Conditioning System Control Study and Improvement for Transient Events in the TLS Storage Ring | controls, storage-ring, status, operation | 3728 |
|
|||
It has been studied and verified that thermal effect is one of the most critical mechanical factors affecting the beam stability. There are many accelerators have controlled the global air temperature variation in the storage ring tunnel within ±0.1C during stable beam operation in the world. However, some transient events, such as unexpected beam loss or beam trip will clearly affect air temperature variation. Moreover, machine shutdown will change the air conditioning status radically. It will also take time to reach a stable air temperature after machine shutdown. This paper presents effects on the air temperature by those transient events and improvement schemes. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR003 | Tapering Options and Emittance Fine Tuning for the FCC-ee Collider | quadrupole, lattice, optics, synchrotron | 3767 |
|
|||
The lepton collider version of the FCC study describes a future electron-positron collider with a circumference in the order of 100 km, optimised for operation with collision energies in the range of 90 GeV to 350 GeV (FCC- ee). This paper presents the layout of the machine and the constraints on the design of the arc lattice in the context of the four different beam energies that are foreseen for beam operation. Special emphasis is put on the compensation of the effect of the strong synchrotron radiation losses. The beam orbit as well as the optics have to be re-optimised for a given operation energy in order to achieve the foreseen emittance of ε = 1 nm in the horizontal and 1 pm in the vertical plane. Counter measures of the so-called saw-tooth effect of the design orbit are needed as well as a compensation of the energy loss on the beam optics. The paper summarizes different scenarios of how to achieve this goal as well as the need for additional emittance fine tuning using wiggler magnets. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR006 | SuperKEKB Main Ring Magnet System | sextupole, wiggler, alignment, quadrupole | 3778 |
|
|||
SuperKEKB is an electron-positroncollider, which aims to achieve a peak luminosity 40 times higher than that of KEKB by using the so-called 'nano-beam' scheme. A major upgrade to the Main Ring (MR) magnet system was needed to realize this scheme. The upgrade includes 1) new beam lines in the entire interaction region;2) replacement of the main dipole magnets in the positron ring; 3) a new layout of the wiggler sections in the positron ring, and newly added wiggler section in the electron ring, and; 4) sextupole magnets with tunable tilting tables to control the ratio of skew/normal sextupole components in the positron ring. More than 400 magnets were designed, fabricated, field-measured, installed in the tunnel and aligned in time for Phase 1 commissioning. Alignment of the MR magnets was challenging, since the survey network was destroyed by the Great East Japan Earthquake. Tunnel position changes during the magnet alignment work caused by construction of a new facilities building made the alignment work even more challenging. Construction of the MR magnet system and its first commissioning are reported. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR009 | Cepc Partial Double Ring Lattice Design | lattice, dynamic-aperture, luminosity, factory | 3785 |
|
|||
In this paper, we introduced the layout and lattice design of Circular-Electron-Positron-Collider (CEPC) partial double ring (PDR) scheme. The baseline design of CEPC is a single beam-pipe electron positron collider, which has to adopt pretzel orbit scheme. And it is not suitable to serve as a high luminosity Z factory. If we choose partial double ring scheme, we can get a higher luminosity with lower power and be suitable to serve as a high luminosity Z factory. In this paper, we discussed the details of CEPC partial double ring lattice design and showed the dynamic aperture study and optimization. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR011 | Design study of CEPC Alternating Magnetic Field Booster | sextupole, dynamic-aperture, emittance, booster | 3791 |
|
|||
CEPC is next generation circular collider proposed by China. The design of the full energy booster ring of the CEPC is especially challenging. The ejected beam energy is 120GeV but the injected beam only 6GeV. In a conventional approach, the low magnetic field of the main dipole magnets creates problems. We propose to operate the booster ring as a large wiggler at low beam energies and as a normal ring at high energies to avoid the problem of very low dipole magnet fields. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR017 | Dynamic Aperture Optimization at CEPC with Pretzel Orbit | lattice, dynamic-aperture, quadrupole, collider | 3808 |
|
|||
A preliminary design of the CEPC ring with pretzel orbit will be presented. The ring and pretzel orbit will be designed for 50 bunches, as required in the CEPC Pre-CDR. The linear optics, as well as the non-linear chromaticity compensation with the presence of pretzel orbit will be described. Different phase advance difference between the long and short straight sections, have been tried to optimize the dynamic aperture, the results will be shown in this paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR019 | Momentum Acceptance Optimization in FCC-ee Lattice (CERN) | sextupole, quadrupole, lattice, luminosity | 3814 |
|
|||
Funding: Work is supported by the Ministry of Education and Science of the Russian Federation. The part of the ongoing study of the future circular collider (FCC) is an electron positron machine with center of mass energy from 90 to 350 GeV. Crab waist collision scheme and small (1 mm) vertical beta function at the interaction point (IP) provide superior luminosity. At the top energy, radiation in the field of the opposite bunch (beamstrahlung) limits the beam lifetime and therefore achievable luminosity. Beamstrahlung influence depends on momentum acceptance of the lattice, the value of 2% provides acceptable lifetime. The small value of vertical beta function enhances effects of nonlinear chromaticity. The present work describes principles used in design and optimization of FCC-ee momentum acceptance optimization and are based on chromatic variations of beta function. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR054 | Analysis of the SPS Long Term Orbit Drifts | extraction, closed-orbit, operation, injection | 3914 |
