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Abstract

The design of many Low-Energy Beam Transport sections

relies on the presence of space-charge compensation by par-

ticles of opposing charge. To improve understanding of the

processes involved in the built-up and steady-state, simula-

tions using the Particle-in-Cell code bender were made. We

will present the influence of various system parameters on

the results. Furthermore, the electron velocity distribution

was found to be approximately thermal. The spatial distri-

bution can then be found by solving the Poisson-Boltzmann

equation. Such a model for the electron distribution was

implemented in a 2D PIC code and applied to typical beam

transport situations. We will present results in comparison

to the 3D simulations.

SPACE-CHARGE COMPENSATION

When the electron density is not proportional to the beam

density, various definitions for a “compensation degree” can

be found.

ηpart(z) = λe− (z) /
(
λbeam(z) + λrgi(z)

)
,

i.e. the ratio of line charge density of positively and nega-

tively charged particles, is a measure of how much charge

can be confined by the beam potential. To quantify the effect

on the beam,

ηbeam(z) = 1 −
ϕ(Rbeam, z) − ϕ(0, z)

ϕuncomp(Rbeam, z) − ϕuncomp(0, z)
,

defined as the ratio of the potential drop between the beam’s

edge and the axis for the compensated as well as the identical

beam distribution without secondary particles, can be used.

SIMULATION OF A DRIFT SECTION

The Particle-in-Cell code bender [1] was used to simulate

a 50 cm long beam drift through a system terminated by

repeller electrodes. The simulations include proton impact

ionization and electron impact ionization of an homogeneous

background gas, calculated using single-differential cross

sections from [2, 3]. Argon at 1 × 10−5 hPa was used as

background gas. More on the built-up of the compensation

and the model can be found in [1].

Figure 1 shows the density for the different species after

40 μs. Especially around its focus point, the beam has be-

come hollow. This leads to a slightly worse compensation

in the focus, ηbeam = 77 %, compared to 87 % and 81 %

towards the front and the back of the system. A significant
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Figure 1: Charge density of the beam particles, compensa-

tion electrons and residual gas ions as well as the total charge

density from a bender simulation of a drift section.

portion of the electrons are located beyond the beam radius,

effectively not contributing to the compensation. They os-

cillate radially through the beam volume. Since the total

charge density around the axis is close to zero, electrons

move at nearly constant velocity and are only reflected by

the increase in electric field at the beam’s edge.

The residual gas ions are continously expelled radially

by the remaining electric field. However, within the beams

focus, there is a small accumulation of ions. This effect as

well as the changes in beam distribution can be understood

by investigating the influence of the velocity distribution of

the compensation electrons.

Figure 2 shows the distribution of particle energies at arbi-

trarily chosen locations within the system. For H < 0, these

show an exponential behaviour. Higher energies are less of-

ten populated, since these electrons are able to escape from

the system. Over a slice of particles, the velocity distribution

can be well approximated by a Gaussian. The “temperatures”

differ between the transverse and longitudinal directions and

vary between 10 eV and 25 eV along the beam. There is a

significant influence from the number of simulation particles

on these temperatures – these effects will be discussed in a

later contribution.
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Figure 2: Distribution of particle energies at various loca-

tions.

POISSON-BOLTZMANN EQUATION

When the compensation electrons in a slice of the beam

are known to be Boltzmann distributed, their density behaves

like n(r) = n0 exp(eϕ(r) /kbT ). The potential can be found

from the Poisson-Boltzmann equation,

∇
2ϕ(r) = −

1

ε0

(
ρbeam(r) + ρcomp exp

(
eϕ(r)

kbT

))
(1)

The equation can be non-dimensionalized by introducing

ϕ̃ = eϕ/kbT and scaling the coordinates by the Debye length

λd [4]. Together with

μ = ηpart

∫
exp(ϕ̃(r)) dV

(∫
fbeam(r) dV

)−1

,

it becomes

∇̃
2ϕ̃ = fbeam(r) − μ exp(ϕ̃) . (2)

Besides ηpart, the only degree of freedom is the Debye length.

Therefore, for equal beam distributions, when the ratio of

the beam density to the electron temperature is equal, the

electron distribution will be the same.

Figure 3 shows an example for the solutions of (2) for

90 % charge compensation of a homogeneous beam. When

λd is much smaller than the beam radius, the density of the

electrons follows the beam distribution up to some radius.

