Keyword: neutron
Paper Title Other Keywords Page
MOZB02 Challenges of the High Current Prototype Accelerator of IFMIF/EVEDA rfq, operation, linac, ion 52
 
  • J. Knaster, Y. Okumura
    IFMIF/EVEDA, Rokkasho, Japan
  • P. Cara
    Fusion for Energy, Garching, Germany
  • A. Kasughai
    Japan Atomic Energy Agency (JAEA), International Fusion Energy Research Center (IFERC), Rokkasho, Kamikita, Aomori, Japan
  • M. Sugimoto
    QST/Takasaki, Takasaki, Japan
 
  LIPAc, under installation in Rokkasho will produce a 125 mA CW deuteron beam at 9 MeV. The objective of IFMIF is to generate a neutron flux of 1018 m-2s−1 at 14 MeV for fusion materials testing using 2 x 125 mA CW D+ beams at 40 MeV impacting on a liquid lithium jet of 15 m/s. An ECR deuteron injector at 140 mA and 100 keV will be the source for a 9.7m long 4-vane RFQ, which will be complemented by a 175 MHz SRF linac composed of 8 HWRs for producing 9 MeV D+ beam. For a beam transmission >90%, beam simulations demand a D+ beam emittance below <0.3π mm·mrad. The first attempt on such high current accelerator was in the US in the early 80s under FMIT project with a H2+ 100 mA CW 2 MeV beam. LEDA successfully conducted 100 mA CW H+ at 6.7 MeV at the RFQ output energy in the late 90s, but using superconducting HWRs accelerating cavities at 125 mA CW with low-β H+/D+ beam has never been attempted. Beam halo will be monitored with 3 cryogenic μ-loss monitors azimuthally placed in each of the 8 superconducting solenoids interleaved with the HWR structures. A novel approach based on a beam core-halo dual matching has been developed to handle the MW range beam average power.  
slides icon Slides MOZB02 [18.358 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOZB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR055 Radiation-Resistant Fiber Optic Strain Sensors for SNS Target Instrumentation target, radiation, proton, detector 371
 
  • Y. Liu, W. Blokland, J.D. Bryan, A. Rakhman, B.W. Riemer, R.L. Sangrey, M. Wendel, D.E. Winder
    ORNL, Oak Ridge, Tennessee, USA
  • A. Rakhman
    UTK, Knoxville, Tennessee, USA
  • R. Strum
    San Diego State University, San Diego, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
Measurement of stresses and strains in the mercury target vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. Owing to their compactness, easy system integration, and invulnerability to the electromagnetic interference, fiber optic strain sensors have been installed into the SNS target module starting from the fall of 2015. In this talk, we report on the development of radiation-resistant fiber optic strain sensors for subsequent generations of SNS target instrumentation. The sensors are extrinsic Fabry-Perot interferometers (EFPIs) made from fluorine-doped single-mode fibers. The radiation induced loss of the fiber has been measured in the SNS target 13 at the energy-on-target level exceeding 500 MWhr which results in peak doses on fiber of more than 109 Gy. A superluminescent diode laser at 1300 nm is used as the light source and the strain is measured in real-time using quadrature phase shifted signals generated from a local interferometer. We have demonstrated successful measurements of strains from 1 to 1000 με at a kHz frequency range on a test plate using the developed interrogation optical system.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR037 Beam Halo Measurements using Vibrating Wire at the KOMAC experiment, proton, target, laser 680
 
  • D. Choe, M. Chung, S.Y. Kim
    UNIST, Ulsan, Republic of Korea
  • S.G. Arutunian, A.V. Margaryan
    ANSL, Yerevan, Armenia
  • E.G. Lazareva
    YSU, Yerevan, Armenia
 
  In high-intensity particle accelerators, due to the fact that preventing beam loss plays a crucial role in con-ducting any experiments, it is important to measure and control the beam halo. Fortunately, it is feasible nowadays to measure the beam halo region thanks to the development of several sensitive beam scanning methods, including the vibrating wire technique. Since the vibrating wire is exceptionally sensitive to the heat deposition by the beam particles, it can be used to scanning the beam profile. This study will be concentrated on the precise beam profile measurement using the vibrating wire at the Korea Multi-Purpose Accelerator Complex (KOMAC) facility. First, we describe the best condition to construct beam profile measurement experiment. Finally, we present the results of the beam halo measurements performed with 20 MeV proton beam at the KOMAC facility  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY026 Baseline Design of a Proton Linac for BNCT at OIST rfq, DTL, linac, proton 906
 
