Keyword: permanent-magnet
Paper Title Other Keywords Page
TUZB02 Challenge of In-vacuum and Cryogenic Undulator Technologies undulator, vacuum, cryogenics, radiation 1080
 
  • J.C. Huang, C.-H. Chang, C.H. Chang, T.Y. Chung, C.-S. Hwang, C.K. Yang, Y.T. Yu
    NSRRC, Hsinchu, Taiwan
  • H. Kitamura
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  An in-vacuum undulator (IVU) opens the utilization of high-brilliance X-rays in the medium energy storage rings. The development of a short-period undulator with low phase error becomes important to bring X-ray into a new unprecedented brilliant light source in an ultimate storage ring (USR). NdFeB or PrFeB cryogenic permanent magnet undulators (CPMUs) with a short period have been developed worldwide to obtain high brilliance of undulator radiation. A CPMU has high resistance against beam-induced heat load and allow to operate at a narrow gap. In a low emittance or ultimate storage ring, not only the performance of an undulator but the choice of the lattice functions is very important to obtain high bril-liance of synchrotron radiation. The optimum betatron functions and zero dispersion function shall be given for a straight section at IVU/CPMUs. In this paper, the relevant factors and design issues for IVU/CPMU will be discussed. Many technological challenges of a short-period undulator associated with beam induced-heat load, phase errors, and the deformation of in-vacuum girders will also be presented herein.  
slides icon Slides TUZB02 [5.204 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUZB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB001 Magnets for the ESRF-EBS Project quadrupole, dipole, sextupole, octupole 1096
 
  • C. Benabderrahmane, J.C. Biasci, J-F. B. Bouteille, J. Chavanne, L. Farvacque, L. Goirand, G. Le Bec, S.M. Liuzzo, P. Raimondi, V. Villar
    ESRF, Grenoble, France
 
  A major upgrade project known as ESRF-EBS, Extremely Brilliant Source is planned at the European Synchrotron Radiation Facility (ESRF) in the coming years. A new storage ring will be built, aiming to decrease the horizontal emittance and to improve the brilliance and coherence of the X-ray beams. The lattice of the new storage ring relies on magnets with demanding specifications: dipoles with longitudinal gradient (field ranging from 0.17 T up to 0.67 T), strong quadrupoles (up to 90 T/m), combined function dipole-quadrupoles with high gradient (0.57 T and 37 T/m), strong sextupoles and octupoles. The design of these magnets is based on innovative solutions; in particular, the longitudinal gradient dipoles are permanent magnets and the combined dipole-quadrupoles are single-sided devices. The design of the magnets is finished and prototypes of innovative magnets have been built. The procurement of the magnets has started. Call for Tenders have been sent to a pre-qualified short list of magnet manufacturers. The longitudinal gradient dipoles will be assembled and measured in house. The design of the magnets, the prototype results and procurement status will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB009 Vibrating Wire Measurements for the XiPAF Permanent Magnet Quadrupoles multipole, background, experiment, DTL 1124
 
  • B.C. Wang, M.T. Qiu, Z.M. Wang
    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Shannxi, People's Republic of China
  • C.T. Du, X.W. Wang, L. Wu, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People's Republic of China
 
  Vibrating wire technique is a promising measure-ment method for small-aperture Permanent Magnet Quadrupoles (PMQs) in linear accelerators and scan-ning nuclear microprobes. In this paper, we describe the improved vibrating wire setup for measuring an individual PMQ with the minimum aperture of several millimeters. This setup is aiming at measuring the magnetic center. The advantage of this setup is that any mechanical measurement on the wire, which may be the main error source, is avoided. Experiments of the 20 mm-aperture Halbach-type PMQs for Xi'an Proton Application Facility (XiPAF) DTL has been carried out. The research results of the magnetic center measurements show a precision of about 10 μm and robustness against the background magnetic field. Results of the magnetic center and field multipoles measurements agree with the ones obtained from the rotating coil.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB015 Compact Rare-Earth Permanent Magnet Material System for Industrial Electron Accelerators Irradiation Field Formation electron, quadrupole, radiation, simulation 1139
 
  • D.S. Yurov, A.N. Ermakov, V.V. Khankin, N.V. Shvedunov, V.I. Shvedunov
    M.V. Lomonosov Moscow State University (MSU), Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
 
  A compact system for industrial electron accelerators irradiation field formation is described. This system permits to get uniform distribution of electron beam current along the direction perpendicular to product movement with the width 50 - 100 cm. Its main element is a non-linear quadrupole lens, based on rare-earth permanent magnet material. This system can be used instead of an electromagnet of the conventional beam scanning systems, making much more comfortable conditions for products irradiation. Operation principles, results of calculations and test results of the system for CW 1 MeV and pulse 10 MeV electron linear accelerators are described.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB026 Magnet System for a Compact Microtron microtron, vacuum, electron, operation 1164
 
