Paper | Title | Other Keywords | Page |
---|---|---|---|
MOOCA02 | RFQ Developments at CEA-IRFU | linac, proton, cavity, status | 42 |
|
|||
Vane RFQs are particularly well suited to high intensity proton acceleration, since they offer minimal RF power losses and best accelerating field accuracy. Cea-Irfu is involved in several developments of 4 vane RFQs namely IPHI, Spiral2, Linac4 and ESS. This paper gives an overview of the design flow and tools developed at Irfu in order to design, tune, condition and commission RFQs. SPIRAL2 RFQ will be mainly used to illustrate this design flow. This CW RFQ requires 180 kW to achieve the nominal accelerating voltage. It can accelerate a 5 mA proton or deuteron beam (A/Q=1 and 2) or a 1 mA ion beam with up to A/Q=3 at 0.75 MeV/A. Conditioning and commissioning of this RFQ are actually in progress. | |||
![]() |
Slides MOOCA02 [3.712 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOOCA02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOZB01 | Construction and Beam Commissioning of CSNS Accelerators | DTL, dipole, quadrupole, linac | 47 |
|
|||
CSNS (China Spallation Neutron Source) is a proton accelerator based facility for delivering spallation neu-trons to users. The main components are 80-MeV linac, 1.6-GeV RCS and neutron production target. The con-struction began in 2011, and now construction of the building and accelerator components is well in progress. Most of the components have been tested and installed into the tunnel. The ion source and RFQ have been suc-cessfully commissioned. The first DTL tank has success-fully completed the beam commissioning, and the beam commissioning for the other three DTL tank will be per-formed before the end of 2016. The RCS commissioning will start in the beginning of 2017. This presentation provides a complete overview of the status of construc-tion and beam commissioning. | |||
![]() |
Slides MOZB01 [11.853 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOZB01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOZB02 | Challenges of the High Current Prototype Accelerator of IFMIF/EVEDA | operation, linac, neutron, ion | 52 |
|
|||
LIPAc, under installation in Rokkasho will produce a 125 mA CW deuteron beam at 9 MeV. The objective of IFMIF is to generate a neutron flux of 1018 m-2s−1 at 14 MeV for fusion materials testing using 2 x 125 mA CW D+ beams at 40 MeV impacting on a liquid lithium jet of 15 m/s. An ECR deuteron injector at 140 mA and 100 keV will be the source for a 9.7m long 4-vane RFQ, which will be complemented by a 175 MHz SRF linac composed of 8 HWRs for producing 9 MeV D+ beam. For a beam transmission >90%, beam simulations demand a D+ beam emittance below <0.3π mm·mrad. The first attempt on such high current accelerator was in the US in the early 80s under FMIT project with a H2+ 100 mA CW 2 MeV beam. LEDA successfully conducted 100 mA CW H+ at 6.7 MeV at the RFQ output energy in the late 90s, but using superconducting HWRs accelerating cavities at 125 mA CW with low-β H+/D+ beam has never been attempted. Beam halo will be monitored with 3 cryogenic μ-loss monitors azimuthally placed in each of the 8 superconducting solenoids interleaved with the HWR structures. A novel approach based on a beam core-halo dual matching has been developed to handle the MW range beam average power. | |||
![]() |
Slides MOZB02 [18.358 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOZB02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMB034 | Design and Application of Double-slit Emittance Meter for C-ADS Proton Beams | emittance, proton, background, instrumentation | 164 |
|
|||
To reduce the beam loss in the high current linac, beam transverse emittance is a key value which has to be characterized. At Institute of High Energy Physics (IHEP) in Beijing the C-ADS project has started beam commissioning. A newly developed double-slit emittance meter (DEM) for pulsed proton beam from the (RFQ) has been installed in the beam line. In this paper principal of operation, instrumentation and programming of emittance meter are discussed. The emittance measurement has been carried out with the newly developed DEM at a beam energy of 3.2 MeV and a beam current of 10 mA. Typical rms emittance for x and y direction are measured to be 0.1303 and 0.1347 π mm mrad,which are well below the design standard of the RFQ. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMR012 | Studies of Buffer Gas Cooling of Ion Beams in an RFQ Cooler and Their Transport to the EBIS Charge Breeder | ion, simulation, emittance, radio-frequency | 248 |
|
|||
In rare isotope accelerator facilities, an RFQ cooler is often used to manipulate ions. The RFQ cooler is a de-vice to effectively cool and confine ions in gaseous envi-ronment. The RFQ cooler provides a radial electric force to the beam by applying RF voltages to the quadrupole electrode structures, and axial force by applying different DC voltages to the segmented electrodes. The ions are trapped inside the potential well of the RFQ cooler formed by the DC fields, so that they have more colli-sions with the buffer gas. Several important parameters such as transverse emittance can be improved when ion beams are extracted from the RFQ cooler. In order to design an efficient RFQ cooler, which can properly match the ion beams into the EBIS charge breeder, it is essential to analyze evolutions of the transverse emittance and transmission efficiency through the RFQ cooler. Moreo-ver, to minimize emittance growth and maximize trans-mission efficiency, the beam transport line to the EBIS charge breeder needs to be optimized. In this work, we study the methods to apply the mechanism of buffer gas cooling in RFQ cooler to G4beamline and the beam transport line to EBIS charge breeder to TRACK. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMW012 | Study for a 162.5 MHz Window-Type RFQ | Windows, cavity, simulation, dipole | 423 |
|
|||
A window type of four vane radio-frequency quadrupole accelerator has been designed to accelerate 50 mA deuteron beam from 50 keV to 1 MeV. It will operate at 162.5 MHz in CW mode. Compared to the traditional four-vane RFQ, the window-type RFQ is more compact and has higher mode separation without π-mode stabilizing loops or dipole rods. A detailed full 3D model including vane modulation was developed. For the purpose of high shunt impedance, high quality factor and low power dissipation, the RF structure design was optimized by using electromagnetic simulations. Following the EM design optimization, an aluminium model of the window-type RFQ was fabricated and tested. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMW014 | Design of the 7MeV Linac Injector for the 200MeV Synchrotron of the Xi'an Proton Application Facility | linac, ion, DTL, synchrotron | 426 |
|
|||
We present, in this paper, the design result of the 7 MeV linac which will inject the negative hydrogen ion beam to the downsteam synchrotron of the Xi‘an Proton Application Facility (XiPAF). This newly designed facility will be located in Xi'an city and provide the proton beam with the maximum energy of 230 MeV for the research of the single event effect. The 7 MeV linac injector is composed of the 50 keV negative hydrogen ion source, Low Energy Beam Transport line (LEBT), 3 MeV four-vane-type Radio Frequency Quadrupole (RFQ) accelerator, 7 MeV Alvarez-type Drift Tube Linac (DTL), and the corresponding RF power source system. The output beam of the linac injector is designed with the peak current of 5 mA, maximum repetition frequency of 0.5 Hz, beam pulse width of 10~40 μs and RMS normalized emittance of 0.24 π mm·mard. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW014 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMW026 | Resonant Control for Fermilab's PXIE RFQ | controls, operation, resonance, cavity | 447 |
