RHIC Performance

with Stochastic Cooling for Ions

and Head-on Beam-Beam Compensation for Protons

Wolfram Fischer, Brookhaven National Laboratory

for all of the RHIC team

11 May 2016, Busan
Contents

1. A short history and outlook of RHIC
 species, energies, polarization,
 luminosity, low-energy operation

2. Au+Au with stochastic cooling
 bunch intensity
 stochastic cooling

3. p↑+p↑ with head-on beam-beam
 compensation
 bunch intensity, polarization
 lattice + electron lenses
Relativistic Heavy Ion Collider – main parameters

- Start of operation: 2000
- Circumference: 3.8 km
- Max dipole field: 3.5 T
- Species: p$^+$ to U (including asymmetric)
- Energy: Au 100 GeV/nucleon, p$^+$ 255 GeV
- Experiments: STAR, PHENIX (→ sPHENIX)
1. Creation and study of the Quark Gluon Plasma (A+A)

QGP close to perfect liquid

The QGP is a strongly coupled nearly “perfect” liquid (\(\eta/s\) near the quantum limit \(1/4\pi\)). RHIC’s cooler QGP is (on average) closer to perfection than the 40% hotter QGP produced at LHC.

[2015 NSAC Long Range Plan for Nuclear Science]
RHIC science programs

1. Creation and study of the Quark Gluon Plasma (A+A)

QGP close to perfect liquid
The QGP is a strongly coupled nearly “perfect” liquid (η/s near the quantum limit $1/4\pi$). RHIC’s cooler QGP is (on average) closer to perfection than the 40% hotter QGP produced at LHC.

2. Origin of the proton spin ($p^{\uparrow}+p^{\uparrow}$)

$$\frac{1}{2} = \text{Spin of all Quarks} + \text{Spin of Gluons} + \text{Angular Momentum of all Quarks} + \text{Angular Momentum of Gluons}$$

[2015 NSAC Long Range Plan for Nuclear Science]
RHIC science programs

1. Creation and study of the Quark Gluon Plasma (A+A)

QGP close to perfect liquid
The QGP is a strongly coupled nearly “perfect” liquid (η/s near the quantum limit $1/4\pi$). RHIC’s cooler QGP is (on average) closer to perfection than the 40% hotter QGP produced at LHC.

2. Origin of the proton spin ($p^\uparrow+p^\uparrow$)

RHIC result: not zero (2009 data only)
RHIC – all running modes to date (2001 to 2016)
RHIC – all running modes to date

2001 to 2016

2015

C. Liu, TUPMW039
RHIC – all running modes to date

2001 to 2016

C. Liu, TUPMW039

2015

2016

Species combination
- p↑+p↑
- p↑+Al
- p↑+Au
- d+Au
- h+Au
- Cu+Cu
- Cu+Au
- Au+Au
- U+U

Center-of-mass energy $\sqrt{s_{NN}}$ [GeV]

Average store luminosity L_{NN} [10^{20} cm$^{-2}$s$^{-1}$]

Luminosity [1020 cm$^{-2}$s$^{-1}$]
RHIC – all running modes to date

2001 to 2016

2015

C. Liu, TUPMW039

2019/20

(see next talk on NICA)

nominal injection energy

Center-of-mass energy $\sqrt{s_{NN}}$ [GeV]

Average store luminosity [1030 cm$^{-2}$s$^{-1}$]

Species combination

- p^+p^+
- $p^+p^{+}\text{Al}$
- $p^+p^{+}\text{Au}$
- $d+\text{Au}$
- $h+\text{Au}$
- $\text{Cu}+\text{Cu}$
- $\text{Cu}+\text{Au}$
- $\text{Au}+\text{Au}$
- $\text{U}+\text{U}$
Low Energy RHIC electron Cooling (LEReC)

A. Fedotov
(not to scale)

Energies E : 1.6, 2.0 (2.65) MeV
Avg. current I_{avg} : 27 mA
Momentum $\delta p/p$: 5×10^{-4}
Luminosity gain : 4×
Low Energy RHIC electron Cooling (LEReC)

Energies E : 1.6, 2.0 (2.65) MeV
Avg. current I_{avg} : 27 mA
Momentum $\delta p/p$: 5×10^{-4}
Luminosity gain : 4×

1st bunched beam electron cooler planned operation in 2019/2020
RHIC Au+Au operation with stochastic cooling

Main luminosity limit: intrabeam scattering
RHIC Run-14 Delivering RHIC-II Au+Au luminosity
RHIC Run-14 Delivering RHIC-II Au+Au luminosity

2007, Beginning of RHIC-II upgrade
RHIC Run-14 Delivering RHIC-II Au+Au luminosity

2007, Beginning of RHIC-II upgrade

2014, End of RHIC-II upgrade

Luminosity [10^{26} \text{ cm}^{-2} \text{s}^{-1}]
RHIC Run-14

Delivering RHIC-II Au+Au luminosity

Increase in initial luminosity result of larger bunch intensity

2007, Beginning of RHIC-II upgrade

2014, End of RHIC-II upgrade

Luminosity $[10^{26} \text{ cm}^{-2} \text{s}^{-1}]$

Time [h]
RHIC Run-14

Delivering RHIC-II Au+Au luminosity

Increase in luminosity lifetime result of 3D stochastic cooling, high peak luminosity not useful without cooling (IBS), losses burn-off dominated

