Paper | Title | Other Keywords | Page |
---|---|---|---|
MOYCA01 | Review of Linear Optics Measurements and Corrections in Accelerators | coupling, quadrupole, collider, betatron | 20 |
|
|||
The measurement and correction of optics parameters has been a major concern since the advent of strong focusing synchrotron accelerators. Traditionally, colliders have led the development of methods for optics control based on turn-by-turn centroid data, while lepton storage rings have focused on closed orbit response techniques. Recently considerable efforts are being invested in comparing these techniques in different light sources and colliders. An emerging class of less invasive optics control techniques based on the optimization of performance related observables is demonstrating a great potential. A review of the existing techniques is presented highlighting comparisons, merits and limitations. | |||
![]() |
Slides MOYCA01 [4.184 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOYCA01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOZA02 | Design and Optimization Strategies of Nonlinear Dynamics in Diffraction-limited Synchrotron Light Sources | sextupole, lattice, emittance, resonance | 33 |
|
|||
This talk introduces the most recent achievements in the control of nonlinear dynamics in electron synchrotron light sources, with special attention to diffraction limited storage rings. Guidelines for the design and optimization of the magnetic lattice are reviewed and discussed. | |||
![]() |
Slides MOZA02 [4.952 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOZA02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOOCB03 | Distributed Matching Scheme and a Deterministic Flexible Matching Algorithm for Arbitrary Systems | distributed, controls, quadrupole, embedded | 65 |
|
|||
Paradigm complementary to conventional matching is explored, with matching distributed across the entire line. This can have varying degrees of advantage depending on acuteness of issues in a conventional scheme: - Limited flexibility and space constraint for matching section - Neglect of beam property away from matching section - Excessive envelope/magnet strength caused by matching (sub-optimal tradeoff) - Local envelope blowup inside matching section - Low tolerance to errors and lack of recourse to matching failure - Slow computation process - Unpredictable solution - Limited option/insight/control on implementing solution. A scheme was envisioned to address these, backed by recently developed matching algorithm tailored to this demand. It can be applied to any beamline configuration, including coupled 4D or intervening elements, providing deterministic, rigorous solutions allowing insight and control pre-implementation. It also shows promise of global optimum. Combined with the distributed scheme this algorithm promises additional advantages of speed, determinism and flexibility. Preliminary results, computational demands and possibilities for extension will be discussed. | |||
![]() |
Slides MOOCB03 [10.412 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOOCB03 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMB008 | Modeling and Experimental Studies of Beam Halo at ATF2 | vacuum, scattering, coupling, damping | 88 |
|
|||
The Accelerator Test Facility 2 (ATF2) at KEK is a prototype of the final focus system for the next generation of Future Linear Colliders(FCL). It aims to focus the beams to tens of nanometer transverse sizes and to provide stability at the few nm level. Achieving these goals requires modelling, measuring and suppressing of the transverse beam halo before the interaction point (IP). This paper presents a beam tail/halo generator based on realistic model and the investigation of vertical and horizontal beam tail/halo distribution at ATF2. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMB036 | Beam Profile Measurement Using Kirkpatrick Baez Mirror Optics at Shanghai Synchrotron Radiation Facility | synchrotron, radiation, synchrotron-radiation, diagnostics | 167 |
|
|||
For the third-generation light sources, the vertical emit-tance of a few pico-meter-radians which can be achieved with good coupling correction close to 0.1%, will lead to very small beam size. Several microns vertical beam sizes measurement has presented challenges for diagnostic capability in this region. A few techniques have been developed to make a precise measurement, such as visible light interferometer, x-ray imaging using Fresnel zone plates, compound refractive lenses or pinhole camera. In this paper, an x-ray reflective optics method based on the Kirkpatrick'Baez mirrors will be emphasis on discussed. The K-B mirror system will be installed and tested in SSRF to obtain the vertical beam size close to 20 microns, which is expected to be used for several microns vertical beam size measurement in the future light source named HEPS (High Energy Photon Source) in China. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMB041 | Modified Trigger Mode of Streak Camera to Measure Bunch Longitudinal Distribution in HLS II | electron, controls, brightness, hardware | 184 |
|
|||
Funding: Supported by the National Science Foundation of China (11575181, 11175173) In Hefei Light Source, the streak camera was used to measure the bunch length and longitudinal distribution using synchronous light. As the RF frequency of HLS II was 204MHz, the streak camera worked at the frequency of 102MHz (half of 204MHz). Because of the bunch lengthening, the streak camera faced the problem, the streak image on the phosphor screen will overlap when the bunch length was above 200.5ps@5% linear error and 10% overlap. In order to solve this problem, an effective solution was to change the working frequency of the streak camera to 136MHz (two thirds of 204MHz), and then the streak image on the phosphor screen will overlap when the bunch length was above 285.6ps@5% linear error and 10% overlap. So a front-end electronic was needed before the synchronizing signals feed into the streak camera. The front-end electronic was designed to convert the 204MHz synchronizing signal to 136MHz. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMR020 | Beam Diagnostics for ESS Commissioning and Early Operation | linac, diagnostics, target, DTL | 273 |
|
|||
The ESS linac design has evolved over time and is now quite stable. Recently, there has been a focused effort on developing more detailed installation and commissioning plan, and related to this, the plans for diagnostics has also been reviewed. This paper presents the updated diagnos-tics suite. Many of diagnostics systems will be developed by in-kind partners across Europe. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMR043 | Optical System Design for The ESS Proton Beam and Target Diagnostics | target, proton, radiation, diagnostics | 347 |
|
|||
Funding: Science and Technology Facilities Council The high power and low emittance of the European Spallation Source (ESS) proton beam require a robust protection strategy for the spallation target and its surroundings. For this, the beam will be imaged on passing through scintillator screens coating both the proton beam window (PBW) on exit from the accelerator, and the entry window to the target (TW). Light from the screens must be transported to remote cameras through a 4m high shielding plug of limited aperture. At the same time, the optical path must not compromise the integrity of the shield against neutrons and interaction products. We present the theory underlying the design of the reflective optics for efficient transmission of high-quality images to provide the desired level of protection to the machine, and describe its implementation in the Zemax software tool, as well as the predicted imaging performance. We also consider how the requirements of environment (thermal and radiation), initial alignment and ongoing maintenance for the optical system will be met. Finally we comment on the applicability of optics of this type for diagnostic systems in similar situations at other neutron sources and elsewhere. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR043 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMR045 | High Resolution and Dynamic Range Characterisation of Beam Imaging Systems | laser, electron, target, simulation | 354 |
|
|||
Funding: Work supported by the EU under grant agreement 624890 and the STFC Cockcroft Institute core grant ST/G008248/1. Any imaging system requires the use of various optical components to transfer the light from the source, e.g. optical radiation generated by a charged particle beam, to the sensor. The impact of the transfer optics on the image resolution is often not well known. To improve this situation, the point spread function (PSF) of the optical system must be measured, preferably, with high dynamic range. For this purpose we have created an intense, small (~ 1 μm) point source using a high quality laser and special focusing optics; and introduced a digital micro-mirror array in the optical system to substantially increase its dynamic range. The PSFs of optical systems that are currently being developed for high resolution, high dynamic range beam imaging using optical transition and diffraction radiation are measured and compared to Zemax simulations. The goal of these studies is to systematically understand and mitigate any ill effects on the PSF due to aberrations, diffraction and misalignment of the components of the imaging system. We present the results of our measurements and simulations. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMR054 | Double-slit Interferometer Measurements at SPEAR3 | electron, synchrotron, synchrotron-radiation, radiation | 368 |
|
|||
The resolution of a conventional telescope used to image visible-light synchrotron radiation is often limited by diffraction effects. To improve resolution, the double-slit interferometer method was developed at KEK and has since become popular around the world. Based on the Van Cittert-Zernike theorem relating transverse source profile to transverse spatial coherence, the particle beam size can be inferred by recording fringe contrast as a function of interferometer slit separation. In this paper, we describe the SPEAR3 double-slit interferometer, develop a theoretical framework for the interferometer and provide experimental results. Of note the double-slit system is 'rotated' about the beam axis to map the dependence of photon beam coherence on angle. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR054 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOR007 | Local Impedance Measurements at ALBA from Turn-by-Turn Acquisition | impedance, insertion, lattice, vacuum | 598 |
|
|||
A transverse impedance source manifests itself, among other ways, by producing a small defocusing kick which depends on the beam bunch charge. By repeating optics measurements for different bunch charges, it is possible to disentangle the contribution produced by each impedance source from the dominating focusing effects given by the machine optics. But hunting for such faint defocusing effects poses strong requirements on the precision and sensibility of the measurements, and slow machine drifts or different thermal conditions shall be avoided. In this report, we present a novel method to assess in a fast and precise manner machine optics for different bunch charges using BPM turn-by-turn data and hybrid filling patterns. Finally, measurements for different ALBA machine components like scrapers and In-vacuum undulators are compared with simulation results. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR007 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOR011 | Impedance Localization Measurements using AC Dipoles in the LHC | impedance, dipole, quadrupole, betatron | 614 |
|
|||
The knowledge of the LHC impedance is of primary importance to predict the machine performance and allow for the HL-LHC upgrade. The developed impedance model can be benchmarked with beam measurements in order to assess its validity and limit. This is routinely done, for example, moving the LHC collimator jaws and measuring the induced tune shift. In order to localize possible unknown impedance sources, the variation of phase advance with intensity between beam position monitors can be measured. In this work we will present the impedance localization measurements performed at injection in the LHC using AC dipoles as exciter as well as the underlying theory. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOW022 | Model-based Algorithm to Tune the LCLS Optics | quadrupole, controls, electron, undulator | 763 |
|
|||