|
|||
Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359. The RFQ for Fermilab's PXIE test program is designed to accelerate a < 10 mA H− CW beam to 2.1 MeV. The RFQ has a four-vane design, with four modules brazed together for a total of 4.45 m in length. The RF power required is < 130 kW at 162.5 MHz. A 3 kHz limit on the maximum allowable frequency error is imposed by the RF amplifiers. This frequency constraint must be managed entirely through differential cooling of the RFQ's vanes and outer body and associated material expansion. Simulations indicate that the body and vane coolant temperature should be controlled to within 0.1 degrees C. We present the design of the cooling network and the resonant control algorithm for this structure, as well as results from initial operation. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOR035 | Space Charge Neutralization Studies with H− Beam in Low Energy Beam Transport Test Stand | space-charge, emittance, ion, ion-source | 677 |
|
|||
J-PARC is intensity-upgraded up to pulse current of 50 mA of H− beam. Two-solenoid based LEBT test stand is being built to support the operation of J-PARC linac. It imitates the actual LEBT of linac, yet contains the diagnostics chamber composed of horizontal and vertical beam emittance-meters and Faraday-cup for the current measurement. Vacuum composition of LEBT is predominantly H2 gas. The pressure inside the LEBT can be varied by the differential pumps allowing us to study the beam phase space evolution under space charge effects. The measurements of the beam phase space emittance were made as a function of the residual gas pressure. This paper presents the results and discussion on beam space charge neutralization and its effect on the beam phase space emittance. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOR042 | Beam Dynamics Modeling of Drift-tube Linacs with CST Particle Studio | DTL, simulation, linac, injection | 689 |
|
|||
The CST Studio provides convenient tools for self-consistent 3D modeling of accelerators, even large ones. Here we demonstrate this approach for the LANSCE drift-tube linac (DTL) taken as an example. The RF fields in 3D models of full DTL tanks are calculated and tuned with MicroWave Studio (MWS). Beam dynamics in the DTL is modeled with Particle Studio for bunches and bunch trains with realistic initial beam distributions using the MWS-calculated RF fields and quadrupole magnetic fields. The output beam parameters and locations of particle losses are calculated and compared for different beam distributions. Our main emphasis is on the formation of low-energy tails (longitudinal halo) and their interaction with regular bunches. Such effects are usually not taken into account in standard multi-particle phase-space codes. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY016 | HSI RFQ Upgrade for the UNILAC Injection to FAIR | bunching, emittance, simulation, ion | 877 |
|
|||
As an injector to the future FAIR facility, the UNILAC accelerator is required to deliver ion beams with high intensities as well as good beam quality. The electrodes of the current HSI RFQ are exhausted and the current RFQ itself is assigned to be one bottle-neck for improving the brilliance performance of the whole linac. Based on the so-called NFSP (New Four-Section Procedure) method, a new RFQ electrode design has been developed and optimized for 20 emA, U4+ beams at the RFQ entrance. Since only the electrodes will be replaced, the RFQ length has been kept unchanged. Even with a lowered inter-vane voltage, the new RFQ design has achieved better beam performance compared to the previous design. This paper will focus on the performed study with respect to beam dynamics. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY017 | Upgrade of the Universal Linear Accelerator UNILAC for FAIR | DTL, ion, emittance, operation | 880 |
|
|||
In order to meet the requirements on beam parameters for the upcoming FAIR facility at GSI, the injector linac UNILAC will be upgraded. The activities comprise development of the sources for stable provision of intense uranium beams at a repetition rate of 2.7 Hz, a revision of the beam dynamics layout of the 120 keV/u RFQ, the replacement of the matching section to the 1.4 MeV/u pre-stripper DTL, and enhancement of the gaseous stripping section efficiency. This section shall also include a round-to-flat emittance adaptor to prepare the beam for injection into the synchrotron SIS18 which has a flat transverse injection acceptance. Finally, the upgrade includes the complete replacement of the 40 year old 11.4 MeV/u Alvarez-type post-stripper DTL with a new DTL, preferably using Alvarez-type cavities with improved beam focusing features, as well as its rf-power alimentations. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY018 | The New RF Design of the 36 MHz-HSI-RFQ at GSI | DTL, multipole, brilliance, quadrupole | 883 |
|
|||
In Darmstadt / Germany the existing accelerator cite GSI is expanding to one of the biggest joint research projects worldwide: FAIR, a new antiproton and ion research facility with so far unmatched intensities and quality. The existing accelerators will be used as pre-accelerators and therefor need to be upgraded to fulfill the requirements with respect for intensity and beam quality. In a first step the 9.2 m long 36 MHz-HSI-RFQ for high current beams will get new electrodes to reach the specific frequency, to allow a higher electric strength and to avoid unwanted multipole components. Therefor several simulations with CST MWS have been done. The parameters and results of the RF-design will be presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY020 | Prototype Design of a Newly Revised CW RFQ for the High Charge State Injector at GSI | simulation, operation, resonance, impedance | 889 |
|
|||
Within the scope of the FAIR project (Facility for Antiproton and Ion Research) at GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany, the front end of the existing High Charge State Injector (HLI) is planned to be upgraded for cw operation. The required newly revised 4-Rod RFQ structure is currently being designed at the Institute for Applied Physics (IAP) of the Goethe University of Frankfurt. It will be operated with a 100 kW power amplifier at 108 MHz. At first instance a dedicated 4-stem prototype, which is based on the RFQ design for MYRRHA* and FRANZ**, is planned to be manufactured in order to validate the simulated RF performance, thermal behavior and mechanical characteristics in continuous operation. The RF simulations as well as basic thermal simulations are done using CST Studio Suite. In order to prevent oscillations of the electrodes mechanical eigenmodes are analyzed using ANSYS Multiphysics. In addition the ANSYS software allows more sophisticated simulations regarding the cooling capability by considering fluid dynamics in water cooling channels, thus providing a more detailed thermal analysis.