  • Y. Kondo, K. Hasegawa
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • Y. Higashi, H. Sugawara, M. Yoshioka
    OIST, Onna-son, Okinawa, Japan
  • H. Kumada
    Tsukuba University, Graduate School of Comprehensive Human Sciences, Ibaraki, Japan
  • S.-I. Kurokawa
    Cosylab, Tsukuba, Japan
  • H. Matsumoto, F. Naito
    KEK, Ibaraki, Japan
 
  A new facility to develop a proton linac based neutron source for boron neutron capture therapy (BNCT) and various neutron science is planned at Okinawa institute of science and technology (OIST). This facility aims to develop a prototype system of the mass production model of BNCT systems as medical apparatus. The beam power and the beam energy at the neutron production target are assumed to about 60 kW and 10 MeV, respectively. The energy will be finally decided to optimize the ratio of necessary epi-thermal and other energy of neutron. If the energy is 10 MeV, 60 kW beam power can be achieved with a beam current of 30 mA and a duty factor of 20%. The linac consists of an ECR ion source, a two-solenoid-magnet LEBT, a four-vane RFQ, and an Alvarez DTL, which are very conventional as components of proton linac. To make the accelerator compact, we are considering to use a 400-MHz band resonant frequency. As a medical apparatus, it is required that the linac system is stable and operated easily without experts of accelerator. The design of proton linac is one of the most important issues in our development. In this paper, the baseline design of this OIST BNCT linac is described.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY028 Low Power RF Tuning of the CSNS DTL DTL, cavity, linac, insertion 913
 
  • H.C. Liu, Q. Chen, M.X. Fan, S. Fu, K.Y. Gong, A.H. Li, J. Peng, S. Wang, X. Wu, F.X. Zhao
    IHEP, Beijing, People's Republic of China
  • B. Li, P.H. Qu, Y. Wang
    CSNS, Guangdong Province, People's Republic of China
 
  The China Spallation Neutron Source (CSNS) is an accelerator-based neutron source being built at dongguan, Guangdong province in China. A conventional 324MHz Alvarez-type Drift tube linac (DTL) is utilized to accelerate an H ion beam from 3MeV to 80MeV. The RF field tuning of DTL is necessary for compensating the unexpected error caused by manufacturing and assembling. For reasons of RF power saving it is convenient to build a long DTL tank, but this choice involves risks of accelerating field instability. This problem can be fixed by using the resonant coupling stabilization method and equipping DTL cavities with a series of post-couplers. A practical tuning method was proposed, an acceptable field distribution with a good stability was achieved for CSNS DTL-1.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY056 Development of a Neutronics Facility using Radio Frequency Quadrupole for Characterization of Fusion Grade Materials rfq, ion, quadrupole, radio-frequency 981
 
  • R. Bahl, S.K. Kumar, M. Mittal, B. Sarkar, A. Shyam
    Institute for Plasma Research, Bhat, Gandhinagar, India
 
  Qualification of the materials is among the important challenges for a fusion reactor. Working in tandem with the present need that recognizes the value of evaluating fusion reactor materials, Institute for Plasma Research has initiated the 'Development of RFQ for Accelerators' project, which will provide a neutronic facility for material qualification in a relatively larger scale. The facility will consist of an high intensity ECR ion (H+/D+) source coupled to Radio Frequency Quadrupole (RFQ) Accelerator through a LEBT system to produce 5 MeV, 40 mA deuterium ions to fulfil the objectives. Further upgrade in the beam energy and current is also foreseen to suit the facility requirement. A four vane type copper RFQ @352.2 MHz frequency with transmission efficiency of ≈ 96% has been designed to accelerate deutrons upto 1 MeV energy as a demonstration of the RFQ functioning and controls. Through LEBT system, deuterons are then focused into RFQ using weak beam focalization method. The harmonization of the vane tips design and manufacturing constraints has been part of the study to have a near realistic engineering design. Design and analysis of RFQ will be discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZB01 High Power Proton Beam Targets: Technological Evolution, Current Challenges, and the Future target, proton, operation, radiation 1075
 
  • J. Galambos
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
This talk reviews the history of proton beam target development and the current challenges associated with the operation of high power beam targets. Beyond providing high power proton beams, accelerator facilities must also engineer robust targets to accept the load and satisfy mission needs. Recently some high power facilities are limited by target operations, rather than accelerator capabilities. The outlook for targets for future high power facilities is also considered.
 
slides icon Slides TUZB01 [8.971 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUZB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB007 Research and Development of the Pulse Bump Magnet for the Injection System in CSNS/RCS injection, radiation, high-voltage, synchrotron 1118
 
  • L. Huo, M.Y. Huang, W. Kang, Y.Q. Liu, J. Qiu, L. Wang, S. Wang
    IHEP, Beijing, People's Republic of China
 
