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Abstract
The Orbit Response Matrix (ORM) analysis [1] is a

method which allows to find the sources of discrepancies

between design and real optics of an accelerator machine.

In particular, with this technique one retrieves information

about gradient errors, dipole corrector gain errors etc.

Orbit response matrix is computed by measuring orbit de-

viations caused by single kicks of corrector magnets. With

fitting the matrix one obtains the ion optics which best de-

scribes the real accelerator. The ORM analysis, presented

in the paper, is employed to find error sources in the FAIR

storage rings CR [2] and HESR [3] during and after the beam

commissioning. The algorithm itself was implemented in

Python programming language with a help of linear alge-

bra libraries. The ORM analysis accuracy as well as its

limitations are addressed in the paper.

INTRODUCTION
FAIR Storage Rings
The FAIR circular machines, which are to be built in the

first phase, consist of heavy ion synchrotron ring SIS100,

Collector Ring (CR) and High Energy Storage Ring (HESR).

During the beam commissioning of each of these rings it

will be extremely important to track down the errors like:

• normal quadrupole gradients errors;

• skew quadrupole gradients errors;

• polarity and gain errors in beam position monitors

(BPMs) and dipole correctors;

• sextupole gradient errors.

These types of errors can be effectively eliminated by

an iterative method called Orbit Response Matrix (ORM)

analysis.

ORM ANALYSIS
Theory
The Orbit Response Matrix, or ORM, is a matrix which

defines how the beam responds to the dipole correctors. In

other words, it associates the beam offsets at the BPMs with

the correctors kicks:

(
Δx
Δy

)
= R

(
Δθx
Δθy

)
(1)

Here R denotes the ORM, Δx and Δy are the beam offsets

in a horizontal and in a vertical plane respectively, θx and
θy are the horizontal and the vertical corrector kicks.
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One should distinguish between designed (model) matrix

R(mod) and real (measured) matrix R(meas) . In the simplest

case without coupling the elements of the R(mod) can be

obtained from the optical parameters using the following

formula:

R(mod)
i j =

√
βi β j

2 sin πQ
cos(2π |φi − φ j | − πQ) − DiD j

(αc − 1
γ2

)C
(2)

where i, j denote a certain corrector or, respectively, a BPM
at whose positions we measure the optical parameters. β is
beta function, φ is phase advance, Q is tune, D is dispersion

function, αc is momentum compaction factor, γ is Lorentz
factor and C is the circumference of the ring.

Now we can describe how the ORM analysis algorithm

works. Let us define the ORM R as a function of machine

parameters vector V , i.e. R = R(V ). The vector V contains

errors which ultimately are supposed to be found by the

algorithm. Expanding R into Taylor series and truncating it

after the second term we obtain:

R(V ) ≈ R(V0) + R′(V0)(V − V0) (3)

Here R(V ) is the measured matrix R(meas) and R(V0) is
our guess for the matrix. The first guess is normally the

model matrix R(mod) . The R′(V0) represents a linear map
(Jacobian matrix) J from the machine parameters to the

ORM.

After multiplying both parts of Equation 3 from the left

side by J−1 and slightly rearranging the expression we ob-
tain:

V = V0 + J−1(R(V ) − R(V0)) (4)

We find V by fitting the model to the measure-

ment. This is done by varying the machine parame-

ters under investigation and minimizing the difference

ΔR = R(V ) − R(V0) = R(meas) ˘ R(mod) within an itera-

tive process. The steps of this process are as follows:

1. Define the model machine parameters as a first guess

V0 for the real machine parameters;

2. Compute R(mod) with the help of an accelerator code;

3. Compute R(meas) by varying the correctors and mea-

suring the beam offsets. This is done by accessing the

real machine;

4. Find the matrix difference ΔR;

5. Vary the machine parameters, e.g. quadrupole gradi-

ents, and find the changes in ΔR. This way a Jacobian
matrix J is found;
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6. Compute a pseudoinverse of the Jacobian via singular

value decomposition (SVD) method [4];

7. Calculate the next guess for the machine parameters

vector V ;

8. Go to step 1.

We execute the above described steps until the algorithm

converges. The χ2-function will be an indicator of the fit
goodness. Note that during the third step, in order to measure

the orbit response matrix R(meas) , we need to access the

real machine only once.

Implementation
The MAD-X [5] accelerator code was used for the ion

optical calculations and was embedded into the program

body. The main algorithm was designed with a help of

Python programming language. Graphical user interface

was constructed using PyQt (Python bindings for application

framework Qt [6]). SVD operation was carried out by means

of Numpy [7] linear algebra library.