*C. Zhang, H. Podlech, New Reference Design of the European ADS RFQ Accelerator For MYRRHA, IPAC2014 **M. Heilmann et al., A Coupled RFQ-IH Cavity for the Neutron Source FRANZ, IPAC2013 |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY024 | Development of a 325 MHz Ladder-RFQ of the 4-Rod-Type | proton, linac, vacuum, ion | 899 |
|
|||
In order to have an inexpensive alternative to 4-Vane RFQs above 200 MHz, we study the possibilities of a Ladder-RFQ. The 325 MHz RFQ is designed to accelerate protons from 95 keV to 3.0 MeV according to the design parameters of the research program with cooled antiprotons at FAIR. This particular high frequency for an RFQ creates difficulties, which are challenging in developing a cavity. In order to define a satisfactory geometrical configuration for this resonator, both from the RF and the mechanical point of view, different designs have been examined and compared. Very promising results have been reached with a ladder type RFQ, which has been investigated since 2013. Due to its geometric size the manufacturing as well as maintenance is not that complex compared with welded accelerators. The manufacturing, coppering and assembling of a 0.8 m prototype RFQ is finished. We present recent measurements of the rf-field, frequency-tuning, field flatness and the mode spectrum. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY024 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY025 | Electromagnetic Design of β=0.13, f=325 Mhz Half-Wave Resonator for Future High Power, High Intensity Proton Driver at KEK | cavity, linac, proton, electron | 902 |
|
|||
At KEK, a proposal is being prepared for a new linac-based proton driver that can accelerate the proton beam up to 9 GeV with 9 MW beam power and 100 mA peak current. In this report, we present the study on the front end design of the linac, which will accelerate the beam to 1.2 GeV: The baseline layout, the acceleration energy structure, RF characteristics of components, cryomodule configurations, and the detailed design of half-wave resonator 1. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY026 | Baseline Design of a Proton Linac for BNCT at OIST | neutron, DTL, linac, proton | 906 |
|
|||
A new facility to develop a proton linac based neutron source for boron neutron capture therapy (BNCT) and various neutron science is planned at Okinawa institute of science and technology (OIST). This facility aims to develop a prototype system of the mass production model of BNCT systems as medical apparatus. The beam power and the beam energy at the neutron production target are assumed to about 60 kW and 10 MeV, respectively. The energy will be finally decided to optimize the ratio of necessary epi-thermal and other energy of neutron. If the energy is 10 MeV, 60 kW beam power can be achieved with a beam current of 30 mA and a duty factor of 20%. The linac consists of an ECR ion source, a two-solenoid-magnet LEBT, a four-vane RFQ, and an Alvarez DTL, which are very conventional as components of proton linac. To make the accelerator compact, we are considering to use a 400-MHz band resonant frequency. As a medical apparatus, it is required that the linac system is stable and operated easily without experts of accelerator. The design of proton linac is one of the most important issues in our development. In this paper, the baseline design of this OIST BNCT linac is described. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY027 | Emittance Measurement with Wire Scanners at C-ADS Injector-I | emittance, simulation, beam-transport, background | 910 |
|
|||
The transverse emittance at C-ADS injector-I has been measured by the wire scanners at the Medium Energy Beam Transport-I (MEBT1). We have studied the effect of different fitting methods for obtaining the beam sizes on the emittance result, the result will be presented in this paper. The validation study of the quad-scan method with the presence of space charge effect at 10 mA will also be shown, and finally the quad-scan results will be compared with the multi-wire results. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY027 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY031 | Emittance Measurement with Double-Slit Method in CADS Injector-I | emittance, solenoid, linac, simulation | 922 |
|
|||
The C-ADS accelerator is a CW (Continuous-Wave) proton linac with 1.5 GeV in beam energy, 10 mA in beam current, and 15 MW in beam power. CADS Injector-I accelerator is a 10-mA 10-MeV CW proton linac, which uses a 3.2-MeV normal conducting 4-Vane RFQ and superconducting single-spoke cavities for accelerating. The 5MeV test stand of CADS accelerator Injector I is composed of an ion source, a LEBT, a 325MHz RFQ, a MEBT, a cryogenic module (CM1) of seven SC spoke cavities (β=0.12) , seven SC solenoids, seven cold BPMs and a beam dump. Emittance measurement is very important for the understanding of beam behavior and matching to the next accelerating section. Detailed emittance measurement with double-slit method after CM1 are presented in this paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY032 | Beam Twiss Measurement With Ws Including Space Charge Effect | experiment, space-charge, lattice, simulation | 925 |
|
|||
Wire Scanners (WS) are used to measure beam profile and calculate the transverse Twiss parameters at the entrance of MEBT1 in the CADS injector I test stand. As to data process, the traditional method with transfer map doesn't consider the space charge effect. But, as we know, space charge effect can't be neglected for high intensity accelerators. In this paper, optimization algorithm is used in beam emittance measurement. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY033 | Design Study on an Injector RFQ for Heavy Ion Accelerator Facility | simulation, cavity, ion, heavy-ion | 928 |
|
|||
A Low Energy Accelerator Facility (LEAF) was launched as a pre-research facility for High Intensity heavy ion Accelerator Facility (HIAF). The LEAF consists of a 2-mA U34+ electron cyclotron resonance (ECR) type ion source with 300-kV extraction voltage, a low energy beam transport (LEBT) line with a multi-harmonic buncher (MHB), a CW 81.25MHz radio frequency quad-rupole (RFQ) accelerator which could accelerate heavy ions from 14 keV/u up to 500 keV/u, a triplet magnet for medium energy beam transport and an experimental platform for nuclear physics. After describing the selected structure, an octagonal cavity with π-mode stabilizing loop (PISL) type structure was adopted and simulated. In this paper, the detailed electromagnetic design and ther-mal simulation of the LEAF-RFQ will be reported. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY041 | Commissioning of New Proton and Light Ion Injector for Nuclotron-Nica | linac, ion, vacuum, simulation | 941 |