  The H stripping painting injection is adopted in the Rapid Cycling Synchrotron (RCS) of China Spallation Neutron Source (CSNS). Painting injection is realized by eight pulse bump magnets. The pulse bump magnet is the key of the performance of painting, as well as the beam loss control. The manufacture and the field measurement of the eight pulse bump magnets have been completed. In the development of the magnets, some key technical problems on fabrication of coil were solved, and the field measurement results show that the magnets fulfil the design specification.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB035 Developments of HTS Magnets towards Application to Accelerators operation, dipole, target, cyclotron 1180
 
  • K. Hatanaka, M. Fukuda, K. Kamakura, H. Ueda, Y. Yasuda, T. Yorita
    RCNP, Osaka, Japan
 
  We have been developing magnets utilizing first generation HTS wire for this decade. HTS materials have advantages over LTS materials. Magnets can be operated at 20 K or higher temperature and the cooling structure becomes simpler. Owing to a large margin in operating temperature, it is possible to excite HTS magnets by AC or pulsed currents without quenching. After successful performance tests of proto type models, two magnets have been fabricated for practical use. A cylindrical magnet generates a magnetic field higher than 3.5 T at the center to polarized 210 neV neutrons. A dipole magnet is excited by pulse currents in order to deliver accelerated beams to two target stations by time sharing. Their design and operational performance are discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR002 Suppression of Concomitant Flow of Charged Particles in the Tandem Accelerator with Vacuum Insulation ion, electron, vacuum, proton 1225
 
  • S.Yu. Taskaev, D.A. Kasatov, A.N. Makarov, Y.M. Ostreinov, I.M. Shchudlo, I.N. Sorokin
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: The study was supported by the Grants from the Russian Science Foundation (Project no. 14-32-00006) and the Budker Institute of Nuclear Physics.
A source of epithermal neutrons based on a tandem accelerator with vacuum insulation for Boron Neutron Capture Therapy of malignant tumors was proposed and constructed. Stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity and 0.5% current stability was obtained*. The flow of charged particles accompanying the accelerated ion beam was detected and measured**. To suppress this concomitant flow cooled diaphragm, cryopump and the electrostatic ring were installed in the input of accelerator. The surface of the vacuum vessel was covered with netting to suppress secondary electron emission. These steps have reduced the flow of charged particles 25 % of the ion beam to 0.5 % and to increase the current proton beam 3 times - up to 4.5 mA. The paper presents the results of research and declares plans to use the accelerator for the BNCT.
* D. Kasatov, et al. JINST 9 (2014) P12016.
** D. Kasatov, et al. Technical Physics Letters 41 (2015) 139-141.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR034 Development and Tests of Beam Test Facility with New Spare RFQ for Spallation Neutron Source rfq, ion, ion-source, diagnostics 1320
 
  • Y.W. Kang, A.V. Aleksandrov, M.S. Champion, M.T. Crofford, J. Moss, R.T. Roseberry, J.P. Schubert, M.P. Stockli, C.M. Stone, R.F. Welton, D.C. Williams, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • B. Han, S.W. Lee, M.E. Middendorf, J. Price, R.B. Saethre
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
The Beam Test Facility (BTF) has been constructed to validate the performance of the new RFQ, to study ion source improvements, and to support neutron moderator development and six-dimensional phase space measure-ments for SNS. The BTF includes an H ion source, Ra-dio-Frequency Quadrupole (RFQ), and Medium Energy Beam Transport (MEBT) beam diagnostics systems. A spare RFQ was built and fully RF tested in the BTF and will be installed in the SNS linac in the future. The test stand is ready to run with the H ion beam through the new RFQ to fully validate the RFQ performance. The RFQ was designed to have the beam characteristics iden-tical to the existing RFQ with improved operational relia-bility and stability. The H RF plasma ion source system includes new high power RF components for improved front-end system performance.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW005 Characterization of the Radiation Field in the FCC-hh Detector detector, shielding, dipole, radiation 1414
 
  • M.I. Besana, F. Cerutti, A. Ferrari, W. Riegler, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  As part of the post-LHC high-energy program, a study is ongoing to design a new 100 km long hadron collider, which is expected to operate at a centre-of-mass energy of 100 TeV and to accumulate up to 30 ab−1, with a peak instantaneous luminosity that could reach 30 1034cm−2s−1. In this context, the evaluation of the radiation load on the detector is a key step for the choice of materials and technologies. In this contribution, a first detector concept will be presented. At the same time, fluence distributions, relevant for detector occupancy, and accumulated damage on materials and electronics will be shown. The effectiveness of a possible shielding configuration, intended to minimise the background in the muon chambers and tracking stations, will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY018 FLUKA Simulations for Radiation Protection at 3 Different Facilities proton, ion, radiation, photon 1940
 