|
|||
The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessity to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR054 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOW026 | LLNL X-band RF Gun Results | laser, electron, emittance, gun | 3993 |
|
|||
Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 An X-band test station and Inverse Compton Scattering (ICS) x-ray source has been built and commissioned at LLNL. The electron beam source is a unique 5.59 cell RF photoinjector, which will be described in detail, including: quantum efficiency, emittance measurements, energy spread and jitter, final focus spot size and stability, laser profile and final transport, and consistency with expectations based on beam dynamics simulations. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOW037 | Simulated and Measured Magnetic Performance of a Double APPLE-II Undulator at the Canadian Light Source | undulator, multipole, polarization, photon | 4025 |
|
|||
Assembly and shimming are underway for a double APPLE-II type elliptically polarized undulator (i.e. two magnet arrays installed side by side on a single support structure) at the Canadian Light Source. The device is planned to be installed in spring 2017. Extensive preparation was done prior to device assembly, particularly in development of a simulated annealing algorithm for magnet virtual shimming, as well as assembly procedures that minimized positional errors in the installed magnet blocks. In this paper we present measurements taken throughout the shimming process, and compare with predictions from a RADIA model where each magnet block was magnetized uniquely according to individual Helmholtz coil measurements. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW037 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY033 | SIS100 Availability and Machine Protection | ion, septum, proton, extraction | 4171 |
|
|||
For the future FAIR driver accelerator, SIS100, a detailed System-FMEA (Failure Modes and Effects Analysis) according to IEC 61508 has been done. One the one hand, this has been done to identify possible shortcomings for machine protection and on the other hand to predict the machine's availabilty for beam on target. The methodology for the analysis and the main failure modes currently known for the machine and its environment are described in detail. An estimate of the total machine's availability is given. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY042 | Evolution and Perspectives of Second Generation Magnet Interlock Systems at CERN | PLC, operation, interlocks, radiation | 4192 |
|
|||
The CERN accelerator complex relies on thousands of superconducting and normal conducting magnets to guide the particle beams on their trajectories throughout the accelerator chain. In order to protect magnet and powering equipment from damage, complex magnet interlock systems are deployed and operated in the LHC and its injectors. Despite a very good track record during the first 10 years of operation, important consolidation activities are ongoing and planned to further increase the dependability of the injector chain and enhance the sys-tem functionality where required. This paper reviews the performance of the various magnet interlock systems at CERN during the past years of operation and presents the ongoing renovation projects carried out in the LHC in-jector complex to achieve the high level of dependability and maintainability required for long term operation. Finally, some design aspects of the existing LHC magnet interlocks will be discussed and possibilities to further enhance the dependability and functionality of the mag-net powering system will be presented in view of the High Luminosity LHC. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY044 | Experimental Setup to Measure the Damage Limits of Superconducting Magnets due to Beam Impact at CERN's HiRadMat Facility | experiment, beam-losses, proton, target | 4200 |
|
|||
Funding: Research supported by the High Luminosity LHC project The future upgrade of CERN's injector chain for the Large Hadron Collider (LHC) will lead to an increase of the beam brightness in the LHC. Beam absorbers are capturing missteered beams, but some limited beam impact on superconducting magnets can hardly be avoided. Therefore, it is planned to measure the damage limits of superconducting magnet components due to beam impact at CERN's HiRad- Mat facility using the 440 GeV proton beam from the Super Proton Synchrotron. Two experiments are proposed. One at ambient and one at cryogenic temperatures, where several pre-stressed stacks of LHC main dipole Nb-Ti cables and some single strands will be irradiated with varying beam intensities. The electrical integrity and the degradation of critical current will be measured after the removal from the HiRadMat facility. In the cold experiment some sample magnets will be added and the degradation of performance will be monitored online. In this contribution the experimental setup of the first experiment, including the sample container and cable stacks, is presented. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY045 | Commissioning of the Machine Protection Systems of the Large Hadron Collider Following its First Long Shutdown | operation, injection, hadron, beam-losses | 4203 |
|
|||
During the first long shutdown of the Large Hadron Collider (LHC) extending for more than 18 months, most Machine Protection Systems (MPS) have undergone significant changes, and upgrades. A full re-commissioning of the MPS was performed at the end of the shutdown and during the LHC beam commissioning in 2015. To verify the correct functioning of all protection-relevant systems with beam, a step-wise intensity ramp-up was performed, reaching at the end of 2015 a record stored beam energy of ~280 MJ per beam, nearly 80% of the value in the design report. This contribution summarizes the results of the MPS commissioning, the intensity ramp-up and the continuous follow-up during operation, focusing mainly on near misses and false triggers and their proposed mitigations. A strategy to minimize risks during machine development periods for future operation of the LHC, when the protection parameters are modified for several tests, is discussed. The machine protection strategy for the LHC run in 2016 is presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||