|
|||
The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is now under development and construction at JINR. New complex is assumed to operate using two injectors: the Alvarez-type linac LU-20 as injector of light ions, polarized protons and deuterons and a new linac HILac of heavy ions. Now the modernization of LU-20 is also realized and old pulse DC injector is planning to replace by RFQ linac. New RFQ linac was developed and manufactured and is now under commissioning at Nuclotron injectors hall. New results of RFQ linac resonator testing and measurements, RF power load and linac testing with deuterium and carbon beam will discuss in this report. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY045 | ESS Linac Beam Physics Design Update | linac, DTL, proton, target | 947 |
|
|||
The European Spallation Source, ESS, uses a linear accelerator to bombard the tungsten target with the high intensity protons beam for producing intense beams of neutrons. The nominal average beam power of the linac is 5~MW with a peak beam power at target of 125~MW. This paper focuses on the beam dynamics design of the ESS linac and the diagnostics elements used for the tuning of the lattice and matching between sections. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY047 | Studies of Ultimate Intensity Limits for High Power Proton Linacs | linac, proton, DTL, emittance | 951 |
|
|||
Although modern high power proton machines can now routinely deliver MW level operating powers, the next generation accelerators will be required to reach powers orders of magnitude higher. Significant developments will be needed both in technology and in understanding the limits of high intensity operation. The present study investigates the beam dynamics in three experimental linac designs when the beam intensity is increased above current levels such that for CW regimes, beam powers of up to 400 MW can be attained. In the first, a 1 A proton beam is accelerated to 400 MeV using normal conducting structures. In the second, a comparison is made when two front ends accelerate 0.5 A beams to ~20 MeV where they are funnelled to 1 A and accelerated to 400 MeV. Similarly, in the third, two 0.25 A beams are funnelled to 0.5 A and then accelerated in superconducting structures to 800 MeV. In addition, alternative unconventional methods of generating high current beams are also discussed. The further studies that are needed to be undertaken in the future are outlined, but it is considered that the three linac configurations found are sufficiently promising for detailed technical designs to follow. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY047 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY049 | The PXIE LEBT Design Choices | ion, ion-source, solenoid, vacuum | 958 |
|
|||
Funding: Operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the United States Department of Energy Typical front-ends of modern light-ion high-intensity accelerators typically consist of an ion source, a Low Energy Beam Transport (LEBT), a Radiofrequency Quadrupole and a Medium Energy Beam Transport (MEBT), which is followed by the main linac accelerating structures. Over the years, many LEBTs have been designed, constructed and operated very successfully. In this paper, we present the guiding principles and compromises that lead to the design choices of the PXIE LEBT, including the rationale for a beam line that allows un-neutralized transport over a significant portion of the LEBT whether the beam is pulsed or DC. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY049 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY051 | Manufacturing and the LLRF Tests of the SANAEM RFQ | cavity, vacuum, LLRF, simulation | 964 |
|
|||
Funding: Turkish Atomic Energy Authority Turkish Atomic Energy Authority is working on building an experimental proton beamline with local resources at the Saraykoy Nuclear Research and Training Center (SANAEM). Manufacturing of the radio frequency quadrupole (RFQ) was started after the beam dynamics and 3D electromagnetic simulation studies were performed. The vanes were machined with a three axis CNC machine. A CMM was used for the acceptance tests of the vanes and also for assembling. Production and assembly results were found acceptable for this cavity, the very first one developed in Turkey. Copper plating was performed by electroplating the aluminum vanes. The plated vanes were bolted and bonded with eight screws, eight pins and two different adhesives. A silver paste was used for RF sealing and a low vapor pressure epoxy was used for vacuum isolation. First LLRF tests of the RFQ were done with a bead-pull setup and a VNA. A N-type RF coupler and a pick-up were used for the LLRF tests. Phase shift method was used for the bead-pull tests. Cavity quality factor was measured with 3dB method for different RF sealing stages. This study summarizes the machining, assembling and the first LLRF tests of the SANAEM RFQ. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY051 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY053 | The SARAF-LINAC Project Status | linac, cryomodule, status, diagnostics | 971 |
|
|||
SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the superconducting linac (SARAF-LINAC Project). This paper presents to the accelerator community the status at March 2016 of the SARAF-LINAC Project. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY053 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY054 | Status of the ESS RFQ | vacuum, cavity, status, operation | 974 |
|
|||
The ESS Radio-Frequency Quadrupole (RFQ) is a 4-vanes resonant cavity designed at the frequency of 352.21 MHz. It must accelerate and bunch a 70mA proton beams from 75keV to 3.62MeV with a 4% duty cycle. The RFQ design has already been done, and documented in other papers. This one will present the global status of the RFQ, with technical solutions cho-sen for the main components (for fabrication and op-eration) and the present status of the RFQ fabrication. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY054 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY056 | Development of a Neutronics Facility using Radio Frequency Quadrupole for Characterization of Fusion Grade Materials | ion, neutron, quadrupole, radio-frequency | 981 |