  • R. Rata, S.C. Lee
    IIAA, Huddersfield, United Kingdom
  • R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
 
  FLUKA Monte Carlo Code is a transport code widely used in radiation protection studies. The code was developed in 1962 by Johannes Ranft and the name stands for FLUktuierende Kaskade (Fluctuating Cascade). The code was developede for high-energy physics and it can track 60 different particles from 1keV to thousands of TeV. It can be applied to accelerator design, shielding design, dosimetry, space radiation and hadron therapy. For particle therapy, FLUKA uses various physical models, all implemented in the PEANUT (Pre-Equilibrium Approach to Nuclear Thermalization) framework. The investigation was made for three different facilities : the Clatterbridge Cancer Centre, the Christie Hospital and the OpenMeD facility at CERN. We calculated the secondary dose distributed to the patient, in case of Clatterbridge Cancer Centre, and to the workers in case of the Christie Hospital and OpenMeD, and to investigate whether the shielding methods meet the existing radiation protection requirements and that the doses to the staff are kept As Low As Reasonably Achievable (ALARA).  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY019 Geant4 Simulations of Proton-induced Spallation for Applications in ADSR Systems proton, target, simulation, experiment 1943
 
  • S.C. Lee
    IIAA, Huddersfield, United Kingdom
  • C. Bungau, R. Cywinski
    University of Huddersfield, Huddersfield, United Kingdom
 
  Neutron spallation is an efficient process for producing intense neutron fluxes that can be exploited in Accelerator Driven Subcritical Reactors (ADSRs) for energy production and the transmutation of nuclear waste. In order to assess the feasibility of spallation driven fission and transmutation we have simulated proton induced neutron production using GEANT4, initially benchmarking our simulations against published experimental neutron spectra produced from a thick lead target bombarded with 0.5 and 1.5 GeV protons. The Bertini and INCL models available in GEANT4, coupled with the high precision (HP) neutron model, are found to adequately reproduce the published experimental data. Given the confidence in the GEANT4 simulations provided by this benchmarking we have then proceeded to simulate neutron production as a function of target geometry and thence to some preliminary studies of neutron production in an ADSR with a geometry similar to that of the proposed Belgian MYRRHA project. This paper presents the results of our GEANT4 benchmarking and simulations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY020 Compact Accelerator Based Neutron Source for 99mTc Production target, proton, rfq, cyclotron 1946
 
  • R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • H.L. Owen
    UMAN, Manchester, United Kingdom
 
  Funding: The authors would like to thank STFC UK for their support of this work
The radioisotope Technetium-99m (99mTc) is used in 85\% of all nuclear medicine procedures. 99mTc is produced from its precursor Molybdenum-99 (99Mo), which until recently was produced in only five research reactors worldwide. Recently a number of accelerator-based methods have been proposed to fill this gap and to diversify this supply chain. In the paper we present our base compact (4 m) 10 mA 3.5 MeV accelerator design, to generate low-energy neutrons via fusion. In this design we increase neutron capture with a novel moderator assembly to shift the neutron spectrum into the epithermal resonance region of the 98Mo capture cross-section to create 99Mo. In this paper we examine Li(p, n) reactions for neutron production. Specifically focused on a numerical studies for an optimised target design capable of handling the heat load.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY021 Characterisation of the Spectra of Spallation Neutron Sources through Modelling proton, target, simulation, resonance 1950
 
  • R.J. Barlow, A. Rummana
    IIAA, Huddersfield, United Kingdom
  • R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
 
  We characterise the neutron flux and energy spectra produced by protons on a lead target. This may enable studies of the neutronics of an ADSR, to be separated from the higher energy spallation processes, in order to explore te potential of ADSR as a better alternative for energy production, safety and waste transmutation. We consider a range of proton energies, and show how the numbers of neutrons produced can be fitted by some simple functions of the proton energy, as can the spatial and energy distributions. These calculations were performed in both MCNPX and Geant4 and we compare and benchmark the low energy neutron spectra obtained by MCNPX code and a Monte Carlo Code Geant4 against each other. Discrepancies were found for the low energy neutron spectrum, but by using different models as calculation options for low energy neutrons in Geant4, this disagreement has been significantly reduced.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY029 Gem*Star Consortium Proposal to Build a Demonstration Accelerator Driven System operation, target, proton, site 1973
 
  • R.P. Johnson, R.J. Abrams, M.A.C. Cummings, T.J. Roberts
    Muons, Inc, Illinois, USA
  • R.B. Vogelaar
    Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
 