Increase in initial luminosity result of larger bunch intensity

2007, Beginning of RHIC-II upgrade

2014, End of RHIC-II upgrade

Luminosity [10^{26} cm^{-2} s^{-1}]

Time [h]

0 6 12 18 24 30 36 42 48
Au bunch intensity evolution

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

main limits:
- injectors output
- transition instability in RHIC (e-clouds)
- presently Landau cavity RF amplifiers

H. Huang, K. Gardner, K. Zeno, RF, et al.
Au bunch intensity evolution

\[L(t) = \frac{1}{4\pi} f_0 N \left(\frac{N_b^2(t)}{\varepsilon(t) \beta^*(t)} \right) h(\beta^*, \sigma_s, \theta) \]

main limits:
- injectors output
- transition instability in RHIC (e-clouds)
- presently Landau cavity RF amplifiers

H. Huang, K. Gardner, K. Zeno, RF, et al.
Au bunch intensity evolution

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\epsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

main limits:
- injectors output
- transition instability in RHIC (e-clouds)
- presently Landau cavity RF amplifiers

H. Huang, K. Gardner, K. Zeno, RF, et al.

\(\gamma \)-jump, octupoles at transition
Au bunch intensity evolution

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\epsilon(t)\beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

main limits:
- injectors output
- transition instability in RHIC (e-clouds)
- presently Landau cavity RF amplifiers

H. Huang, K. Gardner, K. Zeno, RF, et al.
The Au bunch intensity evolution is shown in the graph. The main limits are:
- Injectors output
- Transition instability in RHIC (e-clouds)
- Presently Landau cavity RF amplifiers

The equation for the intensity evolution is:

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t)\beta^*(t)} h(\beta^*,\sigma_s,\theta) \]

\(N_b(t)\) and \(\varepsilon(t)\) are related to the bunch intensity and the interaction parameter, respectively.
Au bunch intensity evolution

main limits:
- injectors output
- transition instability in RHIC (e-clouds)
- presently Landau cavity RF amplifiers

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

H. Huang, K. Gardner, K. Zeno, RF, et al.
Au bunch intensity evolution

\[L(t) = \frac{1}{4\pi f_0 N} \frac{N_b^2(t)}{e(t)\beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

- **γ**-jump, octupoles at transition
- 111 bunches
- scrubbing with protons
- 43 bunches
- EBIS, Booster 4→2→1, AGS 8→4→2 merge

main limits:
- injectors output
- transition instability in RHIC (e-clouds)
- presently Landau cavity RF amplifiers

H. Huang, K. Gardner, K. Zeno, RF, et al.
Au bunch intensity evolution

\[L(t) = \frac{1}{4\pi f_0 N} \frac{N_b^2(t)}{\varepsilon(t) \beta^*} h(\beta^*, \sigma_s, \theta) \]

- \(\gamma \)-jump, octupoles at transition
- 111 bunches
- scrubbing with protons
- 43 bunches
- EBIS, Booster 4→2→1, AGS 8→4→2 merge
- AGS 12→6→2 merge

Main limits:
- Injectors output
- Transition instability in RHIC (e-clouds)
- Presently Landau cavity RF amplifiers

H. Huang, K. Gardner, K. Zeno, RF, et al.
Au bunch intensity evolution

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b(t)}{\varepsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

main limits:
- injectors output
- transition instability in RHIC (e-clouds)
- presently Landau cavity RF amplifiers

H. Huang, K. Gardner, K. Zeno, RF, et al.
3D stochastic cooling for heavy ions

longitudinal pickup

transverse kicker cavity (half side with waveguides)

transverse pickups, FO

fibre-optic links

longitudinal kicker

microwave links

longitudinal kicker

5-9 GHz, cooling times ~1 h

horizontal and vertical pickups

horizontal kicker (open)

vertical kicker (closed)

M. Brennan, M. Blaskiewicz, F. Severino, PRL 100 174803 (2008); K. Mernick PRSTAB, PAC, EPAC
intensities (left scale)
beam loss rates (right scale)
burn-off rates (right scale)
emittances (BH, BV, YH, YV)
luminosity PHENIX
luminosity STAR

Au+Au operation in 2016
8 h

Time [hh:mm]
Au+Au operation in 2016

1. One experiment (STAR) with max leveled L (use transverse offset for leveling)
other experiment (PHENIX) without max L
Au+Au operation in 2016

1. One experiment (STAR) with max leveled L (use transverse offset for leveling) other experiment (PHENIX) without max L

2. Operate close to burn-off limit (all beam losses due to collision)
Au+Au operation in 2016

1. One experiment (STAR) with max leveled L (use transverse offset for leveling) other experiment (PHENIX) without max L

2. Operate close to burn-off limit (all beam losses due to collision)

3. Reduced initial cooling reduces L in PHENIX, preserves intensity, and allows for longer leveled stores for STAR
Ion beams with cooling – tolerance for emittance growth