|
|||
Qualification of the materials is among the important challenges for a fusion reactor. Working in tandem with the present need that recognizes the value of evaluating fusion reactor materials, Institute for Plasma Research has initiated the 'Development of RFQ for Accelerators' project, which will provide a neutronic facility for material qualification in a relatively larger scale. The facility will consist of an high intensity ECR ion (H+/D+) source coupled to Radio Frequency Quadrupole (RFQ) Accelerator through a LEBT system to produce 5 MeV, 40 mA deuterium ions to fulfil the objectives. Further upgrade in the beam energy and current is also foreseen to suit the facility requirement. A four vane type copper RFQ @352.2 MHz frequency with transmission efficiency of ≈ 96% has been designed to accelerate deutrons upto 1 MeV energy as a demonstration of the RFQ functioning and controls. Through LEBT system, deuterons are then focused into RFQ using weak beam focalization method. The harmonization of the vane tips design and manufacturing constraints has been part of the study to have a near realistic engineering design. Design and analysis of RFQ will be discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY057 | The Linear IFMIF Prototype Accelerator (LIPAC) Design Development under the European-Japanese Collaboration | SRF, linac, vacuum, cryomodule | 985 |
|
|||
The IFMIF aims to provide an accelerator-based, D-Li neutron source to produce high energy neutrons at sufficient intensity. Part of the BA agreement (Japan-EURATOM), the goal of the IFMIF/EVEDA project is to work on the engineering design of IFMIF and to validate the main technological challenges which includes a 125mA CW D+ accelerator up to 9 MeV mainly designed and manufactured in Europe. The components are in an advanced stage of manufacturing. The first components which allow the production of a 140 mA-100 keV deuteron beam have been delivered, installed and under commissioning at Rokkasho. The second phase (100 keV to 5 MeV) will end by March 2017. The third phase (short pulse) and forth phase (cw) will be the integrated commissioning of the LIPAc up to 9 MeV. The duration of the project has been recently extended up to end 2019 to allow the commissioning and operation of the whole accelerator (1MW). The aim of this paper is to give an overview of the LIPAc, currently under commissioning in Japan, to outline the engineering design and the development of the key components, as well as the expected outcomes of the engineering work, associated with the experimental program. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY057 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOAA02 | Status and Performance of ORNL Spallation Neutron Source Accelerator Systems | linac, operation, ion-source, ion | 1007 |
|
|||
Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE. The Spallation Neutron Source (SNS) accelerator sys-tems have been performing continuously and progressively since commissioning in 2006 to deliver the neutrons to beamlines. The 1.4 MW design beam power has been demonstrated during 24/7 operation while developments and investigations for system improvements are still ongoing to achieve the full design beam power and availability. Numerous difficulties that impeded reaching the full performance of the SNS accelerator systems have been identified and are being eliminated through repairs, upgrades, and developments. In this report, operational performance and developments of the accelerator systems are presented along with the efforts for future upgrades of the SNS. |
|||
![]() |
Slides TUOAA02 [5.410 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOAA02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR020 | In-depth Analysis and Optimization of the European Spallation Source Front End Lattice | solenoid, space-charge, simulation, emittance | 1274 |
|
|||
The European Spallation Source front end will deliver a 62.5 mA beam current of 2.8 ms duration at 352 MHz to the downstream linac, which in turn will produce a 5 MW proton beam onto the target. Such unprecedented beam power requires a high quality beam with accurate and stable beam parameters in order to assure low beam losses and safe transport through the linac. In this paper we present advanced tuning methods for the low energy beam transport and the radio frequency quadrupole. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR024 | Commissioning and First Accelerated Beams in the Reaccelerator (Rea3) of the National Superconducting Cyclotron Laboratory, MSU | ion, experiment, acceleration, cyclotron | 1287 |
|
|||
The ReAccelerator ReA3 is a worldwide unique, state-of-the-art reaccelerator for rare isotope beams. Beams of rare isotopes are produced and separated in-flight at the NSCL Coupled Cyclotron Facility and subsequently stopped in a gas cell. The rare isotopes are then continuously extracted as 1+ (or 2+) ions and transported into a beam cooler and buncher, followed by a charge breeder based on an Electron Beam Ion Trap (EBIT). In the charge breeder, the ions are ionized to a charge state suitable for acceleration in the superconducting radiofrequency (SRF) linac, extracted in a pulsed mode and mass analyzed. The extracted beam is bunched to 80.5 MHz and then accelerated to energies ranging from 300 keV/u up to 6 MeV/u, depending on their charge-to-mass ratio. Alternatively, stable isotope ions can be accelerated injecting stable gas in the EBIT. ReA3 was commissioned recently with stable 40Ar and 39K as well as with the rare isotope beams of 46Ar and 46K. This contribution will focus on the properties and techniques used to accelerate and transport rare isotope beams and will show results obtained during the preparation of the two first experiments using the ReA facility. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR024 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR030 | Progress on RFQ Fabrication for RISP Accelerator | vacuum, alignment, cavity, laser | 1308 |
|
|||
The 81.25MHz Radio Frequency Quadrupole(RFQ), which was designed to accelerate various ion beams from the energy of 10 keV/u to 500 keV/u, is under development for the Rare Isotope Science Project(RISP). The 5 meter long RFQ consists of 9 sections and the total weight is roughly 16 tons. Each sections of RFQ aligned and installed by using a laser tracker on a supporter system. In this paper, the fabrication status of the RISP RFQ and the scheme of installation were described in detail.