Transverse phase space matching of electron beam to the undulator optics is important for achieving good performance in free-electron lasers. Usually there are dedicated matching quadrupoles distributed in the beamline, by measuring the beam phase space the matching quadrupoles are calculated and adjusted to match to the designed Twiss parameters. Further adjustment of the quadrupoles to overcome collective effects or realistic beamline errors is typically required for performance improvement. In this paper, we studied a method to decompose the Twiss parameters for an independent control of the phase space. Mathematical analysis and numerical simulations are both presented to show that through combining the quadrupoles into some multi-knobs, we can control the Twiss parameters independently. We also show some experimental results at the LCLS. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW022 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOW039 | An Oscillator Configuration for Full Realization of Hard X-ray Free Electron Laser | electron, laser, photon, free-electron-laser | 801 |
|
|||
Funding: Work at ANL supported under US Department of Energy contract DE-AC02-76SF00515 and at SLAC by the U.S. Department of Energy, Office of Science, under Contract No. DE-ACO2-O6CH11357 An X-ray free electron laser can be built in an oscillator (XFELO) configuration by employing an X-ray cavity with Bragg mirrors such as diamond*. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac. The XFELO will provide stable, coherent, high-spectral-purity hard x-rays. In addition, portions of its output may be enhanced by the LCLS amplifier for stable pulses of ultrashort duration determined by the electron bunch length. Much progress has been made recently on the feasibility of an XFELO: Analytical and numerical methods have been developed to compute the performance of a harmonic XFELO. The energy spread requirement over a sufficient length of the bunch can be met by temporal shaping of the photo-cathode drive laser**. Experiments at the APS have shown that Be-compound refractive lenses are suitable for a low-loss focusing and that the synthetic diamond crystals can withstand the intense x-ray exposure, in accord with estimates based on molecular dynamics considerations***. A strain-free mounting of thin diamond crystal (< 100 microns) can be realized by shaping a thick diamond into a blind alley****. * R. R. Lindberg et al., PRSTAB 1010701 (2011) ** W. Qin et al., this conference *** N. Medvedev et al., Phys. Rev. B 88, 224304 (2013) **** S. Terentyev, private communication |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOW048 | Development of the LCLS-II Optics Design | undulator, linac, electron, kicker | 820 |
|
|||
Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515. The LCLS-II is a high repetition rate, high average brightness free-electron laser (FEL) under construction at the SLAC National Accelerator Laboratory. The LCLS-II will include new major components: a high repetition-rate injector, a superconducting, CW (continuous wave), 4-GeV linac with a bunch compressor system, a 3-way beam spreader, with independent hard X-ray (HXR) and soft X-ray (SXR) FEL undulators. The design is based on the existing SLAC facilities, including the LCLS linac and beam transport lines. The new SXR line will utilize a variable-gap undulator sharing the same tunnel with the new HXR horizontal-gap vertically polarizing undulator that will replace the existing LCLS undulator. We describe the current state of the electron optics design and the latest developments. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOW050 | Study of Lower Horizontal Emittance Optics in the Present Soleil Storage Ring | emittance, quadrupole, lattice, dynamic-aperture | 827 |
|
|||
With the aim of delivering a lower horizontal emittance beam to the users of the present SOLEIL ring, a systematic lattice study is carried out. The goal is to discover feasible optics solutions having the horizontal emittance notably lower than the present value of 3.9 nm rad, while fulfilling all the physical requirements and without changing the current magnet structure in the lattice. The strategy adopted is a cell-wise optimization of the linear lattices in the two types of double-bend cells that constitute the SOLEIL ring. In the second step they are concatenated via finer matching. A global scan of the 5 quadrupole families for the search of stable solutions is performed. The statistical properties are given. One can easily select possible solutions without matching. For the second type of cell having 10 quadrupole families, another scan of quadrupoles and a matching using a quadrupole triplet are applied for linear optics characteristics. Finally, the nonlinear optimization is performed with modern nonlinear optimization algorithms. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOW051 | High Level Control Command for ThomX Transfer Line | linac, emittance, quadrupole, TANGO | 830 |
|
|||
ThomX Compact X ray source is a 50 MeV storage ring, and a linear accelerator based on a photo-injector. As the electron beam in the ring will not be damped by synchrotron radiation, the transfer line should rely on a precise injection in the ring. In order to fulfill this requirement, especially in terms of optics function and orbit correction, different tools have been prepared and tested on the accelerator toolbox of Matlab Middle Layer. We will present the different tools and the underlying physics for the ThomX transfer line. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW051 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOW055 | Injection Using a Non-linear Kicker Located in the Existing Injection Straight at Diamond Storage Ring | injection, septum, kicker, storage-ring | 840 |
|
|||
Injection studies using a non-linear kicker for the Diamond storage ring have been carried out previously*. These studies have been recently extended to investigate whether the non-linear kicker can be located in the injection straight downstream of the septum and outside the existing dipole kicker bump. If so, injection with a non-linear kicker becomes independent of the optics used, making it suitable for use in both standard and low alpha mode. With this configuration, the existing injection scheme could also be left in place, leaving open the possibility to study both schemes in situ before potentially removing the existing dipole kickers at a later date. In order to operate with the non-linear kicker, the injected beam needs to exit the transfer line at an angle of 3mrad; this has been successfully demonstrated during machine development time. The concept and feasibility studies of this scheme are presented in this paper.
* T. Pulampong, et al., Proc. IPAC 2013, Shanghai, WEPWA065, (2013) |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW055 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY048 | A Novel Approach in the One-Dimensional Phase Retrieval Problem and its Application to the Time Profile Reconstruction | electron, FEL, laser, operation | 955 |
|
|||
Funding: This work was supported (in parts) by the UK Science and Technology Facilities Council (STFC UK) grant ST/M003590/1 and The Leverhulme Trust through International Network Grant IN-2015-012 Accurate knowledge of the longitudinal profile of the bunch is important in the context of linear colliders, wake-field accelerators and for the next generation of light sources. As a result the non-destructive, single-shot evaluation of the profile is one of the challenging problems which can be addressed via spectral analysis of coherent radiation generated by a charged particle bunch. To reconstruct the bunch profile from the spectrum the phase retrieval problem has to be solved. Frequently applied methods, e.g. minimal phase retrieval or other iterative algorithms, are reliable if the Blaschke phase contribution is negligible. This is neither known a priori nor can it be assumed to apply to an arbitrary bunch profile. We present a novel approach which gives reproducible, most-probable and stable reconstructions for bunch profiles that would otherwise remain unresolved by the existing techniques. The algorithm proposed uses the output of Kramers-Kronig minimum phase as both initial and boundary conditions, providing a unique solution. To assure a converging solution, new conditions linked to the independently known experimental data such as beam charge were introduced. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY050 | Beam Commissioning Plan of the FRIB Superconducting Linac | linac, cavity, operation, simulation | 961 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The FRIB superconducting linac will deliver all heavy ion beams with energy above 200 MeV/u, and beam power on target up to 400 kW for generation of short lived isotopes. Beam commissioning is the first step to prepare and tune the superconducting linac for high power operation. A staged beam commissioning plan of the FRIB linac is developed, and complete beam tuning practices segment by segment through the entire linac are introduced, which include phase scan signature matching of the superconducting cavities, longitudinal beam matching, transverse matching with horizontal-vertical beam coupling, and beam optics corrections of achromatic and isochronous folding segments up to the second order for acceleration and transport of multi charge state beams. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOBA01 | Beam Commissioning of SuperKEKB | coupling, vacuum, detector, septum | 1019 |
|
|||
In this report, we describe the machine operation in the first 3 months of the Phase 1 commissioning of SuperKEKB. The beam commissioning is smoothly going on. Vacuum scrubbing, the optics corrections and others are described. | |||
![]() |
Slides TUOBA01 [9.346 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBA01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOBA02 | ER@CEBAF - A High Energy, Multi-pass Energy Recovery Experiment at CEBAF | linac, experiment, operation, electron | 1022 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A high-energy, multiple-pass energy recovery (ER) experiment proposal, using CEBAF, is in preparation by a JLab-BNL collaboration. The experiment will be proposed in support of the electron-ion collider project (EIC) R&D going on at BNL. This new experiment extends the 2003, 1-pass, 1 GeV CEBAF-ER demonstration into a range of energy and recirculation passes commensurate with BNL's anticipated linac-ring EIC parameters. The experiment will study ER and recirculating beam dynamics in the presence of synchrotron radiation, provide opportunity to develop and test multiple-beam diagnostic instrumentation, and can also probe BBU limitations. This paper gives an overview of the ER@CEBAF project, its context and preparations. |
|||
![]() |
Slides TUOBA02 [1.936 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBA02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB041 | The SuperKEKB Interaction Region Corrector Magnets | quadrupole, octupole, sextupole, luminosity | 1193 |
|
|||
Work for the SuperKEKB luminosity upgrade of the KEKB asymmetric e+e− collider is near completion. In this paper we review the design, production and testing of superconducting correction coils, that are needed to achieve the desired IR optics performance, and are integrated with the final focus magnets. For SuperKEKB 43 coils were produced at BNL using Direct Wind techniques. These coils underwent preliminary warm field harmonic quality assurance measurements before shipment to KEK. At KEK final cold measurements of these coils were made prior to their ultimate integration with the SuperKEKB IR magnets. SuperKEKB corrector production was challenging due to the large number of coil types and configurations that had to be fitted into very limited available space. Also the nature of the SuperKEKB optics sets fairly stringent local field quality requirements for these coils. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR026 | First Experience of Applying Loco for Optics at Cosy | quadrupole, simulation, storage-ring, ion | 1294 |
|
|||
COSY is a cooler synchrotron designed for internal target hadron physics experiments, equipped with both electron cooling system and stochastic cooling system. During the past couple of years, COSY has been evolved into an ideal test facility for accelerator technology development as well as detector development for the Facility of Anti-proton and Ion Research at Darmstadt (FAIR). In addition, COSY has been the test ground for exploring the feasibility of a storage ring based Electric Dipole Moment (EDM) measurement. The proposed precursor experiment of a direct measurement of the EDM of the deuteron at COSY using an RF wien filter by the Jülich Electric Dipole moment Investigation (JEDI) requests significant improvement of beam based measurements as well as beam control. In this paper, first results of measured linear optics based on AT-LOCO are reported. Simulation studies are also discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR042 | Transverse Profile Expansion and Homogenization for the Beamline of XIPAF | target, proton, experiment, simulation | 1346 |
|
|||