  • S.A. Kahn, R.J. Abrams, M.A.C. Cummings, R.P. Johnson, G.M. Kazakevich
    Muons, Inc, Illinois, USA
 
  Funding: Funded by DOE SBIR grant DE-SC0013795
A compact microtron can be an effective gamma source that can be transported to locations outside the laboratory. As part of a Phase I project we have studied a portable microtron that can accelerate electrons with energies of 6 MeV and above as a source for gamma and neutron production. The mass of the magnet is a significant contribution to the overall mass of the system. This paper will discuss conceptual designs for both permanent magnet and electromagnet systems. The choice of mictrotron RF frequency range is determined by the application requirements. The RF frequency influences the size of the microtron magnet and consequently its weight. We have looked at how the design would vary with the different frequency configurations.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR048 Hall Element Relative Position and Angle Calibrations for the Cryogenic Permanent Magnet Undulator undulator, vacuum, cryogenics, dipole 2386
 
  • L. Gong, W. Chen, W. Kang, L.Z. Li, H.H. Lu, Y.F. Yang
    IHEP, Beijing, People's Republic of China
 
  A three dimensions Hall probe will be manufactured for characterizing the magnetic performance of Cryogenic Permanent Magnet Undulator (CPMU) of Chinese High Energy Photon Source and the test facility (HEPS-TF) at Institute of High Energy Physics (IHEP). The positional and angular misalignment errors of the Hall sensors play an important role in the measurement accuracy of CPMU. In order to minimize the misalignment errors, a method of calibrating relative displacements and assembly angles of a 3-D Hall probe is carried out. In this paper, details of the calibration procedures and the data processing are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY038 Design of a Collection and Selection System for High Energy Laser-Driven Ion Beams quadrupole, laser, proton, ion 3070
 
  • F. Schillaci, G.A.P. Cirrone, G. Cuttone, D. Rifuggiato
    INFN/LNS, Catania, Italy
  • M. Maggiore
    INFN/LNL, Legnaro (PD), Italy
 
  Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines. Nowadays, energy and angular spread of the laser-driven beams are the main issues in application and different solutions for dedicated beam-transport lines have been proposed. In this context a system of permanent magnet quadrupoles has been realized, by INFN researchers in collaboration with SIGMAPHI company, to be used as a collection system for laser-driven protons up to 20 MeV. The definition of well specified characteristics, in terms of performances and field quality, of the magnetic lenses is crucial for the system realization and an accurate study of the beam dynamics. Hence, a method for studying the errors on the PMQ harmonic contents has been developed. It consists of different series of simulations in which magnetic and mechanical errors are introduced in the array and the harmonic content is analyzed to fix the tolerances necessary to have a good beam quality downstream the system. The method developed for the analysis of the PMQs errors and its validation is here described. The technique is general and can be easily extended to any magnetic lens.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB025 The Effect of Magnetic Field on the Secondary Electron Yield in the Ultra-High Vacuum Environment electron, gun, vacuum, synchrotron-radiation 3281
 
  • J. Wang, Y. Wang, W. Wei, Y.H. Xu, B. Zhang, T. Zhang, Y.X. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  A secondary electron emission measurement system has been designed and used to study the secondary electron emission (SEE) of different materials with an independently adjustable energy of 50 eV to 5 keV at National Synchrotron Radiation Laboratory. Here, we obtained the characteristics of the SEE yield from Pd film coatings, under the condition of magnetic field and without magnetic field. Then it was analysed that the effect of magnetic field on the secondary electron yield in the ultra-high vacuum environment. The results show that magnetic field shielding is critical to avoid the influence of magnetic field during secondary electron yield (SEY) measurements.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW048 Optimization of a Multipole Wiggler for Tps photon, wiggler, electron, radiation 4050
 
  • J.C. Jan, C.-H. Chang, T.Y. Chung, J.C. Huang, C.-S. Hwang, C.Y. Kuo
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a synchrotron radia-tion facility with electron energy 3 GeV that was commissioned in 2015. Taiwan Light Source (TLS) with electron energy 1.5 GeV concurrently provides user time. Three beam lines of TLS supply photons of energy 6-18 keV for user experiments; these beam lines are served with an in-achromatic superconduct-ing wiggler (IASW, 3.1 T). This superconducting inser-tion device has the disadvantages of complicated maintenance and operation. A traditional multipole wiggler (MPW) magnet of hybrid type is hence planned to be installed in TPS to cover the range of photon energy of IASW for user experiments. For the design of the magnetic circuit, the side block and the extreme block are arranged surrounding a Permendur Vanadium cobalt steel pole that enhances the field strength and good field region of a MPW magnet. The dynamic integral field and the demagnetizing field of MPW magnet were estimated. The optimization of the pole dimensions and photon characteristics were simu-lated and are discussed in this work.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)