For the homogeneous beam in Fig. 3, the electric field

behaves like that of an hollow beam, i.e. it is zero up to a

certain radius and then rises quadratically. For increasingly

higher temperatures, a larger amount of electrons has enough

energy to be located at larger radii, forming the negative

charge density beyond the beam edge also observed in Fig.

1. When the Debye length is much larger than the beam

radius (not shown), the electrons form an approximately

constant background. Such a situation will not occur in

reality due to electron losses on the beam pipe.

The algorithm used to solve (2) was used as a space-charge

solver in the two-dimensional beam transport code tralitrala

to study the evolution of the beam distribution including the
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Figure 3: Solution to (2) for a 100 mA proton beam at

120 keV with 1 cm beam radius compensated to 90 % by

a thermal electron distribution.
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Figure 4: Emittance growth of an initially parallel proton

beam (1 cm, 120 keV, 50 mA).

non-linear fields produced by the compensation electrons.

Figure 4 shows the increase in rms emittance after a drift of

50 cm. It is zero, when no fields are present, which is the

case for T ≈ 0 eV and full compensation, and when these

are fully linear, i.e. ηpart = 0. The worst case occurs for

moderate levels of compensation η around 35 % and low

electron temperatures. For these parameters, only particles
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beyond a certain radius see a rapidly increasing electric

field. Towards higher temperatures the electron distribution

becomes more spread out, mitigating the situation. A small

emittance growth also remains when the beam’s charge is

equal to the electron charge at higher T , since some electrons

are always located outside the beam volume.

When the line charge density as well as the temperature

distribution Tx,y(z) are taken from the full PIC simulation,

many of its features can be reproduced by the model simu-

lation. Figure 5 shows the netto charge density from such

a calculation. The increasingly hollow beam towards the

focus is the result of the sharp increase of the electric field

towards the focus, which decreases the angles x ′ and y
′ of

the particles at the beam’s edge. As is the case in the 3d sim-

ulation, the region of elevated density is clearly present after

the focus. The effect is more pronounced in the tralitrala

calculation due to the higher grid resolution in comparison

to the bender simulation.

 0

 5

 10

 15

 20

 0  0.1  0.2  0.3  0.4  0.5

r 
[m

m
]

z [m]

-200

 0

 200

 400

 600

 800

 1000

 1200
C

ha
rg

e 
de

ns
ity

 [μ
C

/m
3 ]

Figure 5: Total charge density when electrons with a thermal

distribution are included in a two-dimensional simulation of

the same system shown in Fig. 1.

Due to the hollow beam in the focus, the electrons redis-

tribute and their density on the axis becomes larger than that

of the beam. This leads to the area of negative charge density,

visible between 25 cm < z < 35 cm in Fig. 5. This produces

a negative electric field on the axis. When the residual gas

ions are included, such as in the bender simulation, these

become trapped. This is observed in Fig. 1.

VARIATION OF PARAMETERS

Simulations for different gas pressures in the range from

1 × 10−6 hPa to 2 × 10−5 hPa were performed. Over this

range, the compensation degree ηbeam in the simulations

was found to vary between 68 % and 86 %. This decrease

towards lower gas pressures is a result from both a decrease

in the number of captured electrons (i.e. lower ηpart) as well

as an increase of the electron temperature, from 20 eV to

42 eV at the center of the system over the simulated range.

A similar dependence between the electron temperature and

the compensation degree was also found in other situations.

No influence on the compensation from the beam pipe

diameter was found.

The repeller voltage in the previous simulations was set

to −1500 V, producing more than twice the beam potential

on axis. Reducing this value initially results in a small ex-

pansion of the electron column and a small increase in com-

pensation. However, once the potential on axis approaches

zero (at about −500 V on the repeller), losses through the

apertures increase exponentially until reaching the produc-

tion rate inside the volume. The losses are increased further

by a movement of the focus, as a smaller beam radius within

the repeller additionally weakens the repeller. Even for large

positive voltages – values up to 1 kV were used – electrons

still remain trapped within the potential of the beam focus.

This results in a total compensation of about 10 %.

CONCLUSION

Particle-in-Cell simulations of a proton beam compen-

sated by electrons were performed using bender. In the

calculations, these electrons were found to follow a Boltz-

mann distribution. From this, it can be shown, that the

influence on the beam predicted by the PIC simulation can

be reproduced qualitatively by including the solution of the

Poisson-Boltzmann equation into a transport code.
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