For the Xi'an 200 MeV Proton Application Facility (XiPAF), one important thing is to produce more homog-enous beam profile at the target to fulfill the requirements of the beam application. Here the beam line is designed to meet the requirement of beam expansion and homogenization, and the step-like field magnets are employed for the beam spot homogenization. The simulations results including space charge effects and errors show that the beam line can meet the requirements well at the different energies (from 10 MeV to 230 MeV) and different beam spot size (from 20mm to 200mm). | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR046 | Sources of Emittance Growth at the CERN PS Booster to PS Transfer | emittance, injection, kicker, betatron | 1352 |
|
|||
The CERN PS Booster (PSB) has four vertically stacked rings. After extraction from each ring, the bunches are recombined in two stages, comprising septum and kicker systems, such that the accumulated bunch train is injected through a single line into the PS. Bunches from the four rings go through a different number of vertical bends, which leads to differences in the betatron and dispersion functions due to edge focussing. The fast pulsed systems at PSB extraction, recombination and PS injection lead to systematic errors of delivery precision at the injection point. These error sources are quantified in terms of emittance growth and particle loss. Mitigations to reduce the overall emittance growth at the PSB to PS transfer within the LHC injectors upgrade are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR046 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR047 | Conceptual Design Considerations for the 50 TeV FCC Beam Dump Insertion | extraction, kicker, collimation, septum | 1356 |
|
|||
Safely extracting and absorbing the 50 TeV proton beams of the FCC-hh collider will be a major challenge. Two extended straight sections (ESS) are dedicated to beam dumping system and collimation. The beam dumping system will fast-extract the beam and transport it to an external absorber, while the collimation system will protect the superconducting accelerator components installed further downstream. The high stored beam energy of about 8.5 GJ per beam means that machine protection considerations will severely constrain the functional design of the ESS and the beam dump line geometry, in addition to dominating the performance specifications of the main sub-systems like kickers and absorber blocks. The general features, including concept choice, optics in the ESS and beam dump line, passive protection devices, layout and integration are described and discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR047 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW012 | Beam Offset Stabilization Techniques for the LHC Collision Points | luminosity, experiment, ground-motion, operation | 1438 |
|
|||
Maintaining head-on collisions over many hours is an important aspect of optimizing the performance of a collider. For current LHC operation where the beam optics is fixed during periods of colliding beam, mainly ground motion induced perturbations have to be compensated. The situation will become significantly more complex when luminosity leveling will be applied following the LHC luminosity upgrades. During β* leveling the optics in the interaction region changes significantly, feed-downs from quadrupole misalignment may induce significant orbit changes that may lead to beam offsets at the collision points. Such beam offsets induce a loss of luminosity and reduce the stability margins for collective effects that is provided by head-on beam-beam. It is therefore essential that the beam offsets at the collision points are minimized during the leveling process. This paper will review sources and mitigation techniques for the orbit perturbation at the collision points during β* leveling, and present results of experiments performed at the LHC to mitigate and compensate such offsets. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW018 | Radiation Load Optimization in the Final Focus System of FCC-hh | shielding, radiation, quadrupole, luminosity | 1462 |
|
|||
With a center-of-mass energy of up to 100 TeV, FCC-hh will produce highly energetic collision debris at the Interaction Point (IP). Protecting the final focus quadrupoles from this radiation is challenging, since the required amount of shielding placed inside the magnets will reduce the free aperture, thereby limiting the β* reach and luminosity. Hence, radiation mitigation strategies that make best use of the available aperture are required. In this paper, we study the possibility to split the first quadrupole Q1 into two quadrupoles with individual apertures, in order to distribute the radiation load more evenly and reduce the peak dose. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW020 | Status of the Beam Optics of the Future Hadron-Hadron Collider FCC-hh | collider, dipole, sextupole, closed-orbit | 1470 |
|
|||
Funding: This work was supported by the HORIZON 2020 project EuroCirCol, grant agreement 654305. Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched a design study for possible future circular collider projects, FCC, to investigate their feasibility for high energy physics research. The study covers three options, a proton-proton collider, a circular e+/e− collider and a scenario for e-p collisions to study deep inelastic scattering. The present paper describes the beam optics and the lattice design of the Future Hadron-Hadron Collider (FCC-hh). The status of the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV cm. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW030 | Review of LHC On-line Model Implementation and of its Applications | quadrupole, operation, database, interface | 1505 |
|
|||
The online model of the LHC aims to provide an accurate description of the machine at any given time. In order to do so it extracts the current optics in the machine along with other crucial parameters. It also provides the functionality to match the measured orbit using virtual correctors and the measured beta functions using virtual quadrupoles. In this way an accurate effective model can be created. In order to facilitate the use of the online model a graphical user interface has been developed. In this article we describe the design of the online model and its application in different studies. We give examples how it has been used to predict the influence of changes before they were applied to the machine. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW031 | Combined Ramp and Squeeze to 6.5 TeV in the LHC | operation, controls, dipole, betatron | 1509 |
|
|||
The cycle of the LHC is composed of an energy ramp followed by a betatron squeeze, needed to reduce the beta- star value in the interaction points. Since Run 1, studies have been carried out to investigate the feasibility of combining the two operations, thus considerably reducing the duration of the operational cycle. In Run 2, the LHC is operating at the energy of 6.5 TeV that requires a much longer cycle than that of Run 1. Therefore, the performance gains from a Combined Ramp and Squeeze (CRS) is more interesting. Merging the energy ramp and the betatron squeeze could result in a gain of several minutes for each LHC cycle. With increasing maturity of LHC operation, it is now possible to envisage more complex beam manipulations; this paper describes the first machine experiment with beam, aiming at validating the combination of ramp and squeeze, which was performed in 2015, during a machine development phase. The operation experience with the LHC run at 2.51 TeV, when CRS down to 4 meters was deployed and a the first results of 2016 run are also reviewed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW035 | Performance and Operational Aspects of HL-LHC Scenarios | luminosity, simulation, emittance, electron | 1516 |
|
|||
Funding: Research supported by the High Luminosity LHC project. Work supported by the Beam Project (CONACYT, Mexico). Several alternatives to the present HL-LHC baseline configuration have been proposed, aiming either to improve the potential performance, reduce its risks, or to provide options for addressing possible limitations or changes in its parameters. In this paper we review and compare the performance of the HL-LHC baseline and the main alternatives with the latest parameters set. The results are obtained using refined simulations of the evolution of the luminosity with β*-levelling, for which new criteria have been introduced, such as improved calculation of the intrabeam scattering and the addition of penalty steps to take into account the necessary time to move between consecutive optics during the process. The features of the set of optics are discussed for the nominal baseline. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMY010 | Status of Mice Step IV | emittance, factory, experiment, scattering | 1562 |
|
|||
Funding: STFC, DOE, NSF, INFN, CHIPP AND MORE Muon beams of low emittance provide the basis for the intense, well characterised neutrino beams of the Neutrino Factory and for lepton-antilepton collisions at energies of up to several TeV at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling–the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam. MICE is being constructed in a series of Steps. The configuration currently in operation at the Rutherford Appleton Laboratory is optimised for the study the properties of liquid hydrogen and lithium hydride that affect cooling. The plans for data taking in the present configuration will be described together with a summary of the status of preparation of the experimental configuration by which MICE will demonstration the principle of ionization cooling. Submitted by the MICE speakers bureau that will identify later a member of the collaboration to present the contribution |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMY035 | Short-wavelength Radiation of a Small Charged Bunch in Presence of a Dielectric Prism | radiation, target, polarization, vacuum | 1626 |
|
|||
Funding: Work is supported by the Grant from Russian Foundation for Basic Research (No. 15-02-03913). Investigation of radiation of a charged particle bunch in the presence of a large (compared with wavelengths under consideration) dielectric object can be performed using certain approximate methods. We develop here the method based on the known Stratton-Chu formulae which allows calculating the field everywhere outside the object including the Fresnel and Fraunhofer areas, as well as neighborhoods of focal points*. The main problem considered here consists in investigation of radiation of a small bunch moving along boundary of a dielectric prism or in channel inside a prism. Approximate analytical solutions of the problem are obtained and typical numerical results are given. *S.N. Galyamin and A.V. Tyukhtin, Phys. Rev. Lett. 113, 064802, 2014. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMY042 | Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA) | rfq, proton, electron, ion-source | 1638 |
|
|||
Funding: This work is supported by the DOE, under Contract No. De-AC02-07CH11359. The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be commissioned with electrons, but this poster describes progress toward the injection of protons into the ring, using the RFQ originally built for the High Energy Neutrino Source (HINS) project. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOR030 | Design of Octupole Channel for Integrable Optics Test Accelerator | octupole, simulation, dynamic-aperture, electron | 1731 |
|
|||
We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm3, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOW038 | Measurement and Control of Beam Losses Under High Average-current Operation of the Compact ERL at KEK | radiation, operation, beam-losses, recirculation | 1839 |
|
|||
The compact ERL (cERL)* is a superconducting accelerator aimed at demonstrating excellent ERL technologies for the future light source. The cERL comprises a 5 MeV injector, a main linac, and a recirculation loop. In the cERL, production and transportation of low-emittance and high average-current beams (tentative goals: 1 mm-mrad and 10 mA) is primarily important. At this moment (in December 2015), beam currents of up to 80 uA (CW) have successfully been transported through the recirculation loop at a beam energy of 20 MeV. Before such high-current operations, we carefully tuned up the machine so that beam losses became very small. The beam losses were watched using fast beam-loss detectors and radiation monitors while absolute losses were estimated from measured radiation levels on the roof of the shield. After careful beam-optics corrections and elimination of beam halos / tails at low-energy section, we achieved the beam losses of at most a few nA level at several locations along the loop, and those below 1 nA elsewhere in the loop. We will report these results together with the result of higher-current operation which is planned early in 2016.