- Bunch intensity N_b, was limited by transition instability in RHIC
 - (1) high peak current – (2) also triggers e-clouds, (3) no synchrotron motion, (4) chromaticity does not change fast enough through transition

- Can tolerate emittance growth at transition as long as it does not lead to intensity loss (need all ions for burn-off)

- Useful feature during electron lens commissioning with Au beams experiments tolerated intermittent emittance growth from electron beam commissioning or quenched solenoids
U+U operation at burn-off limit – allows measurement of σ_{tot}
U+U operation at burn-off limit – allows measurement of σ_{tot}

97% of intensity burned off at L_{max}
U+U operation at burn-off limit – allows measurement of σ_{tot}

97% of intensity burned off at L_{max}

\[
\frac{dN_B(t)}{dt} = \frac{dN_Y(t)}{dt} = -[\mathcal{L}_6(t) + \mathcal{L}_8(t)] \sigma_{tot}
\]
U+U operation at burn-off limit – allows measurement of σ_{tot}

97% of intensity burned off at L_{max}

Burn-off dominated operation allows for determination of total U+U cross section σ_{tot} – and comparison with calculation (mostly QED) published in Phys. Rev. C =>
U+U operation at burn-off limit – allows measurement of σ_{tot}

97% of intensity burned off at L_{max}

Burn-off dominated operation allows for determination of total U+U cross section σ_{tot} – and comparison with calculation (mostly QED) published in Phys. Rev. C =>
2016 event with increased luminosity \((L_{\text{avg}} \text{ now } 40\times \text{ design}) \) — shorted quench protection diode
2016 event with increased luminosity \((L_{\text{avg}} \text{ now } 40\times \text{ design}) \) – shorted quench protection diode

19 d for exchange of shorted quench protection diode
2016 event with increased luminosity \((L_{avg}\text{ now 40x design})\) – shorted quench protection diode

19 d for exchange of shorted quench protection diode
2016 event with increased luminosity \((L_{\text{avg}} \text{ now } 40x \text{ design}) \) —
shorted quench protection diode

Large orbit bumps protect experiments in abort kicker pre-fire

19 d for exchange of shorted quench protection diode
2016 event with increased luminosity \((L_{\text{avg}} \text{ now } 40x \text{ design})\) –
shorted quench protection diode

Large orbit bumps protect experiments in abort kicker pre-fire

Locations of max orbit deviation are momentum collimators for secondary beams generated in collision
\((\text{Au ions with captured } e, \text{ or expelled } n)\)

\(\Rightarrow\) radiation damage to diode \((\sim 15 \text{ kGy})\)

19 d for exchange of shorted quench protection diode
RHIC $p\uparrow+p\uparrow$ operation with head-on beam-beam compensation

Main luminosity limit: beam-beam
Special devices for polarized protons: source, polarimeters, snakes, rotator, flipper

Absolute Polarimeter (H jet)

RHIC pC Polarimeters

Spin flipper

Siberian Snakes

PHENIX (p)

Spin Rotators (longitudinal polarization)

STAR (p)

Spin Rotators (longitudinal polarization)

Solenoid Partial Siberian Snake

Strong AGS Snake

Linac Booster

Pol. H$^-$ Source

200 MeV Polarimeter

AGS Polarimeters

Helical Partial Siberian Snake
p bunch intensity and polarization

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

\[FOM = LP^4 \sim N_b^2 P^4 \]

main limits:
- injectors output
- polarization
- beam-beam in RHIC

A. Zelenski, H. Huang, K. Gardner, K. Zeno, RF, et al.
p bunch intensity and polarization

\[L(t) = \frac{1}{4\pi} f_0 N_b N_b^2(t) \frac{h(\beta^*, \sigma_s, \theta)}{e(t) \beta^*(t)} \]

\[FOM = LP^4 \sim N_b^2 P^4 \]

main limits:
- injectors output
- polarization
- beam-beam in RHIC
p bunch intensity and polarization

AGS warm snake

$$L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta)$$

$$FOM = LP^4 \sim N_b^2 P^4$$

main limits:
- injectors output
- polarization
- beam-beam in RHIC

A. Zelenski, H. Huang, K. Gardner, K. Zeno, RF, et al.
Proton bunch intensity and polarization

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

\[FOM = LP^4 \sim N_b^2 P^4 \]

Main limits:
- Injectors output
- Polarization
- Beam-beam in RHIC

A. Zelenski, H. Huang, K. Gardner, K. Zeno, RF, et al.
p bunch intensity and polarization

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N^2_b(t)}{\varepsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

\[FOM = LP^4 \sim N_b^2 P^4 \]

AGS warm snake
polarized source upgrade with sc solenoid

AGS cold snake

main limits:
- injectors output
- polarization
- beam-beam in RHIC

A. Zelenski, H. Huang, K. Gardner, K. Zeno, RF, et al.
p bunch intensity and polarization

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

\[FOM = LP^4 \sim N_b^2 P^4 \]