  The GEM*STAR Consortium of four companies, two universities, and two US national laboratories has formed Mu*STAR, a new company, to fund and build a profitable pilot plant to demonstrate the advantages of subcritical molten-salt-fueled nuclear reactors driven by superconducting RF proton linacs. The GEM*STAR multipurpose reactor design features new accelerator power capabilities, an internal spallation neutron target, and high temperature molten salt fuel with continuous purging of volatile radioactive fission products such that the reactor contains less than a critical mass and almost a million times fewer volatile radioactive fission products than conventional reactors. GEM*STAR is a reactor that without redesign will burn spent nuclear fuel (SNF), natural uranium, thorium, or surplus weapons material. It will operate without the need for a critical core, fuel enrichment, or reprocessing, making it an excellent design overall, and a strong candidate for export. We describe the design and plans for funding a pilot plant that could profitably dispose of excess weapons-grade plutonium.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY042 Schemes for the Accelerator-driven System proton, cyclotron, operation, target 1995
 
  • T.-Y. Lee, H.-S. Lee, S. Shin
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Accelerator-Driven system (ADS) is considered the fu-ture nuclear reactor. In principle, it is safer and creates less waste than the conventional nuclear reactor, and provides the transmutation function that converts spent fuel into short-lived elements. However, to fully realize this system, a huge proton accelerator (typically, 1 GeV beam energy and over 10 MW beam power) with ex-tremely high operational stability is necessary. This paper discusses how the currently available technology can be applied for nuclear transmutation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY043 GEM*STAR Accelerator-Driven Subcritical System for Improved Safety, Waste Management, and Plutonium Disposition proton, target, simulation, operation 1998
 
  • M.A.C. Cummings, R.P. Johnson, T.J. Roberts
    Muons, Inc, Illinois, USA
 
  Operation of high-power SRF particle accelerators at two US national laboratories allows us to consider a less-expensive nuclear reactor that operates without the need for a critical core, fuel enrichment, or reprocessing. A multipurpose reactor design that takes advantage of this new accelerator capability includes an internal spallation neutron target and high-temperature molten-salt fuel with continuous purging of volatile radioactive fission products. The reactor contains less than a critical mass and almost a million times fewer volatile radioactive fission products than conventional reactors like those at Fukushima. We describe GEMSTAR , a reactor that without redesign will burn spent nuclear fuel, natural uranium, thorium, or surplus weapons material. A first application is to burn 34 tonnes of excess weapons grade plutonium as an important step in nuclear disarmament under the 2000 Plutonium Management and Disposition Agreement **. The process heat generated by this W-Pu can be used for the Fischer-Tropsch conversion of natural gas and renewable carbon into 42 billion gallons of low-CO2-footprint, drop-in, synthetic diesel fuel for the DOD.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY044 Energy Efficiency of High Power Accelerators for ADS Applications linac, klystron, proton, cyclotron 2001
 
  • M. Haj Tahar, F. Méot, S. Peggs
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
One important issue identified by the 2014 comprehensive nuclear fuel cycle Evaluation & Screening report* that was chartered by the US Department of Energy was the impact of the electricity required to operate the accelerator on the overall efficiency of an Accelerator Driven System (ADS).The objective of this paper is to contribute some understanding regarding that issue. Then, by looking at several options of existing and projected accelerator technologies for ADS, we evaluate the impact of the technology choice on the efficiency of a conventional ADS facility, in view of investigating the limitations and where there is room for improvement.
* R. Wigeland et al, Nuclear fuel cycle evaluation and screening'final report: Appendix B, Comprehensive set of fuel cycle options. Idaho National Laboratory Technical Report INL/EXT-14-31465 (2014).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY045 Effect of the Beam Time Structure on the Neutronics of an Accelerator Driven Subcritical Reactor proton, operation, controls, target 2004
 
  • M. Haj Tahar, F. Méot
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
When designing a high power accelerator for an ADSR, it is important to optimize the beam parameters to be compatible with the steady state character of the reactor operation and to define an adequate and safe startup procedure. In this study we investigate the impact of the beam time structure on the kinetic behavior of the sub-critical core and derive a general relationship between the time evolution of the neutron population and the proton beam.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY050 Microtron-based Intense Neutron Source microtron, cavity, cathode, electron 2014
 
  • G.M. Kazakevich, R.J. Abrams, R.P. Johnson, S.A. Kahn
    Muons, Inc, Illinois, USA
  • M.A.C. Cummings
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Funded by DOE SBIR grant DE-SC0013795
An L-Band 7.7-9.8 MeV CW relatively inexpensive microtron with a warm accelerating cavity for multi-purpose applications in nuclear medicine and radiation industry is proposed. The microtron with a photo-neutron converter is intended to serve as an intense source of photo-neutrons with yield up to 4·1012 n/s for nuclear medicine or/and producing of short lived isotopes, as a source of gamma-radiation with dose rates up to 130 kR/min·m with a heavy bremsstrahlung target, and as a source of the electron beam with total energy of 9.8 MeV at the average current up to 4.4 mA for various radiation treatments.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR043 Analysis of Electrical Energy Consumption of Accelerator Reserach Facilities operation, experiment, HOM, framework 2370
 