* S. Sakanaka et al., IPAC'15, TUBC1; T. Obina et al., to be presented at IPAC'16. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW038 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOY014 | PSI Gantry 3: Integration of a New Gantry into an Existing Proton Therapy Facility | controls, interface, proton, coupling | 1927 |
|
|||
Paul Scherrer Institute extends its proton therapy facility PROSCAN by a third gantry. It is delivered by Varian Medical Systems (VMS) as part of a joint research project. Gantry 3 is equipped with a cone beam CT and allows 360 degrees of rotation while occupying a 10.5 m diameter. The integration of a gantry into the existing PSI-system typically being designed for a complete Varian system is a challenging project, since also the certification is to be maintained. Especially the interfaces between the PROSCAN-control system and the one of Gantry 3 have been a major development. Gantry 3 is designed to deliver proton beam of up to 8 nA with an accuracy better than a mm, while having a high level of over-current protection. This comprises a new current monitoring unit, several levels of interlock controllers and a beam energy dependent intensity compensation concept. One challenge concerns the specified layer switching time of 200 ms, required to reduce the treatment time to enable for repainting. After technical commissioning, acceptance tests and hand over, the clinical commissioning is foreseen in the second half of 2016 with the first patient treatment in December 2016. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY014 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOCA03 | Simulating Proton Synchrotron Radiation in the Arcs of the LHC, HL-LHC and FCC-hh | photon, simulation, radiation, electron | 2073 |
|
|||
At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the Synrad3D code developed at Cornell to simulate the photon distributions in the arcs of the LHC, HL-LHC, and FCC-hh. Specifically, for the LHC we study the effect of the "sawtooth" chamber, for the HL-LHC the consequences of the ATS optics with large beta beating in the arcs, and for the FCC-hh the effect of a novel beam-screen design, with a long slit surrounded by a "folded" ante-chamber. | |||
![]() |
Slides WEOCA03 [0.329 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOCA03 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMR007 | Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab | electron, gun, solenoid, focusing | 2271 |
|
|||
Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy. The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p+) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII) gun and collector under ultra-high vacuum (UHV) conditions. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR007 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMR008 | Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab | electron, operation, controls, dipole | 2274 |
|
|||
Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy. The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p+) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW009 | Towards a Mono-chromatization Scheme for Direct Higgs Production at FCC-ee | emittance, luminosity, collider, synchrotron | 2434 |
|
|||
Direct Higgs production in e+e− collisions at the FCC is of interest if the centre-of-mass energy spread can be reduced by at least an order of magnitude. A mono-chromatization scheme, to accomplish this, can be realized with horizontal dispersion of opposite sign for the two colliding beams at the interaction point (IP). We review approaches from historical mono-chromatization studies, then derive a set of IP parameters which would provide the required performance in FCC e+e− collisions at 63 GeV beam energy, compare these with the baseline optics parameters at neighbouring energies (45.6 and 80 GeV), comment on the effect of beamstrahlung, and, finally, discuss the modifications of the FCC-ee final-focus optics needed to obtain the required parameters. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW012 | Injection Optics for the JLEIC Ion Collider Ring | quadrupole, injection, ion, collider | 2445 |
|
|||
Funding: * Work supported by the U.S. DOE Contract DE-AC02-76SF00515. ** Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required to allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW016 | Towards a Small Emittance Design of the JLEIC Electron Collider Ring | emittance, dipole, electron, damping | 2457 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The electron collider ring of the Jefferson Lab Electron-Ion Collider (JLEIC) is designed to provide an electron beam with a small beam size at the IP for collisions with an ion beam in order to reach a desired high luminosity. For a chosen beta-star at the IP, electron beam size is determined by the equilibrium emittance that can be obtained through a linear optics design. This paper briefly describes the baseline design of the electron collider ring reusing PEP-II components and considering their parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and reports a few approaches to reducing the equilibrium emittance in the electron collider ring. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW033 | Validation of Simulation Tools for Fast Beam Failure Studies in the LHC | simulation, collimation, proton, beam-losses | 2506 |
|
|||
The LHC collimation system protects passively the most sensitive machine equipment against beam losses. In particular, collimators are the last line of defense in case of single-turn failures that cannot be caught by the standard interlock system. The collimator settings are conceived to protect the machine even for very rare events, like beam abort failures with a full machine. Collimator settings are established in simulations through a dedicated tracking setup but also empirically validated by beam measurements at low intensities. A benchmark of simulations is essential for reliably estimating the response of the system for future machine configurations and beam parameters. In the paper, results are presented of tracking simulations for different optics deployed in the LHC Run II at 6.5 TeV and compared with data. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR006 | Demonstration of CLIC Level Phase Stability using a High Bandwidth, Low Latency Drive Beam Phase Feedforward System at the CLIC Test Facility CTF3 | kicker, hardware, simulation, electronics | 2673 |
|
|||
Funding: Work supported by the European Commission under the FP7 Research Infrastructures project Eu-CARD, grant agreement no.~227579. The CLIC acceleration scheme, in which the RF power used to accelerate the main high energy beam is extracted from a second high intensity but low energy beam, places strict requirements on the phase stability of the power producing drive beam. To limit luminosity loss caused by energy jitter leading to emittance growth in the final focus to below 1%, 0.2 degrees of 12 GHz, or 50 fs, drive beam phase stability is needed. A low-latency phase feedforward correction with bandwidth above 17.5 MHz will be used to reduce the drive beam phase jitter to this level. The proposed scheme corrects the phase using fast electromagnetic kickers to vary the path length in a chicane prior to the drive beam power extraction. A prototype of this system has been installed at the CLIC test facility CTF3 to prove its feasibility. The latest results from the system are presented, demonstrating phase stabilisation in agreement with simulations given the beam conditions and power of the kicker amplifiers. Necessary improvements in the phase monitor performance and optics corrections made to remove the phase-energy dependence via R56 in order to achieve this level of stability are also discussed. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR052 | Emittance Measurements in Low Energy Storage Rings | emittance, antiproton, simulation, electron | 2788 |
|
|||
Funding: Work supported by the EU under grant agreement 624854 and the STFC Cockcroft Institute Core Grant No. ST/G008248/1. The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurements faces several challenges: non-zero dispersion and systematic errors due to diffusion processes, such as intra-beam scattering, and the speed of the scraper with respect to the beam revolution frequency. In addition, the beam distribution will likely be non-Gaussian. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA. We also discuss the feasibility of using alternative non-invasive techniques for profile and emittance measurements. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR052 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR053 | Software Tools for Emittance Measurement and Matching for 12 GeV CEBAF | quadrupole, emittance, GUI, focusing | 2792 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. This poster discusses model-driven setup of the Continuous Electron Beam Accelerator Facility (CEBAF) for the 12 GeV era, focusing on qsUtility. qsUtility is a set of software tools created to perform emittance measurements, analyze those measurements, and compute optics corrections based upon the measurements. qsUtility was developed as a toolset to facilitate reducing machine configuration time and reproducibility by way of an accurate accelerator model, and to provide Operations staff with tools to measure and correct machine optics with little or no assistance from optics experts. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR053 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR060 | MTCA.4-based Beam Line Stabilization Application | laser, FPGA, detector, controls | 2808 |
|
|||
We want to summarize the beam line stabilization application with MTCA.4 electronics. Presented solution is based on the compact 2U MTCA.4 crate integrating sensor and actuator cards. The optical beam position sensor is based on quadrupole SI PIN photodiode connected to low cost AMC based FMC carrier equipped with ADC card. The optical beam position correction is done using picomotorized stages equipped with active piezo elements and high voltage RTM piezo driver. The data processing and digital feedback units are implemented using Spartan 6 FPGA. The control algorithm has been optimized for low latency and high precision computations. The control electronics performance has been tested using single beam line test stand consisted of commercial laser diode drivers, supported optics and motorized stages. The first results are demonstrated and future possible applications are briefly discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR060 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW003 | Design Considerations of a 7BA-6BA Lattice for the Future Upgrade of SOLEIL | dipole, lattice, emittance, sextupole | 2815 |
|
|||
Previous studies indicated that adoption of a combination of 7 and 6BA cells in the existing SOLEIL ring enables reaching the target range of the horizontal emittance below 200 pm·rad as expected, in contrast to fewer dipole solutions such as a combination of 5 and 4BA studied earlier (IPAC 2014). However, the previous 7BA-6BA lattice resulted in having unacceptably strong gradients in quadrupoles and dipoles leading to high natural chromaticities. Several schemes that would allow for an improvement are explored, such as shortening the insertion device straight sections by one or two meters to create more space for the magnetic structure, lowering the dipole fields and the use of anti-bends as proposed by A. Streun. The effectiveness of each scheme is evaluated and the best combined use of them for SOLEIL is investigated. Ways to fulfil the constraints of the existing dipole beam lines are studied by introducing longitudinal gradient bends and/or multipole wigglers. The nonlinear optimisation to maximise the on and off-momentum apertures is made by using genetic algorithm-based numerical codes. A comparison of their performance and the obtained results are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW009 | The Bessy Vsr Project for Short X-Ray Pulse Production | operation, storage-ring, radiation, SRF | 2833 |
|
|||
