Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPMB012 | A High-Energy-Scrapersystem for the S-DALINAC Extraction - Design and Installation | electron, linac, vacuum, dipole | 101 |
|
|||
Funding: *Funded by Deutsche Forschungsgemeinschaft under grant No. SFB 634 The superconducting Darmstadt linear electron accelerator (S-DALINAC) of the Institute for Nuclear Physics at Technische Universität Darmstadt delivers electron beams in cw-mode with energies up to 130 MeV. The accelerator consists of a 10-MeV injector and a 30-MeV main linac where superconducting 3-GHz microwave cavities are operated at a temperature of 2 K for beam acceleration. With three recirculation beamlines the main linac can be used up to four times. To improve the energy spread and the energy stability of the beam a new scrapersystem has been developed and installed. It changes the extraction beam line into a dispersion-conserving chicane consisting of four dipole magnets and three scrapers. The system includes scraping of x- and y-halo in two positions as well as improving and stabilizing energy spread on a dispersive part. We will present the design of the system and report on its installation into the accelerator complex. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMB022 | Conceptual Design for SR Monitor in the FCC Beam Emittance (Size) Diagnostic | diagnostics, emittance, vacuum, brightness | 133 |
|
|||
A conceptual design for emittance diagnostics through a beam size measurement using the synchrotron radiation (SR) is studied for the FCC. For the FCC-ee, a X-ray interferometer is propose to measure a nano-radian order vertical beam size. Also conceptual design of SR monitor is studied for FCC-hh. In the FCC-hh, visible SR will emitted from bending magnet in the energy range from the injection (3TeV) to top energy (50TeV). Hard X-ray SR will only available in the energy upper than 30TeV. The various instrumentations using the visible SR is usable for all energy range. Around the top energy, the X-ray pinhole camera will convenient for beam diagnostics of emittance through the beam size measurement. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB022 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMB024 | Electron Cloud Measurements at J-PARC Main Ring | electron, detector, vacuum, proton | 137 |
|
|||
Electron cloud instability is presented in most of the high intensity proton rings. During the Slow beam extraction (SX) mode at Main Ring of J-PARC, signals related with its formation were observed. An electron cloud detector is installed downstream of the ElectroStatic Septum (ESS), to measure the electron signal. Additionally, scintillation detector with photomultiplier, a proportional counter and photo-diode were set closely to the electron cloud detector to observe the beam lost. This paper presents the measurements of the electron cloud and some of the conditions which support its creation, for instance the signal of lost particle from the beam loss monitors, the residual gas in the vacuum duct by using vacuum pressure gauges, etc. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB024 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMR028 | Emittance Characterisation of High Brightness Beams in the CERN PS | emittance, proton, brightness, synchrotron | 299 |
|
|||
Measurements in the CERN Proton Synchrotron showed that achieving the required accuracy for the emittance characterisation of high brightness beams is challenging. Some of the present limits can be related to systematic errors in the wire scanner calibration or, for the horizontal emittance determination, in the assumptions adopted while deconvoluting the contribution of the longitudinal plane from the measured transverse profile. We present in this paper the results of a beam-based test of the wire scanner calibration and of a general numerical deconvolution algorithm to compute the betatronic profile starting from the measured ones. In addition to the bunch train average emittance, a bunch-by-bunch transverse emittance measurement would increase the potential to understand, optimise and monitor the beam performance. In 2015 the first PS bunch-by-bunch measurement chain was setup. The results are reported and discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMR030 | Performance of the Upgraded Synchrotron Radiation Diagnostics at the LHC | radiation, synchrotron, synchrotron-radiation, diagnostics | 306 |
|
|||
During the LHC long shut down in 2014, the transverse beam size diagnostics based on synchrotron radiation was upgraded in order to cope with the increase of the LHC beam energy to 6.5 TeV. The wavelength used for imaging was shifted to near ultra-violet to reduce the contribution of diffraction to the system resolution, while in parallel, a new diagnostic system based on double slit interferometry was installed to measure the beam size by studying the spatial coherence of the emitted synchrotron radiation. This method has never been implemented before in a proton machine. A Hartmann mask was also installed to identify possible wavefront distortions that could affect the system accuracy. This paper will focus on the comparison of visible and the near ultra-violet imaging and on the first experience with interferometry. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMW035 | Wakefield Excitation in Power Extraction Cavity (PEC) of Co-linear X-band Energy Booster (CXEB) in Time Domain (T3P) with ACE3P | cavity, electron, booster, simulation | 477 |