  • J. Stadlmann
    GSI, Darmstadt, Germany
  • D. Batorowicz, C. Fuhr, J. Hanson, S. Leis
    TUD, Darmstadt, Germany
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  Funding: The work is part of EuCARD-2, partly funded by the European Commission, GA 312453.
Optimization of energy efficiency and utilization of renewable energy sources has become a major focus of political and social policies, leading to increasing energy cost not only in Germany but also in the European energy market. Simultaneously the energy demand of future accelerator projects is estimated to rise compared to existing facilities, leading to overall increased energy costs. Energy efficiency could counteract this trend by reducing energy consumption for a given research goal. This work aims to find recommendations for saving potential in existing research accelerators as well as guidelines for construction of future facilities. In order to identify and develop key figures for comparison between several international particle accelerator facilities, data has been collected by a questionnaire developed in cooperation between GSI and TUD, Darmstadt. We present the first results of it's evaluation.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR044 Beam Induced Damage Studies of the IFMIF/EVEDA 125 mA CW 9 MeV D+ Linear Accelerator ion, proton, operation, linac 2373
 
  • F. Scantamburlo, J. Knaster, A. Marqueta
    IFMIF/EVEDA, Rokkasho, Japan
  • P.-Y. Beauvais
    F4E, Germany
  • B. Bolzon, H. Dzitko
    CEA/IRFU, Gif-sur-Yvette, France
  • R. Ichimiya
    JAEA, Aomori, Japan
  • H. Kobayashi
    KEK, Ibaraki, Japan
 
  IFMIF (International Fusion Material Irradiation Facility) will be a Li(d, xn) neutron source providing equivalent neutron spectrum of DT fusion reactions and comparable neutron flux of future commercial reactors. IFMIF, presently in its EVEDA (Engineering Validation and Engineering Design Activities) phase is installing LIPAc (Linear IFMIF Prototype Accelerator) in Rokkasho (Japan), a 125 mA CW 9 MeV deuteron beam as validating prototype of IFMIF accelerators. The MPS of LIPAc manages the interlocks for a fast beam stop during anomalous beam losses or other hazardous situations. High speed processing is essential to achieve MPS goals driven by investment protection principles. Since Bragg's peak depth is dependent of energy, power densities by uncontrolled beam losses can be very damaging at low energies; the MPS principles for LIPAc are validating those for IFMIF. Beam losses may lead to severe damages by excessive thermal stresses, annealing or even burn/melting of materials. Careful studies to set the maximum allowable time for a beam shutdown to prevent undesired scenarios during the accelerator operational life have been undertaken.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW032 Radiation-induced Effects on LHC Collimator Materials under Extreme Beam Conditions radiation, ion, proton, heavy-ion 2502
 
  • E. Quaranta, A. Bertarelli, F. Carra, P.D. Hermes, S. Redaelli, A. Rossi
    CERN, Geneva, Switzerland
  • K. Bunk
    Goethe Universität Frankfurt, Frankfurt am Main, Germany
  • F. Carra
    Politecnico di Torino, Torino, Italy
  • J. Guardia Valenzuela
    Universidad de Zaragoza, Zaragoza, Spain
  • P.D. Hermes
    Westfaelische Wilhelms-Universität Muenster, Muenster, Germany
  • C.L. Hubert, M. Tomut
    GSI, Darmstadt, Germany
  • P. Nocera
    Università di Roma I La Sapienza, Roma, Italy
  • C. Porth
    TU Darmstadt, Darmstadt, Germany
  • N. Simos
    BNL, Upton, Long Island, New York, USA
 
  Over the last years, several samples of present and novel LHC collimator materials were irradiated under various beam conditions (using protons, fast neutrons, light and heavy ions at different energies and fluences) in different facilities around the world. This was achieved through an international collaboration including many companies and laboratories over the world. The main goal of the beam tests and the post-irradiation campaign is the definition of a threshold for radiation damage above which LHC collimators need to be replaced. In this paper, highlights of the measurements performed will be presented. First conclusions from the available data are also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY041 Development of Mobile Neutron Sources Driven by X-Band Electron Linacs for Infrastructure Maintenance and Nuclear Security electron, target, linac, site 2648
 