AGS tune jumps, RHIC 9 MHz RF
AGS warm snake
AGS cold snake
AGS polarized source upgrade with sc solenoid

main limits:
- injectors output
- polarization
- beam-beam in RHIC

A. Zelenski, H. Huang, K. Gardner, K. Zeno, RF, et al.
p bunch intensity and polarization

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N^2_b(t)}{\varepsilon(t) \beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

FOM = LP^4 \sim N_b^2 P^4

main limits:
- injectors output
- polarization
- beam-beam in RHIC

A. Zelenski, H. Huang, K. Gardner, K. Zeno, RF, et al.
p bunch intensity and polarization

\[L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t)\beta^*(t)} h(\beta^*, \sigma_s, \theta) \]

\(FOM = LP^4 \sim N_b^2 P^4 \)

main limits:
- injectors output
- polarization
- beam-beam in RHIC

A. Zelenski, H. Huang, K. Gardner, K. Zeno, RF, et al.
p bunch intensity and polarization

- **AGS warm snake**
 - polarized source upgrade with sc solenoid

- **AGS cold snake**
 - AGS tune jumps, RHIC 9 MHz RF
 - polarized source upgrade with Atomic Beam Source
 - beam-beam compensation

Main limits:
- injectors output
- polarization
- beam-beam in RHIC

Ultimate goal

\[
L(t) = \frac{1}{4\pi} \int_0^N N_b^2(t) \frac{d}{d\beta^*} h(\beta^*, \sigma_s, \theta)
\]

FOM = \(LP^4 \sim N_b^2P^4\)

A. Zelenski, H. Huang, K. Gardner, K. Zeno, RF, et al.
Head-on beam-beam compensation

Correction in same turn, need to fulfill 2 conditions:
Head-on beam-beam compensation

Correction in same turn, need to fulfill 2 conditions:

1. \(k\pi \) phase advance minimizes beam-beam resonance driving terms – implemented with ATS type lattice (Simon White, now ESRF)

new lattice with better DA and larger bb param. \(\xi \)
Head-on beam-beam compensation

Correction in same turn, need to fulfill 2 conditions:

1. $k\pi$ phase advance minimizes beam-beam resonance driving terms – implemented with ATS type lattice (Simon White, now ESRF).
2. New lattice with better DA and larger bb param. ξ

(2) Same amplitude correction kick as bb kick reduces beam-beam tune spread – implemented with electron lenses (not possible with magnets)
Head-on beam-beam compensation

Correction in same turn, need to fulfill 2 conditions:

1. $k\pi$ phase advance minimizes beam-beam resonance driving terms – implemented with ATS type lattice (Simon White, now ESRF), new lattice with better DA and larger bb param. ξ

2. Same amplitude correction kick as bb kick reduces beam-beam tune spread – implemented with electron lenses (not possible with magnets)
RHIC electron lenses

Overview

Xiaofeng Gu, liaison physicist
RHIC electron lenses

Overview

Xiaofeng Gu, liaison physicist
RHIC electron lenses

Overview
Xiaofeng Gu, liaison physicist

- Warm solenoids
- Electron gun

Diagram showing the path of pions (p) and electrons (e-) through the RHIC electron lenses.
RHIC electron lenses

Overview

SC main solenoid
B = 6 T, I = 440 A
+ 16 more magnets
(fringe fields, correctors)

Xiaofeng Gu, liaison physicist
RHIC electron lenses

Overview

SC main solenoid
B = 6 T, I = 440 A
+ 16 more magnets
(fringe fields, correctors)

Xiaofeng Gu, liaison physicist

e^-

cold solenoids

electron gun

electron collector
RHIC electron lenses

Overview

Xiaofeng Gu, liaison physicist

SC main solenoid
B = 6 T, I = 440 A
+ 16 more magnets
(fringe fields, correctors)

Warm solenoids

Electron gun

Orbit steerers

Electron collector

Brookhaven National Laboratory
RHIC electron lenses

Overview

- **SC main solenoid**
 - $B = 6 \text{ T}, I = 440 \text{ A}$
 - + 16 more magnets (fringe fields, correctors)

- **Warm solenoids**

- **Orbit steerers**

- **Electron gun**

- **Electron collector**

Xiaofeng Gu, liaison physicist
TABLE I. Typical electron lens parameters for 2015 and design values (for up to 250 GeV proton energy).

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>2015 value</th>
<th>Design value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance of center from IP10</td>
<td>m</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Magnetic length L_e</td>
<td>m</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Gun solenoid field B_g</td>
<td>T</td>
<td>0.31</td>
<td>≤ 0.69</td>
</tr>
<tr>
<td>Main solenoid field B_m</td>
<td>T</td>
<td>5.0</td>
<td>2–6</td>
</tr>
<tr>
<td>Cathode radius (2.7σ)</td>
<td>mm</td>
<td>7.5</td>
<td>4.1, 7.5</td>
</tr>
<tr>
<td>rms beam size in main solenoid σ_e</td>
<td>µm</td>
<td>650</td>
<td>≥ 300</td>
</tr>
<tr>
<td>Kinetic energy E_e</td>
<td>keV</td>
<td>5.0</td>
<td>≤ 10</td>
</tr>
<tr>
<td>Relativistic factor β_e</td>
<td>...</td>
<td>0.14</td>
<td>≤ 0.2</td>
</tr>
<tr>
<td>Electron beam current I_e</td>
<td>mA</td>
<td>600</td>
<td>≤ 10000</td>
</tr>
<tr>
<td>Beam-beam parameter from lens ξ_e</td>
<td></td>
<td>0.001</td>
<td>+10</td>
</tr>
</tbody>
</table>

Technology sources: Tevatron e-lenses (V. Shiltsev et al.), RHIC Electron Beam Ion Source (EBIS) (J. Alessi et al.)
TABLE I. Typical electron lens parameters for 2015 and design values (for up to 250 GeV proton energy).