|
|||
In our previous papers we provided the general concept and the design details of our proposed Co-linear X-band Energy Booster (CXEB) as well as more advanced 3D simulations of our system using the frequency domain solvers OMEGA3P and S3P of the ACE3P Suite. Here, using the time domain solver T3P of ACE3P, we provide the single bunch and multiple bunch wakefield excitations resulting from a Gaussian bunch. The related power extraction mechanism for our traveling wave (TW) X-band power extraction cavity (PEC) are also discussed further. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMW036 | Frequency Domain Simulations of Co-linear X-band Energy Booster (CXEB) RF Cavity Structures and Passive RF Components with ACE3P | cavity, electron, laser, impedance | 480 |
|
|||
Due to their higher intrinsic shunt impedance X-band accelerating structures offer significant gradients with relatively modest input powers, and this can lead to more compact light sources. At the Colorado State University Accelerator Laboratory (CSUAL) [1] we would like to adapt this technology to our 1.3-GHz, L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the comparisons of the important parameters achieved using SUPERFISH and OMEGA3P for our Co-linear X-band Energy Booster (XCEB) system that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structures while driven solely by the beam from the L-band system. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOW040 | High Efficiency, High Brightness X-ray Free Electron Lasers via Fresh Bunch Self-Seeding | electron, undulator, simulation, photon | 805 |
|
|||
High efficiency, terawatt peak power X-ray Free Electron Lasers are a promising tool for enabling single molecule imaging and nonlinear science using X-rays. Increasing the efficiency of XFELs while achieving good longitudinal coherence can be achieved via self-seeding and undulator tapering. The efficiency of self-seeded XFELs is limited by two factors: the ratio of seed power to beam energy spread and the ratio of seed power to shot noise power. We present a method to overcome these limitations by producing a strong X-ray seed and amplifying it with a small energy spread beam. This is achieved by selectively suppressing lasing for part of the bunch in the SASE section. In this manner we can saturate with the seeding electrons and amplify the strong seed with 'fresh' electrons downstream of the monochromator. Simulations of this scenario are presented for two systems, an optimal superconducting undulator design and the LCLS. In the case of the LCLS we examine how betatron oscillations leading to selective suppression are induced by using the transverse wakefield of a parallel plate dechirper. We also discuss extending the selective suppression scheme to chirped electron bunches. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW040 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY003 | Study of Achieving Low Energy Beam by Energy Degradation and Direct Resonance Extraction in a Compact Ring | space-charge, resonance, synchrotron, simulation | 850 |
|
|||
We have designed a compact proton synchrotron(7~230 MeV) for applications like proton therapy and space environment study. These applications may require slow extraction from 10~230 MeV. Traditionally, the low energy beam(10~70 MeV) is achieved by energy degradation from high energy beam which may cause beam lose and energy spread increase, because the beam quality may suffer from magnetic remanence, power ripple and strong space charge effects in low energy stage. To achieve high quality beam directly from resonance extraction, we study these effects by performing multi-particle simulation. Methods of improving beam quality are discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY007 | High Energy Booster Options for a Future Circular Collider at CERN | injection, booster, collider, hadron | 856 |
|
|||
In case a Future Circular Collider for hadrons (FCC-hh) is constructed at CERN, the tunnels for SPS, LHC and the 100 km collider will be available to house a High Energy Booster (HEB). The different machine options cover a large technology range from an iron-dominated machine in the 100 km tunnel to a superconducting machine in the SPS tunnel. Using a modified LHC as reference, these options are compared with respect to their energy reach, magnet technology and filling time of the collider. Potential issues with beam transfer, reliability and beam stability are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY007 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPOY009 | ELENA: Installations and Preparations for Commissioning | antiproton, electron, experiment, emittance | 860 |