  • Y. Seki, J.M. Bereder, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
 
  We are developing a compact neutron source with a 3.95 MeV X-band (9.3 GHz) electron linac based X-ray source. The X-ray source, which included a tungsten target for bremsstrahlung, was originally fabricated for on-site nondestructive inspections for infrastructures such as bridges, expressways and tunnels. Attachment of a photo-neutron target to this X-ray source allows a new mobile neutron source. Main applications of this neutron source are on-site moisture detection in infrastructures, and nuclear materials measurement in fuel debris for decommissioning Fukushima nuclear power plants. Our approach also realizes a mobile X-ray/neutron hybrid source system in the future. The beryllium was employed as target material since it had especially small threshold energy for the photo neutron production. We have developed a 60-cm-cube target station by combining a beryllium block, a graphite reflector, a polyethylene moderator, a boric acid resin layer (neutron shied), and a lead layer (gamma-ray shield). This presentation will report a pilot experiment of neutron generation and discuss the results compared to a Monte Carlo simulation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR020 Beam Loss Estimation by Measurement of Secondarily Produced Photons under High Average-current Operations of Compact ERL in KEK operation, detector, electron, recirculation 2711
 
  • H. Matsumura, K. Haga, K. Hozumi, T. Miura, S. Nagaguro, T. Obina, T. Oyama, S. Sakanaka, A. Toyoda
    KEK, Ibaraki, Japan
  • N. Yoshihara
    Tokyo Nuclear Service Co. Ltd., Ibaraki, Japan
 
  To increase the beam current in the Compact Energy Recovery Linac (cERL) at the High Energy Accelerator Research Organization (KEK), the beam loss must be reduced to less than 0.01% during the transportation of 20 MeV electrons in order to suppress the radiation dose outside the accelerator room. Beam loss locations were successfully identified using the gold activation method, and the beam loss rate was estimated by com-paring the measured dose rate with the simulated dose rate on the roof of the cERL room. Beam operation with beam current of 0.90 mA was achieved with a beam loss rate of less than 0.01%.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR059 Calculation for the Radiation Dose in Storage Ring Hall based on Monte Carlo Method radiation, storage-ring, electron, vacuum 2805
 
  • S. Huang, T.L. He, S.C. Zhang, T. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Radiation dose assessment in synchrotron radiation facility is challenging due to the complexity and uncertainties of radiation source terms induced by high energy particle accelerator. Hefei light source (HLS) is the first dedicated synchrotron radiation light source in China. Radiation dose assessment for users at HLS Beam lines is highly concerned. This study presents the method calculating the radiation dose in storage ring hall under normal operation state, the simplified Monte Carlo calculation model was introduced in detail. We obtained the results of radiation dose distribution in HLS storage ring hall with using MCNP, which are in the same order of magnitude with the experimental results. It indicates that the method can be used to calculate the radiation dose level in storage ring hall, and it has certain guiding significance for the radiation protection.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY058 Design of the 2015 Erhic Ring-Ring Interaction Region electron, hadron, proton, quadrupole 3129
 
  • C. Montag, B. Parker
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 2015 ring-ring design study of the electron-ion collider eRHIC aims at an e-p luminosity around 1033 cm-2 sec-1 over a center-of-mass energy range from 32 to 141 GeV, while at the same time providing the required detector geometry and acceptance for the proposed physics program. The latest interaction region design will be presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXB01 Review of Accelerator-based Boron Neutron Capture Therapy Machines target, linac, proton, cyclotron 3171
 
  • M. Yoshioka
    KEK, Ibaraki, Japan
 
  Boron Neutron Capture Therapy (BNCT) is a promising method for cancer therapy. A few accelerator-based BNCT projects are in progress in Japan, and plans for such systems are discussed in Europe, China, Taiwan and Korea. To obtain sufficient epi-thermal neutron flux, 30-50 kW of proton beam power is required. This talk reviews the present situation of the BNCT projects in the world. Key issues for the stable production of epi-thermal neutrons for medical applications are discussed. This includes the type of accelerator (linac or cyclotron), the selection of proton energy (3 MeV, 8 MeV, or 30 MeV), the coice of target (Li or Be) and moderator.  
slides icon Slides THXB01 [4.059 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THXB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB037 Comparing the Transverse Dynamics of the ESS Linac Simulator and the Spallation Neutron Source Linac linac, kicker, controls, space-charge 3314
 
  • E. Laface, Y.I. Levinsen
    ESS, Lund, Sweden
  • T.A. Pelaia II
    ORNL, Oak Ridge, Tennessee, USA
 