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>2015 value</th>
<th>Design value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance of center from IP10</td>
<td>m</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Magnetic length L_e</td>
<td>m</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Gun solenoid field B_0</td>
<td>T</td>
<td>0.31</td>
<td>≤ 0.69</td>
</tr>
<tr>
<td>Main solenoid field B_m</td>
<td>T</td>
<td>5.0</td>
<td>2–6</td>
</tr>
<tr>
<td>Cathode radius (2.7σ)</td>
<td>mm</td>
<td>7.5</td>
<td>4.1, 7.5</td>
</tr>
<tr>
<td>rms beam size in main solenoid</td>
<td>μm</td>
<td>650</td>
<td>≥ 300</td>
</tr>
<tr>
<td>Kinetic energy E_e</td>
<td>keV</td>
<td>5.0</td>
<td>≤ 10</td>
</tr>
<tr>
<td>Relativistic factor β_e</td>
<td>...</td>
<td>0.14</td>
<td>≤ 0.2</td>
</tr>
<tr>
<td>Electron beam current I_e</td>
<td>mA</td>
<td>600</td>
<td>≤ 1000</td>
</tr>
<tr>
<td>Beam-beam parameter from lens ξ_e</td>
<td>0.001</td>
<td>$+10$</td>
<td>$\leq +15$</td>
</tr>
</tbody>
</table>

Technology sources: Tevatron e-lenses (V. Shiltsev et al.),
RHIC Electron Beam Ion Source (EBIS) (J. Alessi et al.)
Head-on bb compensation

Tune distributions from e-lens

tune distribution measured with transverse BTF

complex coherent response $R(Q)$ to small sinusoidal excitation at tune Q

non-zero $\text{Im}(R) = \text{non-zero particle distribution}$

current scan ($\sigma_e = 0.55 \text{ mm}$)

size scan ($I_e = 900 \text{ mA}$)
Head-on bb compensation
Tune distributions from e-lens

tune distribution measured with transverse BTF
complex coherent response $R(Q)$ to
small sinusoidal excitation at tune Q
non-zero $\text{Im}(R) = \text{non-zero particle distribution}$

current scan ($\sigma_e = 0.55 \text{ mm}$)

size scan ($I_e = 900 \text{ mA}$)

$\Delta Q = 0.013$

$\xi_{\text{max}} = -0.011$ (max in 2015 RHIC operations)
Head-on bb compensation

tune distribution could not be measured with BTF and p+p collisions due to coherent modes

Head-on bb compensation

tune distribution **could not** be measured with BTF and p+p collisions due to coherent modes

Footprint compression

tune distribution **can be** measured with BTF and p+Al collisions

- proton beam: $(Q_x, Q_y) = (0.685, 0.695)$
- Al beam: $(Q_x, Q_y) = (0.685, 0.695)$

$\Delta Q_x, \Delta Q_y \gg \xi \Rightarrow$ no coherent modes
Head-on bb compensation

Tune distribution could not be measured with BTF and p+p collisions due to coherent modes.

Tune distribution can be measured with BTF and p+Al collisions.
Proton beam: \((Q_x, Q_y) = (0.685, 0.695)\); Al beam: \((Q_x, Q_y) = (0.685, 0.695)\); \(\Delta Q_x, \Delta Q_y \gg \xi\) \(\Rightarrow\) no coherent modes.
Head-on bb compensation

Tune distribution **could not** be measured with BTF and $p+p$ collisions due to coherent modes

Tune distribution **can be** measured with BTF and $p+Al$ collisions

Proton beam: $(Q_x, Q_y) = (.685,.695)$; Al beam: $(Q_x, Q_y) = (.685,.695)$; $\Delta Q_x, \Delta Q_y \gg \xi$ => no coherent modes

Footprint compression

Graph showing graph with different settings.
Head-on bb compensation

tune distribution could not be measured with BTF and p+p collisions due to coherent modes

tune distribution can be measured with BTF and p+Al collisions

proton beam: $(Q_x, Q_y) = (0.685, 0.695)$; Al beam: $(Q_x, Q_y) = (0.685, 0.695)$; $\Delta Q_x, \Delta Q_y \gg \xi \Rightarrow$ no coherent modes
Head-on bb compensation

Tune distribution could not be measured with BTF and p+p collisions due to coherent modes (works in simulations – P. Görgen et al. NIM A 777, pp. 43-53 (2015))