This work was supported by the RISP of IBS funded by the Ministry of Science, ICT and Future Planning(MSIP) and the National Research Foundation(NRF) of Korea(2013M7A1A1075764). |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR031 | Implementation and Preliminary Test of Electron Beam Ion Sources at KOMAC | ion, electron, dipole, ion-source | 1311 |
|
|||
Funding: This work has been supported through KOMAC operation fund of KAERI by Ministry of Science, ICT and Future Planning. Electron beam ion source (EBIS) has been one of widely used table-top devices for the production of highly charged ions by electron impact ionization. An EBIS employs a magnetically compressed, high energy and density electron beam to sequentially ionize atoms or ions with a low charge state*. At KOMAC, we have a compact room-temperature operated EBIS. It is additionally constructed with a magnetic mass spectrometer and a Faraday Cup to measure charge spectra. Using this measurement setup, preliminary tests are performed to find suitable operational potentials in the EBIS for a stable production of highly charge ions. In future, we aim to build an EBIS based pre-injector with a radio frequency quadrupole. It has advantages of having a simple operation and a large number of ion species**. For this, we intend to improve and modify the current EBIS design to incorporate with existing setups at KOMAC. * M. A. Levin et al., Phys. Scr. T22, 157-163 (1988) ** J. Alessi et al., EBIS Pre-Injector Project Conceptual Design Report, Brookhaven National Laboratory (2005) |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR034 | Development and Tests of Beam Test Facility with New Spare RFQ for Spallation Neutron Source | ion, ion-source, diagnostics, neutron | 1320 |
|
|||
Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE. The Beam Test Facility (BTF) has been constructed to validate the performance of the new RFQ, to study ion source improvements, and to support neutron moderator development and six-dimensional phase space measure-ments for SNS. The BTF includes an H− ion source, Ra-dio-Frequency Quadrupole (RFQ), and Medium Energy Beam Transport (MEBT) beam diagnostics systems. A spare RFQ was built and fully RF tested in the BTF and will be installed in the SNS linac in the future. The test stand is ready to run with the H− ion beam through the new RFQ to fully validate the RFQ performance. The RFQ was designed to have the beam characteristics iden-tical to the existing RFQ with improved operational relia-bility and stability. The H− RF plasma ion source system includes new high power RF components for improved front-end system performance. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR041 | Design of the Low Energy Beam Transport Line for Xi‘an Proton Application Facility | ion, solenoid, ion-source, simulation | 1343 |
|
|||
Xi‘an Proton Application Facility (XiPAF) is a new proton project which is being constructed for single-event-effect experiments. It can provide proton beam with the maximum energy of 200 MeV. The accelerator facility of XiPAF mainly contains a 7 MeV H− linac injector and a proton synchrotron accelerator. The 7 MeV H− linac injector is composed of an ECR ion source, a Low Energy Beam Transport line (LEBT), a Radio Frequency Quadrupole accelerator (RFQ) and a Drift Tube Linac (DTL). The 50 keV 10 mA H− beam (pulse width 1ms) extracted from the ion source is expected to be symmetric with the Twiss parameters alpha=0 and β=0.065 mm/mrad. The RMS normalized emittance is required to be less than 0.2 π mm·mrad. With an adjustable collimator and an electric chopper in the 1.7 m-long LEBT, the beam pulse width of 10~40μs and peak current of 6 mA can be obtained. The H− beam is matched into the downstream RFQ accelerator with alpha=1.051 and β=0.0494 mm/mrad. This paper shows the detailed design process of the LEBT and simulation result with the TRACEWIN code. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMY003 | Development of Muon LINAC for the Muon g-2/EDM Experiment at J-PARC | acceleration, linac, cavity, background | 1543 |
|
|||
Precision measurements of the muon's anomalous magnetic moment (g-2) and electric dipole moment (EDM) are effective ways to cast light on beyond the standard model of elementary particle physics. The J-PARC E34 experiment aims to measure g-2 with a precision of 0.1 ppm and search for EDM with a sensitivity to 10-{-21} e· cm with high intensity proton beam at J-PARC and a novel technique of making a muon beam with small emittance (the ultra-cold muon beam). The ultra-cold muon beam is generated from a surface muon beam by the thermal muonium (30 meV) production followed by the laser ionization, and acceleration to 212 MeV or 300 MeV/c by the muon dedicated LINAC. The muon LINAC consists of RFQ, inter-digital IH, Disk And Washer (DAW) coupled cell and disk loaded structure. The ultra-cold muons will have an extremely small transverse momentum spread of less than 1 % with a normalized transverse emittance of around 1.5 pi mm-mrad. The muon acceleration to 300 MeV/c will be the first case in the world and it will be one of the base technologies of future accelerator programs. In this talk, design and status of the muon LINAC will be reported. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMY042 | Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA) | proton, electron, optics, ion-source | 1638 |
|
|||
Funding: This work is supported by the DOE, under Contract No. De-AC02-07CH11359. The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be commissioned with electrons, but this poster describes progress toward the injection of protons into the ring, using the RFQ originally built for the High Energy Neutrino Source (HINS) project. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOY020 | Compact Accelerator Based Neutron Source for 99mTc Production | target, neutron, proton, cyclotron | 1946 |
|
|||