Funding: Work supported by the German Bundesministerium für Bildung und Forschung, Land Berlin and grants of the Helmholtz Association HZB has started the innovative project, BESSY VSR, to upgrade the 1.7 GeV synchrotron radiation source BESSY II. Its goal is to provide both 1.7 ps and 15 ps long, intense X-ray pulses simultaneously at all beam lines. These pulses are generated by enhanced longitudinal bunch focusing using superconducting 5-cell cavities operating at 1.5 GHz and 1.75 GHz. The resulting beating of the voltages creates alternating long and short buckets that can be custom filled. As a first major step, prototype superconducting cavities, initially only cooled to 4.4 K and thus operating at reduced voltage, will be installed into the BESSY II storage ring. Physical and technical aspects of this proposal where recently studied* and the results and project status are presented. * A. Jankowiak, J. Knobloch for the BESSY VSR team, Technical Design Study BESSY VSR, doi:10.5442/R0001, Helmholtz-Zentrum Berlin (Germany), June 2015. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW025 | Exploring the Ultimate Linear and Nonlinear Performance of the HEPS hybrid 7BA design | emittance, sextupole, lattice, storage-ring | 2883 |
|
|||
The High Energy Photon Source (HEPS), a kilometre- scale diffraction-limited storage ring (DLSR) light source, with a beam energy of 5 to 6 GeV and transverse emittances of a few tens of pm.rad, is to be built in Beijing. We have obtained a hybrid 7BA lattice design, with a natural emittance of about 60 pm.rad and a circumference of about 1.3 kilometres, basically satisfying the requirement of on-axis longitudinal injection in HEPS. Nevertheless, it is interesting and necessary to explore the ultimate linear and nonlinear performance of the HEPS hybrid 7BA design. In this paper, we will introduce the multi-objective optimization with a successive and iterative implementation of the MOPSO and MOGA algorithms, and discuss certain relations between the nonlinear dynamics and linear optics of a hybrid MBA lattice. This study can provide reference for other DLSR lattice design and optimizations. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW029 | Solaris Storage Ring Commissioning | storage-ring, radiation, vacuum, closed-orbit | 2895 |
|
|||
Funding: Work supported by the European Regional Development Fund within the frame of the Innovative Economy Operational Program: POIG.02.01.00-12-213/09 The Solaris storage ring represents a new class of light source that utilizes the innovative concept of a solid iron block containing all the Double Bend Achromat (DBA) magnets. The use of small magnet gaps brings the benefit of high fields but requires vacuum chambers of high me-chanical accuracy and distributed pumping. Due to very tight mechanical tolerances of the magnet blocks and of the vacuum vessels, the installation of the Solaris storage ring was a challenging task. In this paper the commission-ing results and the performance of this novel machine will be discussed. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW038 | Proposed Upgrade of the SLS Storage Ring | emittance, lattice, storage-ring, sextupole | 2922 |
|
|||
A new storage ring is planned for the upgrade of the Swiss Light Source (SLS). It will replace the 12 triple bend achromats by twelve 7-bend achromats, which are based on low aperture longitudinal gradient bends (LGBs) and anti-bends (ABs), thus reducing the emittance from 5.0 nm to about 150 pm at 2.4 GeV while maintaining the source points of the undulator based beam lines. Sextupole and octupole strengths are determined using a multi-objective genetic algorithm (MOGA) and result in sufficient dynamic aperture for off-axis injection and several hours of Touschek lifetime. Superconducting LGBs of 5-6 T peak field will extend the photon range of the SLS up to 80-100 keV. The vacuum system will be based on a 20 mm inner diameter copper beam pipe with ante-chamber, and discrete getter pumps. It is planned to reuse the existing injector complex and the dynamically adjustable girder system. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW038 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW044 | Study of a Double Triple Bend Achromat (DTBA) Lattice for a 3 GeV Light Source | lattice, sextupole, quadrupole, dipole | 2940 |
|
|||
Starting from the concepts of the Hybrid Multi Bend Achromat (HMBA) lattice developed at ESRF and of the Double-Double Bend Achromat (DDBA) lattice developed at Diamond, we present a new cell that includes all the advantages of the two designs. The resulting Double Triple Bend Achromat (DTBA) cell allows for a natural horizontal emittance of less than 100 pm with a large dynamic aperture and lifetime. It includes two straight sections, for insertion devices, five and three meters long. The lattice is consistent with the engineering design developed for the ESRF-EBS lattice and the layout and user requirements of Diamond. The characteristics of the cell are presented together with the results of the optimisation process. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW056 | Reproducibility of Orbit and Lattice at NSLS-II | lattice, quadrupole, operation, storage-ring | 2976 |
|
|||
Funding: DOE contract No: DE-SC0012704 In operating a high-end synchrotron light source, like NSLS-II, it is important to understand the machine accurately and have the ability to reproduce the desired machine state when needed. The obstacles, we can imagine, include the magnet hysteresis effect and some environmental effects. To minimize hysteresis effect, we cycle the magnets and it was proved working properly. On the other hand, from the point of long-term operation, we are not yet satisfied with the reproducibilities given by the same set of magnet currents and the machine needs additional tuning processes. In this paper, the experience of NSLS-II operation and studies are presented. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOY010 | Bunch Compression at the Recirculation Loop of the Compact ERL | simulation, linac, electron, acceleration | 3008 |
|
|||
The compact Energy Recovery Linac (cERL) has been operated as a test facility for the future light-source since 2013. One of the targets of the beam commissioning of this winter is demonstration of bunch compression. The bunch has energy chirp in longitudinal direction by off crest acceleration and the bunch length is compressed in non-isochronous arc section. The short electron bunch is spread in the return arc to suppress the energy spread at the main beam dump. Four sextupole magnets were installed in two arcs in November 2015 to correct the squared term induced by RF curvature. The best position was determined by the beam tracking by elegant including Coherent Synchrotron Radiation (CSR) wake. The bunch length is measured by OTR in the south straight section just after the first arc. We present the demonstration of the bunch compression in this report. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOY040 | Lattice Translation Between Accelerator Simulation Codes for Superkekb | lattice, solenoid, quadrupole, closed-orbit | 3077 |
|
|||
To improve collaborative studies on beam dynamics for SuperKEKB between several labs, efforts have been made to translate the SAD lattices of SuperKEKB rings to the versions for other codes: AT, Bmad, MAD-X, and PTC. It turns out that lattice translations between these codes are not straightforward because of the complexity of the SuperKEKB lattices. In this paper, we describe our experiences of lattice translations, and present some results of benchmarks for the case of SuperKEKB. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY040 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOY047 | LHC Collimation and Energy Deposition Studies Using Beam Delivery Simulation (BDSIM) | simulation, collimation, proton, beam-losses | 3101 |
|
|||
Beam Delivery Simulation (BDSIM) is a program that uses a suite of high energy physics software including Geant4, CLHEP & ROOT, that seamlessly tracks particles through accelerators and detectors utilising the full range of particles and physics processes from Geant4. A comparison of the collimator cleaning efficiency and energy deposition throughout the full length of the Large Hadron Collider (LHC) with the established SixTrack simulations of the CERN collimation group is presented. The propagation of the full hadronic showers from collimators provides unparalleled detail in energy deposition maps and these are compared with the data from beam loss monitors that measure radiation outside the magnet body. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY047 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB002 | Beam Dynamics and Closed Orbit Correction at the Collector Ring | sextupole, antiproton, ion, dipole | 3216 |
|
|||
The Collector Ring (CR) has been designed for fast cooling of hot antiproton or ion beams at FAIR. Its ion-optical layout and system design has been recently finalized after careful optimizations aiming at improvement of the beam parameters and machine performance. In this paper we present the simulations of the transverse beam dynamics for the different ion-optical modes of the CR. Particle tracking calculations have been performed to evaluate an influence of the magnet imperfections on the dynamic aperture. The analysis and correction of the closed orbit distortions due to the magnet misalignments is also discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB003 | Orbit Response Matrix Analysis for FAIR Storage Rings | quadrupole, storage-ring, ion, dipole | 3219 |
|
|||
The Orbit Response Matrix (ORM) analysis is a method which allows to find the sources of discrepancies between design and real optics of an accelerator machine. In particular, with this technique one retrieves information about gradient errors, dipole corrector gain errors etc. Orbit response matrix is computed by measuring orbit deviations caused by single kicks of corrector magnets. With fitting the matrix one obtains the ion optics which best describes the real accelerator. The ORM analysis, presented in the paper, is employed to find error sources in the FAIR storage rings CR and HESR during and after the beam commissioning. The algorithm itself was implemented in Python programming language with a help of linear algebra libraries. The ORM analysis accuracy as well as its limitations are addressed in the paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB005 | Notes on Steffen Parameters of Extended Fringe-Field Quadrupoles | quadrupole, focusing, real-time, lattice | 3226 |
|
|||
We consider some theoretical aspects of the Steffen hard-edge model of quadrupoles with extended fringe-fields and discuss possibilities of usage of this model in online beam dynamics applications. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB005 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB006 | Unclosed Lattice Dispersions as a Tool for Partial Removal of Transverse to Longitudinal Beam Correlations | emittance, lattice, coupling, synchrotron | 3229 |
|
|||
We show how to choose unclosed lattice dispersions in order to zero either linear beam dispersions (linear correlations between energy of particles and their transverse positions and momenta) or linear beam tilts (linear correlations between longitudinal positions of particles and their transverse coordinates). Besides that, we prove that while removal of beam dispersions always leads to reduction of transverse projected emittances, zeroing of beam tilts cannot guarantee it. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB009 | Model Driven Machine Improvement of COSY Based on ORM Data | quadrupole, dipole, closed-orbit, lattice | 3240 |
|
|||
The COoler SYnchrotron in Jülich accelerates and stores unpolarized and polarized proton or deuteron beams in the momentum range between 0.3 GeV/c and 3.65 GeV/c [*,**]. This, in combination with its diverse capabilities of phase space cooling and the flexibility of the lattice with respect to ion-optical settings makes COSY an ideal test facility for accelerator technology development. High demands on beam control and beam based measurements have to be fulfilled for future experiments such as the proposed precursor experiment for a direct measurement of the electric dipole moment of the deuteron (see [***] and references within). The analysis of measured orbit response matrices (ORM), which com- prise the focussing structure of the ring, allows for a better understand- ing of machine imperfections such as gradient errors and misalignments of quadrupole magnets. This contribution presents the development of a MAD-X based LOCO (Linear Optics from Closed Orbits) algorithm [****] in a C++ program aiming to calibrate and correct linear optics as well as improving beam control at COSY.