Footprint compression

Tune distribution can be measured with BTF and p+Al collisions

Proton beam: \((Q_x, Q_y) = (0.685, 0.695)\); Al beam: \((Q_x, Q_y) = (0.685, 0.695)\); \(\Delta Q_x, \Delta Q_y >> \xi \Rightarrow \) no coherent modes

\[\Delta Q \text{ reduction from e-lens} \]

\[2x \text{ bb} \]

\[\text{no bb} \]
Head-on bb compensation

tune distribution could not be measured with BTF and p+p collisions due to coherent modes

tune distribution can be measured with BTF and p+Al collisions
proton beam: \((Q_x, Q_y) = (.685,.695);\) Al beam: \((Q_x, Q_y) = (.685,.695);\) \(\Delta Q_x, \Delta Q_y \gg \xi\) => no coherent modes

Footprint compression

Can only reduced BB tune spread (black curve is limit)
e-lenses in operation with collisions at 2 experiments

- Luminosities
- IPM emittances
- e-lens e-beam currents
- Backscattered electron rates
- Luminosities [10^30 cm^-2 s^-1]
- RMS Emittance [mm.mrad]
- e-lens current [mA]
- eBSD rate
e-lenses in operation with collisions at 2 experiments
1. e-lenses turn on before collision
(112 stores with both lenses without a single turn-on failure)
e-lenses in operation with collisions at 2 experiments

1. e-lenses turn on before collision
 (112 stores with both lenses without a single turn-on failure)

2. luminosities

3. IPM emittances

4. e-lens e-beam currents

 backscattered electron rates
e-lenses in operation with collisions at 2 experiments

1. e-lenses turn on before collision
 (112 stores with both lenses without a single turn-on failure)

2. Beams into collision at PHENIX, collimators to store positions
 (requires PHENIX collisions)
1. e-lenses turn on before collision
 (112 stores with both lenses without a single turn-on failure)

2. Beams into collision at PHENIX, collimators to store positions
 (requires PHENIX collisions)
1. e-lenses turn on before collision (112 stores with both lenses without a single turn-on failure)

2. Beams into collision at PHENIX, collimators to store positions (requires PHENIX collisions)

3. Beams into collision at STAR and e-lenses. e-lenses prevent emittance growth and/or beam loss for large beam-beam param. ξ
1. e-lenses turn on before collision
 (112 stores with both lenses without a single turn-on failure)

2. Beams into collision at PHENIX, collimators to store positions
 (requires PHENIX collisions)

3. Beams into collision at STAR and e-lenses
 e-lenses prevent emittance growth and/or beam loss for large beam-beam param. ξ
1. E-lenses turn on before collision (112 stores with both lenses without a single turn-on failure)

2. Beams into collision at PHENIX, collimators to store positions (requires PHENIX collisions)

3. Beams into collision at STAR and e-lenses
 e-lenses prevent emittance growth and/or beam loss for large beam-beam param. ξ

4. Lenses are gradually turned off when lattice alone can sustain bb parameter ξ
Head-on bb compensation

Initial emittance and 5 min later, beam loss over 5 min

Increase in bb parameter ξ with lens

2 data sets:
(1) 2015 ops
(2) tests for max $|\xi|$
Head-on bb compensation increases in L and ξ

<table>
<thead>
<tr>
<th>quantity</th>
<th>unit</th>
<th>operations (avg. over 10 best stores)</th>
<th>tests for max ξ_p without e-lens</th>
<th>with e-lens</th>
<th>with e-lens e-lens — 2015 —</th>
</tr>
</thead>
<tbody>
<tr>
<td>bunch intensity N_p</td>
<td>10^{11}</td>
<td>1.6 2.25</td>
<td>2.6 2.15 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no of bunche k_b</td>
<td>...</td>
<td>109 111</td>
<td>48 111 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta_{x,y}^*$ at IP6, IP8 (p+p)</td>
<td>m</td>
<td>0.85 0.85</td>
<td>— 0.85 —</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta_{x,y}^*$ at e-lens (p+e)</td>
<td>m</td>
<td>10.5 15.0</td>
<td>— 15.0 —</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lattice tunes (Q_x, Q_y)</td>
<td>...</td>
<td>(0.695, 0.685)</td>
<td>— (0.695, 0.685) —</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rms emittance ϵ_n</td>
<td>μm</td>
<td>3.3 2.8</td>
<td>3.5 2.4 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rms beam size IP6/8 σ_p^*</td>
<td>μm</td>
<td>165 150</td>
<td>170 150 125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rms beam size e-lens σ_p</td>
<td>μm</td>
<td>— 630</td>
<td>700 645 520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rms bunch length σ_s</td>
<td>m</td>
<td>0.63 0.70</td>
<td>0.77 0.70 0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hourglass factor H</td>
<td>...</td>
<td>0.74 0.75</td>
<td>0.78 0.81 0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beam-beam param. ξ_p/IP 0.001</td>
<td></td>
<td>-5.8 -9.7</td>
<td>-9.1 -10.9 -12.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td># of beam-beam IPs</td>
<td>...</td>
<td>2 2+1*</td>
<td>2 2+1* 2+1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>luminosity L_{peak}</td>
<td>10^{30} cm$^{-2}$s$^{-1}$</td>
<td>46 115</td>
<td>72 115 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>luminosity L_{avg}</td>
<td>10^{30} cm$^{-2}$s$^{-1}$</td>
<td>33 63</td>
<td>— — —</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: It is possible that higher beam-beam parameters ξ can demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)
Head-on bb compensation