  The ESS Linac Simulator (ELS) is the model that will be used at the European Spallation Source ERIC in Lund, Sweden, to simulate the transport of the beam envelope during operations. On August 12th 2015, we had the opportunity to use two hours of beam time in the linac of the Spallation Neutron Source in Oak Ridge to benchmark ELS. In this paper we present the results of the transverse dynamics measurements. Such measurements are obtained upon kicking the beam in the medium-energy beam transport (MEBT) and measuring the effect of the oscillation of the beam centroid in 58 beam position monitors (BPMs). The ELS model and these measurements are in agreement with an average discrepancy of 4% in the superconducting section of the accelerator.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB038 Comparing RF-Cavity Phase-Scan Simulations in the ESS Linac Simulator with Measurements Taken in the Spallation Neutron Source Coupled-Cavity Linac cavity, linac, controls, radio-frequency 3317
 
  • E. Laface, Y.I. Levinsen
    ESS, Lund, Sweden
  • I. List
    Cosylab, Ljubljana, Slovenia
  • T.A. Pelaia II
    ORNL, Oak Ridge, Tennessee, USA
 
  The ESS Linac Simulator (ELS) is the model that will be used at the European Spallation Source ERIC in Lund, Sweden, to simulate the transport of the beam envelope for the operations. During the machine restart in August 2015 at the Spallation Neutron Source (SNS) in Oak Ridge, USA, we were able to perform the first benchmarking studies of the ELS. In this paper, we present the results of the phase-scans performed in four RF cavities of the coupled-cavity linac at SNS compared with the same scans simulated in the ELS. The phase of the cavity was modified while the phase of the beam was recorded in two BPMs downstream from the cavity. This measurement was repeated for four independent cavities and the results are compared here with the model, which favourably reproduces the BPM response to the cavity scans.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY039 Development of an Analysis Framework for the Beam Instrumentation Interface to the Beam Interlock System at ESS interface, electronics, proton, monitoring 4185
 
  • R. Andersson, E. Bargalló, A. Nordt
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is currently being built in Lund, Sweden. When it is fully operational in 2025, it will host the most powerful neutron spallation facility in the world. The high-power proton beam needs to be carefully controlled and monitored in order to avoid possible damage to the sensitive equipment. Some of the most critical inputs to the beam interlock system are the beam monitors, delivered by the beam instrumentation group at ESS. In case local protection systems along the accelerator do not foresee a loss of beam, the beam monitors are the last line of defence to stop the proton beam and avoid equipment damage and consecutive downtime. It is essential for the protection of the machine that the whole beam permit signal chain, from monitors to actuators, fulfills strict reliability requirements. This paper describes the role and importance of the beam monitors to correctly measure beam losses and interface with the beam interlock system. It also describes one of several reliability studies that are performed to develop appropriate interfaces in the beam permit signal chain.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRYAA02 ESS Progressing into Construction linac, target, beam-transport, cryomodule 4266
 
  • M. Lindroos, H. Danared, M. Eshraqi, R. Garoby, A. Jansson, Y.I. Levinsen, C.A. Martins, A. Ponton
    ESS, Lund, Sweden
 
  The construction of the European Spallation Source, ESS, started in summer 2014. At the site in Lund, the accelerator tunnel will be completed at the time of IPAC16, while prototyping and manufacturing or prepara-tions for manpower contributions are going on in more 23 laboratories distributed over the 12 European countries collaborating on the accelerator project. Major technical milestones have been reached include the testing of su-perconducting cavity prototypes of two families to values above design gradients, the first ESS modulator has been tested to 90 kV and the first klystron prototype has been received in April 2016. Equally important developments are taking place at many partner laboratories. The presen-tation will summarize the status of the ESS accelerator project by the time of IPAC16..  
slides icon Slides FRYAA02 [66.734 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-FRYAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRYAA03 Accelerator Driven Sustainable Fission Energy target, operation, rfq, proton 4271
 
  • W.-L. Zhan
    CAS, Beijing, People's Republic of China
 
  It is the new approaches of sustainable fission energy that high power accelerator produces intensive external neutron to close fuel cycle and utilize fissile fuel ?95%. The system includes the fissile fuel burner and used fuel recycle. The burner is optimized as the nuclear waste transmutation, fissile material breeding and energy production in situ by the accelerator driven system. There are 4 phases in the Chinese development road map and the new research sites are introduced in this talk as well. The 2nd phase will be finished around 2022, with its high power LINAC (proton beam ~250MeV&10mA) providing the best opportunity to make DAR source for neutrino research. The burner, optimizing from ADS, consists of the high power LINAC, the spallation target and the subcritical core. The 25MeV LINAC prototype will be commissioned by the end of this year. The 10 MeV LINAC has produced a CW proton beam in 10's kW and has been operated with the ion source being operated more than 2000 hrs. The new concept of spallation target is granular fluid target, in which the solid grain fluid and beam implant from top to down. All these sub-systems will be described in this talk.  
slides icon Slides FRYAA03 [8.741 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-FRYAA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)