|
|||
The Extra Low Energy Antiproton ring (ELENA) is a small 30 m circumference synchroton under construction at CERN to further decelerate antiprotons from the Antiproton Decelerator AD from 5.3 MeV to 100 keV. Controlled deceleration in a synchrotron equipped with an electron cooler to reduce emittances in all three planes will allow the existing AD experiments to increase substantially their antiproton capture efficiencies and render new experiments possible. Installation of the machine and lines needed for the commissioning of the ring are ongoing and commissioning is expected to start around mid-2016. The aim is to complete ELENA ring commissioning in November followed by the installation of new electrostatic transfer lines to existing experiments until autumn 2017. Status of ELENA installations and preparations for commissioning will be reported. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUXA01 | Status and Future Upgrade of J-PARC Accelerators | linac, operation, injection, hadron | 999 |
|
|||
The linac energy reached to 400 MeV as a design value and also a beam current was upgraded to 50 mA by replacing a new ion source. At the 3 GeV synchrotron, a high power beam of 8.41x1013 protons per pulse was demonstrated, which was equivalent to 1 MW when the repetition would be 25 Hz. At the main ring, beam loss was reduced by suppression of transverse instabilities and so on. The beam power for both the neutrino experiment and hadron experimental facility is increasing to reduce beam loss. J-PARC accelerators each have their own upgrade plan to increase beam power. The progress and future plan of J-PARC accelerators are reported in this paper. | |||
![]() |
Slides TUXA01 [11.427 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUXA01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB003 | ILSF Booster Magnets for the New Low Emittance Lattice | booster, sextupole, quadrupole, dipole | 1104 |
|
|||
Iranian light source facility is a 3 GeV storage ring with a booster ring which is supposed to work at 150Kev injection energy and guide the electrons to the ring energy 3GeV. In this paper magnet design of the booster ring is discussed. It consists of 50 combined bending magnets in 1 type, 50 quadrupoles and 15 sextupoles in 1 family. Using POISSON, Maxwell Ansys and Radia codes, two and three dimensional pole and yoke geometry was designed, also cooling and electrical calculations have been done. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR001 | Preliminary Test of 1 Mv Electrostatic Accelerator at Komac | ion, ion-source, high-voltage, power-supply | 1222 |
|
|||
Funding: This work was supported by the Ministry of Education, Science and Technology of the Korean Government. 1 MV electrostatic accelerator is being developed to satisfy the needs from the users, especially for the applications with a MeV range ion beam implantation at KOrea Multi-purpose Accelerator Complex (KOMAC). Typically, the accelerator consists of ion source, beam transport system and target chamber. For the accelerating voltage of a MeV range, ELV type high voltage power supply has been selected. And then, ion source has been selected as the newly developed RF ion source which can be installed inside the pressure vessel of high voltage power supply due to its limited space and electrical power. In this paper, preliminary test of 1 MV electrostatic accelerator including test results in test stand is presented. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR016 | Research and Development of a Compact Superconducting Cyclotron SC200 for Proton Therapy | cyclotron, proton, cavity, simulation | 1262 |
|
|||
According to the agreement between the Institute of Plasma Physics (IPP) of the Chinese Academy of Sciences in Hefei (China) and Joint Institute for Nuclear Research, Dubna, (Russia), the development of a superconducting isochronous cyclotron for proton therapy SC200 is started. The cyclotron will provide acceleration of protons up to 200 MeV with maximum beam current of 1 μA. We plan to manufacture in China two cyclotrons: one will operate in Hefei cyclotron medical center the other will replace Phasotron in Medico-technical Center JINR Dubna and will be used for further research and development of cancer therapy by protons. Now we present main parameters of cyclotron and simulation results of magnetic, accelerating and extraction systems. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR017 | Computer Modeling of Magnet for SC200 Superconducting Cyclotron | cyclotron, proton, simulation, focusing | 1265 |
|
|||