* R. Maier, NIM A 390, 1 (1997). ** S.A. Martin et al., NIM A 236, 249-255 (1985). *** D. Eversmann et al. [JEDI Collaboration], Phys. Rev. Lett. 115, 094801 (2015). **** J. Safranek, NIM A 388, 27 (1997). |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB017 | The Errors Study on a Recent Heps Low-Beta Design | lattice, emittance, sextupole, quadrupole | 3260 |
|
|||
The next synchrotron light source High Energy Photon Source is currently studied at Beijing. A nominal design for the HEPS, in a hybrid 7BA lattice and with an emittance of 60 pm.rad in a circumference of 1.3 kilometers, is completed for further study. In this paper, we present some work on error effect based on the nominal lattice design. Topics covered include dynamic aperture and beam parameters affected by magnetic field error, systematic and random multipole errors and misalignment effect. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB028 | Beam Optics of 180-degree Bending Section including a Charge Stripper | simulation, linac, sextupole, acceleration | 3291 |
|
|||
Funding: This work was supported by the Rare Isotope Science Project of Institute for Basic Science funded by Ministry of Science, ICT and Future Planning and National Research Foundation of Korea. The linac of RISP (Rare Isotope Science Project) includes a charge stripper to obtain better acceleration efficiency. It is located after the lower energy part of the superconducting linac which accelerates 2 charge states, 33 and 34 of uranium beams to about 18 MeV/u. After the charge stripper, 5 charge states around 79 are selected and transported into the higher energy part of the linac through a 180-degree bending section. This work focused on the charge stripper effects on the beam optics in the bending section. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB033 | Beam Tracking on the High Energy Beam Transport Line in KHIMA Medical Machine | ion, synchrotron, beam-transport, quadrupole | 3302 |
|
|||
The Korea Heavy Ion Medical Accelerator (KHIMA) launched the synchrotron based hadron beam therapy facility for combined medical cancer treatment and cancer related research. The Korea Institute of Radiological & Medical Sciences (KIRAMS) synchrotron system has been designed to accelerate the particle beams having the kinetic energy interval of 60-230 MeV proton and 110-430 MeV/u carbon ions respectively. An accelerated beam from the synchrotron is transported to the patient position through the High Energy Beam Transport (HEBT) lines. In the HEBT lines, the lattice was designed with beam optics codes. In order to check and confirm the beam loss at the HEBT lines, the tracking code, TRACK, has been used with encoded field map and also with simulated field map by Opera3D code. The performances are described and also compared with two methods for manufacturing the components in the HEBT lines. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB034 | Short Bunch Operation Mode Development at the Synchrotron Radiation Source Siberia-2 | operation, emittance, synchrotron, synchrotron-radiation | 3305 |
|
|||
Decrease of the electron bunch length gives rise to coherent synchrotron radiation in the THz spectral region. Also, the short photons pulse could provide an option for time-resolved processes studies. Currently the possibility to operate with short electron bunch of the synchrotron radiation source Siberia-2 is under consideration for this purpose. In the report the techniques of electron bunch shortening are described as well as the requirements are given for the parameters of the electron bunch and lattice. The authors present a modified lattice for the synchrotron radiation source Siberia-2 with low momentum compaction factor and the results of the beam dynamics studies. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB040 | Charged Particle Transport, Gaussian Optics, Error Propagation: It's all the Same | emittance, laser, beam-transport, electron | 3324 |
|
|||
We derive a correspondence between the parameters used in Gaussian light beam propagation with wavelength, beam size, and wave front curvature to the description in terms of emittance and Twiss parameters commonly used in charged particle optics. Furthermore, we discuss the analogy of transporting beams to the propagation of measurement uncertainties. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB040 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB041 | Optics-measurement-based BPM Calibration | dipole, factory, injection, focusing | 3328 |
|
|||
The LHC beta functions (β) can be measured using the phase or the amplitude of betatron oscillations obtained with beam position monitors (BPMs). Using the amplitude information results in a β measurement affected by BPM calibration. This work aims at calibrating BPMs using optics measurements. For this, βs from amplitude and phase and normalized dispersion obtained from many different measurements in 2015 with different optics and corrections are analyzed. Simulations are also performed to support the analyses. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB043 | Progress in Ultra-Low β* Study at ATF2 | emittance, operation, linear-collider, extraction | 3335 |
|
|||
A nanometer beam size in the interaction point (IP) is required in case of future linear colliders for achieving the desired rate of particle collisions. KEK Accelerator Test Facility (ATF2), a scaled down implementation of the beam delivery system (BDS), serves for investigating the limits of electron beam focusing at the interaction point. The goal of the ultra-low beta∗ study is to lower the IP vertical beam size by lowering the betay∗ value while keeping the betax∗ value unchanged. Good control over the beam optics is therefore required. The first experience with low beta∗ optics revealed a mismatch between the optics designed in the model with respect to the beam parameters observed in the experiment. Additionally, existing methods of beam parameters characterization at the IP were biased with high uncertainties making it difficult to set the desired optics. In this paper we report on the new method introduced in ATF2 for IP beam parameters characterization which gives a good control over the applied optics and makes the ultra-low beta∗ study possible to conduct. It can be also used for verifying the performance of some of the existing beam instrumentation devices. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB043 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB044 | Limitations on Optics Measurements in the LHC | dipole, injection, hadron, luminosity | 3339 |
|
|||
In preparation of the optics commissioning at an energy of 6.5 TeV, many improvements have been done to cope with the expected reduced signal to noise ratio due to lowered bunch intensities imposed by machine protection considerations. This included, among others, an increase of the flat top duration of the AC dipole excitations, which allowed to use more turn-by-turn data for the analysis. The longer data acquisition revealed slow drifts of the optics, which limited the increased measurement precision. Furthermore, we will present how orbit drifts influenced dispersion measurements and, as a consequence, posed another limitation for the optics correction. In this paper we will discuss the implications of these observations for the measurement and correction of the optics. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB045 | Comparison of Optics Measurement Methods in ESRF | lattice, storage-ring, sextupole, dipole | 3343 |
|
|||
The N-BPM and the Amplitude methods, which are used in the LHC for beam optics measurement, were applied to the ESRF storage ring. We compare the results to the Orbit Response Matrix (ORM) method that is routinely used in the ESRF. These techniques are conceptually different since the ORM is based on the orbit response upon strength variation of steering magnets while the LHC techniques rely on the harmonic analysis of turn-by-turn position excited by a kicker or an AC dipole. Finally, we compare these methods and show the differences in their performance in the ESRF environment. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB049 | Optics Calibration During Commissioning of the Taiwan Photon Source | lattice, quadrupole, coupling, emittance | 3357 |
|
|||
The Taiwan Photon Source is a 3-GeV low emittance synchrotron light machine with circumference of 518.4m. The lattice is with 24-cell DBA structure and emittance is 1.6 nm-rad. During the commissioning in the past year, we employed MATLAB-based high level applications to calibrate the optical functions in three different operation lattice modes. In particular, we used LOCO (Linear Optics from Closed Orbit) to restore the machine optical functions and reduce emittance coupling ratio. The beam-based alignment (BBA) measurements as well as BPM and corrector errors were identified. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB049 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB055 | A FODO Beam Line Design for nuPIL | dipole, lattice, detector, proton | 3375 |
|
|||
Funding: Fermi National Accelerator Laboratory The Fermilab Deep Underground Neutrino Experiment (DUNE) was proposed to determine the neutrino mass hierarchy and demonstrate leptonic CP violation. The current design of the facility that produces the neutrino beam (LBNF) uses magnetic horns to collect pions and a decay pipe to allow them to decay. In this paper, a design of a possible alternative for the conventional neutrino beam in LBNF is presented. In this design, a FODO magnet beam line is used to collect the pions from the downstream face of a horn, bend them by ∼ 5.8 degrees and then transport them in a straight beam line where they decay to produce neutrinos. The idea of using neutrinos from the PIon beam Line (nuPIL) provides flavor-pure neutrino beams that can be well understood by implementing standard beam measurement technology. The neutrino flux and the resulting δCP sensitivity from the FODO nuPIL are also presented in the paper. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB055 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR001 | Online Suppression of the Sextupole Resonance Driving Terms in the Diamond Storage Ring | sextupole, resonance, storage-ring, injection | 3381 |
|
|||
Suppression of the sextupole resonance driving terms (RDTs) is a widely used technique for optimising the theoretical on and off-momentum dynamic aperture for electron storage rings. Recently, this technique was applied online to the Diamond storage ring, with suppression of individual RDTs achieved via a sextupole family to RDT response matrix*. In this paper we present recent studies of the method, in which the ability to improve the lifetime and injection efficiency are investigated. An extension of the technique is investigated by combining it with the Robust Conjugate Direction Search (RCDS) optimisation algorithm**.