<table>
<thead>
<tr>
<th>quantity</th>
<th>unit</th>
<th>operations (avg. over 10 best stores)</th>
<th>tests for max</th>
<th>2 data sets:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2012 2015</td>
<td>without e-lens e-ler 2015</td>
<td>(1) 2015 ops</td>
</tr>
<tr>
<td>bunch intensity N_p</td>
<td>10^{11}</td>
<td>1.6 2.25</td>
<td>2.6 2.15</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>no of bunches k_b</td>
<td>...</td>
<td>109 111</td>
<td>48 111 30</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>$\beta_{x,y}^*$ at IP6, IP8 (p+p)</td>
<td>m</td>
<td>0.85 0.85</td>
<td>— 0.85 —</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>$\beta_{x,y}^*$ at e-lens (p+e)</td>
<td>m</td>
<td>10.5 15.0</td>
<td>— 15.0 —</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>lattice tunes (Q_x, Q_y)</td>
<td>...</td>
<td>(0.695, 0.685)</td>
<td>— (0.695, 0.685) —</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>rms emittance ϵ_n</td>
<td>μm</td>
<td>3.3 2.8</td>
<td>3.5 2.4 1.9</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>rms beam size IP6/8 σ_p^*</td>
<td>μm</td>
<td>165 150</td>
<td>170 150 125</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>rms beam size e-lens σ_p</td>
<td>μm</td>
<td>— 630</td>
<td>700 645 520</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>rms bunch length σ_s</td>
<td>m</td>
<td>0.63 0.70</td>
<td>0.77 0.70 0.56</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>hourglass factor H</td>
<td>...</td>
<td>0.74 0.75</td>
<td>0.78 0.81 0.86</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>beam-beam param. ξ_p/IP</td>
<td>0.001</td>
<td>-5.8 -9.7</td>
<td>-9.1 -10.9 -12.6</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td># of beam-beam IPs</td>
<td>...</td>
<td>2 2+1*</td>
<td>2 2+1* 2+1*</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>luminosity L_{peak}</td>
<td>10^{30} cm$^{-2}$s$^{-1}$</td>
<td>46 115</td>
<td>72 115 40</td>
<td>(2) tests for max $</td>
</tr>
<tr>
<td>luminosity L_{avg}</td>
<td>10^{30} cm$^{-2}$s$^{-1}$</td>
<td>33 63</td>
<td>— — —</td>
<td>(2) tests for max $</td>
</tr>
</tbody>
</table>

Note: It is possible that higher beam-beam parameters ξ can demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)
Head-on bb compensation

| quantity | unit | 2012 | 2015 | 2015 | tests for max $|\xi|$ |
|-----------------------------|------|------|------|------|----------------|
| bunch intensity N_p | 10^{11} | 1.6 | 2.25 | 2.6 | 2.15 |
| no of bunches k_b | | 109 | 111 | 48 | 111 |
| $\beta^*_{,y}$ at IP6, IP8 (p+p) | m | 0.85 | 0.85 | — | 0.85 |
| $\beta^*_{,y}$ at e-lens (p+e) | m | 10.5 | 15.0 | — | 15.0 |
| lattice tunes (Q_x, Q_y) | | (0.695, 0.685) | (0.695, 0.685) | — | — |
| rms emittance ϵ_n | μm | 3.3 | 2.8 | 3.5 | 2.4 |
| rms beam size IP6/8 σ^*_p | μm | 165 | 150 | 170 | 150 |
| rms beam size e-lens σ_p | μm | — | 630 | 700 | 645 |
| rms bunch length σ_s | m | 0.63 | 0.70 | 0.77 | 0.70 |
| hourglass factor H | | 0.74 | 0.75 | 0.78 | 0.81 |
| beam-beam param. ξ_p/IP | 0.001 | — | — | — | — |
| # of beam-beam IPs | | 2 | 2+1* | 2 | 2+1* |
| luminosity L_{peak} | 10^{30} cm$^{-2}$ s$^{-1}$ | 46 | 115 | 72 | 115 |
| luminosity L_{avg} | 10^{30} cm$^{-2}$ s$^{-1}$ | 33 | 63 | — | — |