Funding: The authors would like to thank STFC UK for their support of this work The radioisotope Technetium-99m (99mTc) is used in 85\% of all nuclear medicine procedures. 99mTc is produced from its precursor Molybdenum-99 (99Mo), which until recently was produced in only five research reactors worldwide. Recently a number of accelerator-based methods have been proposed to fill this gap and to diversify this supply chain. In the paper we present our base compact (4 m) 10 mA 3.5 MeV accelerator design, to generate low-energy neutrons via fusion. In this design we increase neutron capture with a novel moderator assembly to shift the neutron spectrum into the epithermal resonance region of the 98Mo capture cross-section to create 99Mo. In this paper we examine Li(p, n) reactions for neutron production. Specifically focused on a numerical studies for an optimised target design capable of handling the heat load. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOBA01 | Beam Commissioning of the HIE-ISOLDE Post-Accelerator | diagnostics, linac, detector, cryomodule | 2045 |
|
|||
Phase 1a of the High Intensity and Energy ISOLDE (HIE-ISOLDE) project* was completed in 2015. The first cryomodule and two High Energy Beam Transfer lines (HEBT) were installed. In addition, many of the subsystems of the normal conducting part of the post-accelerator (REX) were renovated or refurbished. Following the hardware commissioning of the different system** and, in preparation for the start of the physics program, many tests and measurements were conducted as part of the beam commissioning program. The results of these tests and the plan for the next beam commissioning campaign are discussed in this paper.
* Y. Kadi et al., "The HIE-ISOLDE Project", Journal of Physics: Conference Series 312. ** W. Venturini et al., "HIE-ISOLDE First Commissioning Experience", IPAC'16 |
|||
![]() |
Slides WEOBA01 [1.437 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOBA01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOBA02 | Commissioning of the China-ADS Injector-I Testing Facility | emittance, simulation, proton, cavity | 2048 |
|
|||
The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The ion source was installed since April of 2014, periods of commissioning are regularly scheduled between installation phases of the rest of the injector. 6.05 MeV proton energy has been achieved with average beam current of 10 mA by 7 SC spoke cavities at present. This contribution reports the details of the commissioning results together with the challenges of the CW machine commissioning. | |||
![]() |
Slides WEOBA02 [5.243 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOBA02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMY033 | Intermediate Commissioning Results of the 70 mA/50 keV H+ and 140 mA/100 keV D+ ECR Injector of IFMIF/LIPAC | emittance, operation, focusing, solenoid | 2625 |
|
|||
The LIPAc accelerator aims to operate 125 mA/CW deuteron beam at 9 MeV to validate IFMIF's accelerators that will operate in CW 125 mA at 40 MeV. The different subsystems of LIPAc have been designed and constructed mainly by European labs and are being installed and commissioned in Rokkasho Fusion Center. The 2.45 GHz ECR injector developed by CEA-Saclay is designed to deliver 140 mA/100 keV CW D+ beam with 99% gas fraction ratio. Its LEBT presents a dual solenoid focusing system to transport and match the beam into the RFQ. Its commissioning continues in 2016 in parallel with the RFQ installation. The normalized RMS emittance at the RFQ injection cone is to be within 0.25π mm·mrad to allow 96% transmission through the 9.81 m long RFQ. In order to avoid activation during commissioning, an equal perveance H+ beam of half current and half energy as nominal with deuterons is used. In this article, the commissioning results with 110 mA/100 keV D+ beam and 55 mA/50 keV H+ beam are first reported. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR039 | Development of 200 MHz Digital LLRF System for the 1 MeV/n RFQ at KOMAC | LLRF, controls, cavity, FPGA | 2758 |
|
|||
KOMAC (Korea Multi-purpose Accelerator Complex) has a plan to develop the multipurpose ion irradiation system. This system includes the ion source, LEBT, RFQ and MEBT systems to transport ion particles to the target. In particular, the RFQ (Radio Frequency Quadrupole) system should receive 200 MHz RF within 1% amplitude error stability. To supply stable 200 MHz RF signal to the RFQ cavity, the LLRF (Low-Level Radio Frequency) system should be controlled through a control system which implemented using commercial digital board. This 1 MeV/n RFQ LLRF system has a concept to minimize the number of the analog components for minimizing the control error. For this, the FPGA (Field Programmable Gate Array) in the digital board will control the frequency of the output sinusoidal signal. In addition, this LLRF system applied the direct sampling, Non-IQ sampling, direct RF generation and fast IQ set update rate algorithm. In this presentation, the FPGA control logics of the LLRF digital board will be introduced. Also, the LLRF PI control logic test using 200 MHz dummy cavity will be described. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB039 | Voltage Error Studies in the ESS RFQ | emittance, proton, linac, radio-frequency | 3320 |
|
|||
During the fabrication of an RFQ, deviation from the perfect geometry will occur during assembling, brazing and machining the different parts. These geometrical defects will impact the theoretical inter-vane voltage, given by the beam dynamics, by altering the quadrupolar component as well as adding dipolar terms in the voltage function. Tuners can correct partially the effect of the manufacturing. The study summarizes the effects of the voltage errors on the beam quality in the case of the ESS RFQ with a harmonic analysis of the voltage function. We discuss the acceptable level of voltage errors and associated mechanical tolerances. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR030 | Results of the Use of Axisymmetric RF Focusing in Proton Linacs at Energies up to 7 MeV | linac, proton, focusing, cyclotron | 3449 |
|
|||
During a few decades axisymmetric RF structures with a focusing by means of nonsynchronous spatial harmonics of electromagnetic field are offered instead of proven RFQ. An effectiveness of these structures in the energy range up to 2 MeV was shown in a number of papers. An effectiveness of these structures in the energy range up to 7 MeV is considered in this paper. Results of an analytical investigation and a numerical simulation of self-consistent proton dynamics are presented and discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMY025 | Mechanical Integration of the IFMIF-EVEDA Radio Frequency Quadrupole | vacuum, interface, site, alignment | 3712 |