*J. Bengtsson, et al., Phys. Rev. ST Accel. Beams 18, 074002, (2015). **X. Huang, et al., Nucl. Instrum. Methods Phys. Res. Sect. A 726, 77, (2013). |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR002 | Optics Corrections with LOCO in the Fermilab Booster | lattice, booster, sextupole, quadrupole | 3385 |
|
|||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The optics of the Fermilab Booster has been corrected with LOCO (Linear Optics from Closed Orbits). However, the first corrections did not show any improvement in capture efficiency at injection. A detailed analysis of the results showed that the problem lay in the MADX optics file. Both the quadrupole and chromatic strengths were originally set as constants independent of beam energy. However, careful comparison between the measured and calculated tunes and chromatcity show that these strengths are energy dependent. After the MADX model was modified with these new energy dependent strengths, the LOCO corrected lattice has been applied to Booster. The effect of the corrected lattice will be discussed here. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR008 | Experimental Crosscheck of Algorithms for Magnet Lattice Correction | lattice, betatron, quadrupole, storage-ring | 3400 |
|
|||
Funding: Work supported by DOE contract DE-AC02-98CH10886 Performance, capabilities and limitations of various algorithms for linear magnet optics correction have been studied experimentally at NSLS-II. For the crosscheck, we have selected 4 algorithms based on turn-by-turn beam position analysis: weighted correction of betatron phase and amplitude, independent component analysis, model-independent analysis, and driving-terms-based linear optics characterization. A LOCO algorithm based on closed orbit measurement has been used as a reference. For the correction, either iterative solving of linear problem (matrix inversion with singular-value decomposition) or variational optimization has been used. For all the algorithms, accuracy limitations and convergence of linear lattice correction are discussed. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR012 | Optimization of Nonlinear Dynamics for Sirius | lattice, sextupole, dynamic-aperture, betatron | 3409 |
|
|||
In this work we describe the optimization of the non-linear dynamics for the Sirius storage ring. The strong sextupoles of the lattice, necessary to correct the linear chromaticities, generate higher order terms in the tune-shifts with amplitude and energy, which may result in a large tune footprint for the machine. The configuration the sextupole families found that wraps this tune footprint and thus avoids dangerous resonances was achieved with minimization of Hamiltonian driving terms and tracking-based multi-objective algorithms include realistic values of misalignment and excitation errors of the magnets, orbit correction, insertion devices fields and real vacuum chamber apertures. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR013 | A New Optics for Sirius | dipole, emittance, quadrupole, lattice | 3413 |
|
|||
We report on the latest optics modifications for the 3 GeV Sirius electron storage ring presently under construction at the Brazilian Synchrotron Light Laboratory, LNLS. Although the basic parameters are set and frozen, improvements in the magnetic lattice and beam optics are still being implemented. In particular, the central dipole in the 5BA cell has been replaced by an all-permanent-magnet dipole with a thin superbend in the center with peak magnetic field of 3.2 T and the operation mode has now symmetry 5, with 15 low βx straight sections and 5 high βx sections. The 3 GeV ring bare lattice emittance is now 0.25 nm.rad. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR013 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR015 | RCDS Optimizations for the ESRF Storage Ring | sextupole, injection, emittance, resonance | 3420 |
|
|||
The Robust Conjugate Direction Search (RCDS)* optimizer is applied for online optimizations of the ESRF accelerators. This paper presents the successful application of the algorithm in reducing vertical emittance, improving injection efficiency and increasing lifetime. A new set of sextupole settings to increase chromaticity has been obtained with lifetimes comparable to the existing one. This allows to run with double current in a single bunch, and unifies the optics for few bunch (except 4x10 bunches) and multi-bunch modes.
* X. Huang, J. Corbett, J. Safranek, J. Wu, "An algorithm for online optimization of accelerators", Nucl. Instr. Methods, A 726 (2013) 77-83. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR016 | Horizontal Phase Space Shaping for Optimized Off-axis Injection Efficiency | injection, sextupole, lattice, septum | 3424 |
|
|||
With the introduction of top-up operation at the ESRF it becomes important to reduce as much as possible any kind of perturbation seen by the users during injection. For this purpose, a novel technique to improve injection efficiency by shaping the horizontal beam phase space to better match the storage ring acceptance and hence reduce the duration of injections was developed. Theoretical concept, simulations and first experimental results are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR022 | Non-linear Optimization of Storage Ring Lattice for the SPring-8 Upgrade | sextupole, lattice, betatron, injection | 3440 |
|
|||
A project of upgrading the SPring-8 facility is ongoing to convert the present storage ring to a high-coherence hard X-ray source (SPring-8-II). To achieve the emittance value of less than 0.2 nmrad at 6 GeV, we adopted a 5-bend achromat lattice with dipoles having longitudinal field gradient. In this lattice the betatron phase between the two dispersion arcs was set to (2n+1)PI to suppress dominant harmful effects of chromaticity-correcting sextupoles. By detuning this phase, optimizing sextupole strengths in a cell and introducing octupoles, we obtained a sufficient dynamic aperture (DA) for beam injection even for the symmetry-broken ring having four long straight sections and a high-beta injection section. However, the off-momentum behavior such as the non-linear chromaticity still needs to be optimized to achieve the momentum acceptance (MA) of 3% or larger. We have thus been investigating the possibility to increase both the DA and MA by introducing several phase-matched sextupole pairs. The presentation will report the obtained results by this approach. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR022 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR035 | Low Horizontal Beta Optics for ALBA | lattice, sextupole, dynamic-aperture, emittance | 3461 |
|
|||
The ALBA insertion device beamlines have a horizontal and vertical rms source size of 130 and 5.5 microns. Protein crystallography beamlines (Xaloc) would benefit from a reduction of the horizontal and increase of the vertical beam size, to gain spatial resolution and avoid anisotropy effects. A modified lattice with horizontal and vertical beam size of 74 and 9 microns has been setup and tested, breaking the ring symmetry, with different setting of the six neightbouring quadrupoles at each side of the Xaloc insertion device. Such configuration keeps the nominal emittance almost unvaried and the working point is recovered by small changes in the quadrupole strengths of the four symmetric matching sections. A dedicated setting of the nine available sextupole families has been obtained by numerical optimization of the dynamical apertures and tune shifts. The lattice settings have been satisfactorily tested. The measured lifetime is reduced a factor two and the injection efficiency decreases to 60%. Finally, the option of increasing the number of sextupole families, to recover the dynamic aperture and guarantee the injection efficiency, has been studied. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR036 | Improved Methods for the Measurement and Simulation of the CERN SPS Non-linear Optics | octupole, sextupole, multipole, impedance | 3464 |
|
|||
Good knowledge of the non-linear properties of the SPS lattice is crucial for modelling and optimising the machine performance in the presence of collective effects leading to incoherent tune spreads such as space charge, e-cloud and beam coupling impedance. In view of the LHC injectors upgrade (LIU) project and the future SPS operation in a regime dominated by such collective effects, detailed measurements of the SPS non-linear chromaticity and detuning with amplitude have been performed for the two optics configurations presently available for LHC type beams. The measurement results are used to fit systematic multipole components to the main magnets of the SPS MADX model as a basis for the non-linear machine model that can be used for beam dynamics simulations. The implications for the operation of the SPS with the LIU beam parameters are discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR039 | Commissioning of Non-linear Optics in the LHC at Injection Energy | injection, dipole, octupole, operation | 3476 |
|
|||
Commissioning of the nonlinear optics at injection in the LHC was carried out for the first time in 2015 via beam-based methods. Building upon studies performed during Run I, corrections to the nonlinear chromaticity and detuning with amplitude were obtained. These corrections were observed to reduce beam-loss during measurement of linear optics. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR040 | Local Optics Corrections in the HL-LHC IR | quadrupole, coupling, controls, simulation | 3480 |
|
|||
For the high luminosity upgrade of the LHC optics correction in the interaction regions is expected to be challenged by the very low β* and the sizable expected quadrupolar errors in the triplet. This paper addresses the performance and limitations of the segment-by-segment technique to correct quadrupolar and skew quadrupolar errors in the HL-LHC IR via computer simulations. Required improvements to this technique and possible combinations with other correction approaches are also presented including experimental tests in the current LHC IR. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR040 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR042 | Design Guidelines for the Injector Complex of the FCC-ee | collider, injection, linac, booster | 3488 |
|
|||
The design of the injector of the FCC-ee, a high-luminosity e+/e− circular collider of 100 km in the Geneva area, is driven by the required particle flux for ring filling or top-up and for a variety of energies, from 45.5 to 175 GeV. In this paper, a set of parameters of the injector complex is presented, fulfilling the collider needs for all running scenarios. In particular, the challenges of the booster ring design are detailed, focusing on issues of optics, layout, low bending fields, injection schemes to the collider for maximizing transfer efficiency and synchrotron radiation handling. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR050 | Studies to Install a Multipole Wiggler by Removing a Chromatic Sextupole in the Diamond Storage Ring | sextupole, injection, lattice, emittance | 3518 |
|
|||
Investigations are underway for the possible use of an achromat to install a short multipole wiggler by removing a chromatic sextupole in cell-11 of the storage ring. The effect on emittance and energy spread are found to be small, however the impact on lifetime and injection are very significant if the chromaticity is corrected normally (globally). The MOGA genetic algorithm is used to optimize the lifetime and injection efficiency in this case. We used local mirror chromatic sextupole and other chromatic sextupole family for chromaticity correction in which case the genetic algorithm found solution that restores lifetime and injection efficiency. In this paper the results of MOGA simulations using various schemes for chromaticity correction and test results in presently operational optics will be discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW035 | Considerations on an Upgrade Possibility of the LHC Beam Dump Kicker System | kicker, extraction, operation, quadrupole | 3631 |
|
|||
The LHC Beam Dump System (LBDS) is designed to safely dispose the circulating beams over a wide range of energy from 450 GeV up to 7 TeV, where the maximum stored energy is 362 MJ per beam. One of the most critical components of the LBDS are the extraction kickers that must reliably switch on within the 3 us particle-free abort gap. To ensure this functionality, even in the event of a power-cut, the power generator capacitors remain charged and hence the Gate Turn-Off (GTO) switch stack has to hold the full voltage throughout beam operation. The increase of the LHC collision energy to 13 TeV has increased the voltage levels at the GTO stacks and during re-commissioning an increased rate of high-voltage (HV) related issues at the level of the GTO stack was observed. Different solutions have been analysed and an improved GTO stack will be implemented. This paper also outlines the benefit of adding more kicker magnets to improve the voltage hold off issues and to improve the tolerance to missing kickers during extraction. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW041 | Single Crystal Diamond X-ray Lens Development | laser, synchrotron, storage-ring, electron | 3643 |
|
|||
Funding: Phase I DOE SBIR The next generation light sources such as diffraction-limited storage rings and high repetition rate free electron lasers (FELs) will generate x-ray beams with significantly increased peak and average brilliance. These future facilities will require x-ray optical components capable of handling large instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. In this paper we report on research and development of a single crystal diamond compound refractive lens. Diamond is the best material for high heat load applications. Moreover single crystal lens preserves coherence of the x-ray beam because scattering from grain boundaries, voids and impurities, typical for current beryllium lenses is minimized. A set of two-dimensional single crystal diamond lenses had been fabricated by fs-laser cutting and tested at Advanced Photon Source (Argonne). |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR002 | Chromaticity Compensation Schemes for the Arc Lattice of the FCC-ee Collider | sextupole, collider, quadrupole, lattice | 3763 |
|
|||
FCC-ee is an 100 km e+/e− collider that is being designed within the Future Circular Collider Study organised by CERN. It's layout is optimised for precision studies and rare decay observations in the range of 90 to 350 GeV center of mass energy with luminosities in the order of 1035 cm-2s-1. Extremely small vertical beta functions of 1 - 2 mm are required at the two interaction points to reach this goal. The strong focusing required in the final doublet quadrupoles drives the chromaticity to more than -2000 units, far beyond the values that had been achieved in previous storage rings. As a consequence a pure linear chromaticity compensation scheme will not be sufficient to obtain the required ± 2 % energy acceptance. A state of the art multi-family sextupole scheme will have to be combined with a local chromaticity correction. This paper presents the design of the arc lattice, optimised for highest momentum acceptance and the results of systematic studies of the sextupole scheme in the arcs in order to gain highest chromaticity performance. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR003 | Tapering Options and Emittance Fine Tuning for the FCC-ee Collider | dipole, quadrupole, lattice, synchrotron | 3767 |
|
|||
The lepton collider version of the FCC study describes a future electron-positron collider with a circumference in the order of 100 km, optimised for operation with collision energies in the range of 90 GeV to 350 GeV (FCC- ee). This paper presents the layout of the machine and the constraints on the design of the arc lattice in the context of the four different beam energies that are foreseen for beam operation. Special emphasis is put on the compensation of the effect of the strong synchrotron radiation losses. The beam orbit as well as the optics have to be re-optimised for a given operation energy in order to achieve the foreseen emittance of ε = 1 nm in the horizontal and 1 pm in the vertical plane. Counter measures of the so-called saw-tooth effect of the design orbit are needed as well as a compensation of the energy loss on the beam optics. The paper summarizes different scenarios of how to achieve this goal as well as the need for additional emittance fine tuning using wiggler magnets. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR007 | Optics Measurements and Corrections at the Early Commissioning of SuperKEKB | coupling, sextupole, quadrupole, emittance | 3782 |
|
|||
We present experimental results of measurements and corrections of the optics at the early Phase-1 commissioning of SuperKEKB which is a positron-electron collider built to achieve the target luminosity of 8x1035 cm-2s-1. We have three stages; the Phase-1 is the commissioning of the machine without the final focus magnets and detector solenoid(no collision); the collision with the final focus system and the Belle II detector will be performed at the Phase-2 and Phase-3. The strategy for the luminosity upgrade is a novel "nano-beam'' scheme found elsewhere*. In order to achieve the target luminosity, the vertical emittance has to be reduced by corrections of machine error measured by orbit responses. The vertical emittance should be achieved to be less than 6 pm(0.2 % coupling) during the Phase-1 by fully utilizing correction tools of skew quadrupole-like coils wound on sextupole magnets and power supplies for each correction coil in quadrupole magnets. In addition to the linear optics, the optics for off-momentum particles is also studied to understand a dynamic aperture affects the Touschek lifetime.