Preconditions
In this study the ORM analysis accuracy and effective-

ness were tested for the storage rings CR and HESR. The

quadrupole families in each of the ring were assumed to

have gradient errors. The errors had uniform distribution

and were bounded to the range of ±5% from the initial val-

ues.

The ion optics, calculated for these distorted quadrupole

strengths, was used as an input for the ORM analysis. As an

example, Fig. 1 visualizes the discrepancy between a model

and a measured response matrices generated by such errors.

Each bar in the figure represents one matrix element which

is proportional to the orbit offset discrepancy at j-th BPM
from i-th corrector. Thus one can immediately recognize
the corrector-BPM pair at which the disagreement between

model and measurement is the largest one. Our task was

to investigate how precise and how fast the ORM analysis

eliminate the discrepancies and thus finds the simulated

gradient errors.
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Figure 1: Difference between a model and a measured re-

sponse matrices ΔR in the CR for 10 correctors due to the

uniform gradient errors in the range of ±5%. Coupling is
off.

RESULTS
CR Collector Ring
The first ring under investigation was CR Collector Ring

which is 221 m long. It possesses 18 BPMs and 50 dipole

correctors – 29 horizontal and 21 vertical ones [8]. The

BPMs measure the beam position in both planes. The ion

optics of the CR with γtr = 3.85 for the antiproton mode
was examined. The ion optical layout can be seen in Fig. 2.

Figure 2: CR ion optical layout for half of the ring. The

optical functions for the other half are identical.

The gradients of 11 quadrupole families were given ran-

dom errors as described previously. The algorithm con-

verged after 3-4 iterations in majority of the cases. For the

BPMs with no readout errors the initially generated gradient

errors were found almost exactly.

After subtracting the found errors from the distorted

quadrupole gradients one obtains virtually ideal agreement

with the model optics. This can be observed in Fig. 3 where

the beta-beating is plotted before and after the ORM analysis

fitting. The beta-beating is defined here as:

Δβ

β
=
β(meas) − β(mod)

β(mod)
(5)

The root-mean-square value of beta-beating in the hori-

zontal plane before the fit is (Δβx/βx )rms = 0.09. After the
ORM analysis the beta-distortion (Δβx/βx )rms ≈ 0. This
proves viability and power of the ORM analysis when using

for correcting errors in the CR storage ring.

Figure 3: Beta-beating in the CR before and after the ORM

analysis.
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HESR High Energy Storage Ring
The HESR storage ring is 575 m long. The ion optics for

the antiproton mode [9] can be seen in Fig. 4. The maximum

values of the horizontal beta functions reach 220m which is

much larger than those of the CR (≈ 30m).

Figure 4: HESR ion optical layout.

The total number of correctors is 52 (30 horizontal, 26

vertical ones) and the number of BPMs is 64. We simulate

the quadrupole strengths misset by assigning the ±5% uni-

form errors to the 12 quadrupole families of the HESR. Then

we could observe what level of accuracy could be achieved

by the ORM analysis in the errors search.

The results of beta-beating before and after correction are

shown in Fig. 5. One can notice how unstable the ion optics

for the HESR is in comparison to the CR. The same relative

errors of the quadrupole gradients lead to drastically different

behavior of the beta-function. The maximum deviation of

Δβx/βx of the distorted optics in the HESR is 2.9 whereas

for the CR it is less than 0.3. Nevertheless, generally 4

iterations were enough to find the errors and completely

restore the initial optics.

Figure 5: Beta-beating in the HESR before and after the

ORM analysis.

BPMs with Readout Errors
The implemented program for the ORM analysis also al-

lows for including the BPM systematic readout errors. For

example, in case of the HESR we assumed uniform errors in

the range ±0.5mm for all of the BPMs. 7 quadrupoles fami-

lies were given the uniform errors bounded in the±5% range.

The results of the ORM analysis are shown in Fig. 6. The rms

beta-beating before the ORM fit was (Δβx/βx )rms = 0.36.
After the correction the beta-beating was reduced to less

than 0.01 rms value.

Figure 6: Beta-beating in the HESR before and after the

ORM analysis. The BPM systematic readout errors are

assumed with uniform distribution within a ±0.5mm range.

With the BPM readout errors the precision of the search

is lowered down basically to the given BPM noise. Simply

speaking, we cannot find the gradient error which cannot be

resolved by the beam position monitor. This obstacle might

however be partially overcome by increasing the strengths

of the corrector kicks. This will enhance the beam offsets

at the BPMs thus enlarging signal-to-noise ratio. In the CR

the limiting factor was corrector strength. In the HESR, on

the other hand, a full aperture of most of the magnets, which

is 89 mm, did not allow us to use the full strengths of the

correctors.
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