L_{peak} **2.5x increase**
L_{avg} **1.9x increase**

Note: It is possible that higher beam-beam parameters ξ can be demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)
Head-on bb compensation

| quantity | unit | operations (avg. over 10 best stores) | tests for max $|\xi|$ without with e-lens e-lens (2015) |
|--------------------------------|------|---------------------------------------|------------------|
| bunch intensity N_p | 10^{11} | 1.6 2.25 | 2.6 2.15 — |
| no of bunches k_b | ... | 109 111 | 48 111 30 |
| $\beta_{x,y}$ at IP6, IP8 (p+p) | m | 0.85 0.85 | — 0.85 — |
| $\beta_{x,y}$ at e-lens (p+e) | m | 10.5 15.0 | — 15.0 — |
| lattice tunes (Q_x, Q_y) | ... | (0.695,0.685) | — (0.695,0.685) — |
| rms emittance ϵ_n | μm | 3.5 2.4 1.9 | 3.5 2.4 1.9 |
| rms beam size IP6/8 σ_p | μm | 16 170 150 125 | 170 150 125 |
| rms beam size e-lens σ_p | μm | — 700 645 520 | 700 645 520 |
| rms bunch length σ_s | m | 0.63 0.70 | 0.77 0.70 0.56 |
| hourglass factor H | ... | 0.74 0.75 | 0.78 0.81 0.86 |
| beam-beam param. ξ_p/IP | 0.001 | —9.1 —9.7 —12.6 | —9.1 —12.6 — |
| # of beam-beam IPs | | 2 2+1* | 2 2+1* 2+1* |
| luminosity L_{peak} | 10^{30} cm$^{-2}$s$^{-1}$ | 46 115 | 72 115 40 |
| luminosity L_{avg} | 10^{30} cm$^{-2}$s$^{-1}$ | 33 63 | — — — |

L_{peak} 2.5× increase
L_{avg} 1.9× increase

Note: It is possible that higher beam-beam parameters ξ can be demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)

2 data sets:
(1) 2015 ops
(2) tests for max $|\xi|$
Head-on bb compensation

<table>
<thead>
<tr>
<th>quantity</th>
<th>unit</th>
<th>operations (avg. over 10 best stores)</th>
<th>tests for max</th>
<th>Note: It is possible that higher beam-beam parameters ξ can demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bunch intensity N_p</td>
<td>10^{11}</td>
<td>1.6</td>
<td>2.25</td>
<td>2.6</td>
</tr>
<tr>
<td>no of bunches k_b</td>
<td></td>
<td>109</td>
<td>111</td>
<td>48</td>
</tr>
<tr>
<td>$\beta^*_{x,y}$ at IP6, IP8 (p+p)</td>
<td>m</td>
<td>0.85</td>
<td>0.85</td>
<td>—</td>
</tr>
<tr>
<td>$\beta^*_{x,y}$ at e-lens (p+e)</td>
<td>m</td>
<td>10.5</td>
<td>15.0</td>
<td>—</td>
</tr>
<tr>
<td>lattice tunes (Q_x, Q_y)</td>
<td></td>
<td>(0.695, 0.685)</td>
<td>—</td>
<td>(0.695, 0.685)</td>
</tr>
<tr>
<td>rms emittance ϵ_n</td>
<td>μm</td>
<td>3.</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>rms beam size IP6/8 σ_p^*</td>
<td>μm</td>
<td>16</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>rms beam size e-lens σ_p</td>
<td>μm</td>
<td>—</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>rms bunch length σ_s</td>
<td>m</td>
<td>0.63</td>
<td>0.70</td>
<td>0.77</td>
</tr>
<tr>
<td>hourglass factor H</td>
<td></td>
<td>0.74</td>
<td>0.75</td>
<td>0.78</td>
</tr>
<tr>
<td>beam-beam param. ξ_p/IP</td>
<td></td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td># of beam-beam IPs</td>
<td></td>
<td>2</td>
<td>2+1*</td>
<td>2</td>
</tr>
<tr>
<td>luminosity L_{peak}</td>
<td>10^{30} cm$^{-2}$s$^{-1}$</td>
<td>46</td>
<td>115</td>
<td>72</td>
</tr>
<tr>
<td>luminosity L_{avg}</td>
<td>10^{30} cm$^{-2}$s$^{-1}$</td>
<td>33</td>
<td>63</td>
<td>—</td>
</tr>
</tbody>
</table>

2 data sets: (1) 2015 ops (2) tests for max $|\xi|$
Head-on bb compensation

increases in L and ξ

2 data sets:
(1) 2015 ops
(2) tests for max $|\xi|$

Note: It is possible that higher beam-beam parameters ξ can demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)

Wolfram Fischer
Summary – RHIC upgrades

Continue to run new species combinations at various energies
Summary – RHIC upgrades

Continue to run new species combinations at various energies →
Summary – RHIC upgrades

Continue to run new species combinations at various energies →

Completed stochastic cooling upgrade for A+A, increase in N_b
left 7x increase in avg. luminosity
(further 2x luminosity increase planned)
Summary – RHIC upgrades

Continue to run new species combinations at various energies →

Completed stochastic cooling upgrade for A+A, increase in N_b
← 7x increase in avg. luminosity
(further 2x luminosity increase planned)
Summary – RHIC upgrades

Continue to run new species combinations at various energies →

Completed stochastic cooling upgrade for A+A, increase in N_b

\leftarrow 7x increase in avg. luminosity

(further 2x luminosity increase planned)

First operational use of head-on beam-beam compensation for $p^{↑}+p^{↑}$ (lattice + e-lenses),
iincrease in N_b, 2x increase in avg. L at 100 GeV →

(further 3/4x luminosity increase planned at 100/250 GeV)