* "SuperB Conceptual Design Report", INFN/AE-07/2, SLAV-R-856, LAL 07-15, (2007). |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR007 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR010 | CEPC Parameter Choice and Partial Double Ring Design | luminosity, sextupole, emittance, dynamic-aperture | 3788 |
|
|||
Funding: Work supported by the National Foundation of Natural Sciences (11505198 and 11575218) In order to avoid the pretzel orbit, CEPC is proposed to use partial double ring scheme in CDR. Based on crab waist scheme, we hope to either increase the luminosity with same beam power as Pre-CDR, or reduce the beam power while keeping the same luminosity in Pre-CDR. FFS with crab sextupoles has been developed and the arc lattice was redesigned to acheive the lower emittance for crab waist scheme. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR012 | Dynamic Aperture Study of the CEPC Main Ring with Interaction Region | sextupole, dynamic-aperture, interaction-region, resonance | 3795 |
|
|||
CEPC is a Circular Electron and Positron Collider proposed by China to mainly study the Higgs boson. In order to achieve factory luminosity, a strong focusing system and low-emittance are required. A momentum acceptance as large as 2\% is also required to get a reasonable beam lifetime. This is one of the key issues of the CEPC accelerator physics. In this paper, the optics design of the interaction region and the optimization of dynamic aperture for the whole ring (single ring scheme) will be presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR022 | Design of Beam Optics for the FCC-ee Collider Ring | radiation, sextupole, quadrupole, synchrotron | 3821 |
|
|||
A design of beam optics will be presented for the FCC-ee double-ring collider. The main characteristics are 45 to 175 GeV beam energy, 100 km circumference with two IPs/ring, 30 mrad crossing angle at the IP, crab-waist scheme with local chromaticity correction system, and "tapering" of the magnets along with the local beam energy. An asymmetric layout near the interaction region suppresses the critical energy of synchrotron radiation toward the detector at the IP less than 100 keV, while keeping the geometry as close as to the FCC-hh beam line. A sufficient transverse/longitudinal dynamic aperture is obtained to assure the lifetime with beamstrahlung and top-up injection. The synchrotron radiation in all magnets, the IP solenoid and its compensation, nonlinearity of the final quadrupoles are taken into account. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR022 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR025 | Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider | emittance, experiment, betatron, collider | 3832 |
|
|||
Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the U. S. Department of Energy. A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR032 | Effect and Optimisation of Non-Linear Chromatic Aberrations of the CLIC Drive Beam Recombination at CTF3 | emittance, simulation, sextupole, operation | 3852 |
|
|||
The CLIC design relies on the two-beam acceleration principle, i.e. the energy transfer from the so called drive beam to the main colliding beams. At the CLIC Test Facility (CTF3) at CERN the feasibility of this principle is being tested in terms of performance and achievable specifications. The high-current drive beam is generated by recombining its parts in a delay loop and a combiner ring. Preserving the drive beam emittance during the recombination process is crucial to ensure beam-current and power production stability. Present theoretical and experimental studies show that non-linear energy dependence of the transverse optics heavily spoils the quality of the recombined beam. Conventionally these effects are cured by means of non-linear corrections using sextupoles. In this work we propose a mitigation of these effects by optimising the linear lattice, leading to a more robust and easy to operate drive beam recombination complex. The latest results are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOW039 | Measurements of the Lattice Modifications for the Cryogenic Undulator CPMU17 | undulator, betatron, quadrupole, storage-ring | 4031 |
|
|||
A 2 mrad-canted double undulator system is in preparation as the wide energy range light source for the Energy Material in-situ Laboratory EMIL at the HZB storage ring BESSY II. The cryogenic undulator CPMU-17 is the hard X-ray device of the double undulator system. The soft X-ray undulator UE-48 is of the APPLE II type. It was installed and commissioned a few months ago, whereas the CPMU-17 is under fabrication. The CPMU-17 will employ a minimum magnetic gap of 5.5mm. Including a CuNi-foil for RF-shielding and geometric tolerances the free aperture is planned to be 5.0 mm. The BESSY II lattice has been modified locally in order to cope with the small gap device. The adapted betatron functions with a shifted vertical beam waist were measured and fitted with LOCO. The new optics agrees with the predicted performance. The free aperture at the installation place of the CPMU-17 was measured with four vertical scrapers. It is compatible with the projected minimum undulator gap. Finally, the measured injection efficiency with the new EMIL optics switched on is compatible with top-up operation (injection efficiency ≥ 90 %). | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOW058 | Drive Laser System for the DC-SRF Photoinjector at Peking University | laser, SRF, electron, operation | 4076 |
|
|||
The DC-SRF photoinjector, developed at Peking University, uses Cs2Te as the photocathode and accordingly 266 nm laser is used as the drive laser. A drive laser sys-tem,which includes a 1064 nm laser oscillator, a four-stage amplifier, and second and fourth harmonic genera-tors, has been designed and applied successfully. To avoid the high average current electron beam from hitting the vacuum tube and causing safety problems, a laser pulse selector with an EO modulator has been designed and included into the laser drive system to reduce the repetition rate of electron pulses during the DC-SRF photoinjector commissioning. It can adjust the repetition rate of laser pulses from 81.25 kHz to 81.25 MHz. In this paper, we introduce the drive laser system and describe the laser pulse selector in detail. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW058 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOW059 | UV Pulse Shaping with a-BBO Crystals for the Photocathode RF Gun | laser, electron, flattop, gun | 4079 |
|
|||
Recently, manipulation with the drive laser plays a significant role in high brightness electron beam production by the photocathode RF gun. The method based on pulse stacking with birefringent crystal serials was tried to longitudinally shape ultraviolet laser pulse. Using four or five pieces of a-BBO crystals to stack an input UV pulse with appropriate initial duration into 16 or 32 sub-pulses to form quasi flattop UV laser pulse, which can be applied for emittance optimization of the electron beam based on the photocathode RF gun. Moreover, the negative slop of the energy transmittance of a-BBO serials is also revealed to be a passive stabilization mechanism for energy jitter reduction in the driving laser. With appropriate design of a-BBO serials, this method can fulfill the requirements for driving laser in a broad scope of applications such as x-ray FELs and high-power Terahertz(THz) radiation production. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW059 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY052 | Current Status of HES (Hard X-ray EndStation)-2 Beamline at PAL-XFEL | detector, focusing, laser, diagnostics | 4225 |
|
|||
HES (Hard X-ray EndStation)-2 beamline is located at the hard X-ray experimental hall at PAL-XFEL. The main objective of HES-2 beamline is to deliver a hard X-ray FEL beam to target materials in such a manner that a coherent diffraction study is possible. This endstation is supposed to provide brilliant hard x-rays and to measure the diffraction patterns with forward scattering geometry. In particular, the instruments are designed for serial femtosecond X-ray crystallography (SFX) and coherent diffraction imaging (CDI). In this poster, we introduce HES-2 beamline at PAL-XFEL in terms of two perspectives: beamline instrumentation and sample environment. In the instrumentation part, the current status of HES-2 beamline is described in details. This includes beamline layout, x-ray optics, beam diagnositics and the upcoming commissioning plan for HES-2 beamline. In the sample environment part, we aim to present scientific goals based on the sample environments for CXI and SFX respectively. Finally, we discuss the feasible demo-experiments, which is expected to be done in 2016. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY052 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||