|
|||
The Linear IFMIF Prototype Accelerator, the high intensity deuteron linac compact demonstrator of the IFMIF machine, is in an advanced installation phase at BA site (Rokkasho, Japan), within a European-Japan collaboration coordinated respectively by F4E and JAEA. The RFQ (5 Mev, 130 mA) is an Italian in-kind contribution under the responsibility of INFN. Is it a 9,8 m-long structure made of 18 modules, pre-assembled in three parts. The various aspects of the RFQ integration inside the LIPAc are presented here, with details about the various functional services of the RFQ, the different interfaces with other sub-components of the linac and with the building and the structural validation through the seismic analysis. Some peculiar aspects related to the installation of the RFQ are also detailed (i.e. the handling tooling, precise positioning jigs). | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY015 | Control System Developments for the MYRRHA Linac | controls, linac, EPICS, framework | 4116 |
|
|||
Funding: This work is being supported by the Euratom research and training programme 2014-2018 under grant agreement N°662186 (MYRTE project). The goal of the MYRRHA project is to demonstrate the technical feasibility of transmutation in a 100 MWth Accelerator Driven System by building a new flexible irradiation complex in Mol (Belgium). The MYRRHA facility requires a 600 MeV linear accelerator delivering a maximum proton flux of 4 mA in continuous operation, with an additional requirement for exceptional reliability. The control system of the future MYRRHA linac will have an essential role to play in this extreme reliability scenario. On the one hand the intrinsic reliability of the entire control system must be ensured. On the other hand control system will have to take up very high level duties of complex decision taking. This paper summarizes the ongoing developments for the concept design of such a control system. The related experimental activities performed and planned around the MYRRHA injector platform (ECR ion source + LEBT + RFQ) will also be described. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY020 | Neural Network Modeling of the PXIE RFQ Cooling System and Resonant Frequency Response | network, controls, cavity, operation | 4131 |
|
|||
As part of the PIP-II Injector Experiment (PXIE) accel-erator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H' ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequency of the RFQ. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY035 | Machine Protection and Safe Operation of LIPAc Linear Accelerator | operation, linac, SRF, vacuum | 4178 |
|
|||
A Li(d, xn) fusion relevant neutron source with a broad peak at 14 MeV is indispensable to characterize and qualify suitable structural materials for the plasma facing components in future fusion reactors. LIPAc (Linear IFMIF Prototype Accelerator), presently under its installation and commissioning phase in Rokkasho, will validate the concept of a 40 MeV deuteron accelerator with its 125 mA CW and 9 MeV deuteron beam for a total beam average power of 1.125 MW. The Machine Protection System (MPS) of LIPAc provides the essential interlock function of stopping the beam in case of excessive beam loss or other hazardous situations. However, approaching LIPAc beam commissioning Phase B (including RFQ powered by total 1.6 MW RF power) a risk analysis has been performed on all major technical systems to identify the sources of risk, apply the necessary countermeasures and enhance accelerator availability, avoiding unnecessary beam stop triggers and allowing a fast beam recovery whenever possible. The overall strategy for the machine protection at LIPAc is presented in this paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRYAA01 | Progress of the RAON Heavy Ion Accelerator Project in Korea | ion, ISOL, target, heavy-ion | 4261 |
|
|||
The RAON heavy ion accelerator facility is under construction in Korea. With a 400-kW superconducting linac as the workhorse, the facility is to establish the In-flight Fragment (IF) and Isotope Separation On-Line (ISOL) facilities to support advanced science researches. Beam dynamics studies have progressed to cover start-to-end simulations including machine errors. There has been significant progress in sub-system prototype studies including 28-GHz ECR ion source, superconducting cavities and magnets, and IF target. This talk presents recent progress and status of the project. | |||
![]() |
Slides FRYAA01 [14.434 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-FRYAA01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRYAA03 | Accelerator Driven Sustainable Fission Energy | target, operation, neutron, proton | 4271 |
|
|||
It is the new approaches of sustainable fission energy that high power accelerator produces intensive external neutron to close fuel cycle and utilize fissile fuel ?95%. The system includes the fissile fuel burner and used fuel recycle. The burner is optimized as the nuclear waste transmutation, fissile material breeding and energy production in situ by the accelerator driven system. There are 4 phases in the Chinese development road map and the new research sites are introduced in this talk as well. The 2nd phase will be finished around 2022, with its high power LINAC (proton beam ~250MeV&10mA) providing the best opportunity to make DAR source for neutrino research. The burner, optimizing from ADS, consists of the high power LINAC, the spallation target and the subcritical core. The 25MeV LINAC prototype will be commissioned by the end of this year. The 10 MeV LINAC has produced a CW proton beam in 10's kW and has been operated with the ion source being operated more than 2000 hrs. The new concept of spallation target is granular fluid target, in which the solid grain fluid and beam implant from top to down. All these sub-systems will be described in this talk. | |||
![]() |
Slides FRYAA03 [8.741 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-FRYAA03 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||