The superconducting cyclotron SC200 for proton therapy is designing by ASIPP (Hefei, China) and JINR (Dubna, Russia) will be able to accelerate protons to the energy 200 MeV with the maximum beam current of 1 mkA. By computer simulation with 3D codes the cyclotron magnet principal parameters were estimated (pole radius 0.62 m, outer diameter 2.2 m, valley depth 0.3 m, height 1.22 m, weight ~30 t). The required isochronous magnetic field is shaped with accuracy some mT. Four fold symmetry and spiralized sectors with minimal gap 4 mm at extraction provide the stable beam acceleration till 10 mm from the pole edge. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR018 | Beam Tracking Simulation for SC200 Superconducting Cyclotron | cyclotron, simulation, acceleration, resonance | 1268 |
|
|||
The SC200 superconducting cyclotron for hadron therapy is under development by collaboration of ASIPP (Hefei, China) and JINR (Dubna, Russia). The accelerator will provide 200 MeV proton beam with maximum current of 1μA in 2017-2018. The cyclotron is very compact and light, the estimate total weight is about 30 tons and extraction radius is 60 cm. We have performed simulations of all systems of the SC200 cyclotron and specified the main parameters of the accelerator. Average magnetic field of the cyclotron is up to 3.5 T and the particle revolution frequency is about 45 MHz, these parameters increases the requirements for accuracy of the beam dynamics studies. We have designed and performed beam tracking starting from the ion source. Codes and methods used for the beam tracking are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR021 | A Racetrack-shape Fixed Field Induction Accelerator for Giant Cluster Ions | ion, induction, acceleration, ion-source | 1278 |
|
|||
At KEK, circular induction accelerators employing an induction acceleration system, which is characterized by a simple fact of functional separation of acceleration and beam confinement, have been developed since 2000. The slow cycling induction synchrotron (IS) was demonstrated using the KEK 12 GeV PS in 2006, where superbunch formation and focusing-free transition energy crossing were realized*. The fast cycling IS called the KEK digital accelerator is under operation since 2012**, where bunch squeezing and splitting/merging never realized in RF synchrotrons have been demonstrated, as well as acceleration in a wide range of ion mass to charge ratio. Based on the experiences, a racetrack-shape fixed field induction accelerator (induction microtron)*** that can accelerate giant cluster ions such as C-60 or Si-100, to high energy beyond that of electrostatic accelerators has been designed. Its full story and status of R&D work will be presented at the conference.
* K.Takayama, Induction Accelerators (Springer, 2010), Chapter 11,12 ** K.Takayama et al., Phys. Rev. ST-AB 17, 010101(2014). *** K.Takayama, T.Adachi, et al., Phys. Rev. ST-AB 18, 050101(2015). |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR025 | Design of the LBNF Beamline | target, proton, shielding, operation | 1291 |
|
|||
Funding: Work supported by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a neutrino beam of sufficient intensity and appropriate energy range toward DUNE detectors, placed deep underground at the SURF Facility in South Dakota. The primary proton beam (60 - 120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are subsequently focused by magnetic horns into a 194 m long decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015. We discuss here the design status and the associated challenges as well as the R&D and plans for improvements before baselining the facility. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR027 | CERN's Fixed Target Primary Ion Programme | ion, target, proton, experiment | 1297 |
|
|||
The renewed availability of heavy ions at CERN for the needs of the LHC programme has triggered the interest of the fixed-target community. The project, which involves sending several species of primary ions at various energies to the North Area of the Super Proton Synchrotron, has now entered its operational phase. The first argon run, with momenta ranging from 13 AGeV/c to 150 AGeV/c, took place from February 2015 to April 2015. This paper presents the status of the project, the performance achieved thus far and an outlook on future plans. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR027 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR035 | HEBT Commissioning for Horizontal Beamline Proton Treatments at MedaAustron | quadrupole, proton, alignment, synchrotron | 1324 |
|
|||
MedAustron has completed its proton commissioning activities for clinical treatment in the horizontal Irradiation Room 3 (IR3). Work involved the preparation of 255 energies in clinical range (60 - 250 MeV) for one spill length, one spot size and 4 intensity levels. After resonant slow extraction, the beam crosses four different functional areas in the High Energy Beam Transfer Line (HEBT): the dispersion suppressor (DS), the phase shifter stepper (PSS), two straight extension modules and a deflection module to IR3. Quadrupole-variation methods were applied to center the beam in the beamline. The DS section was commissioned to provide high intensity beams with closed dispersion. The PSS section was commissioned to provide symmetric and minimal spot sizes at the iso-center in the room (after scattering in the nozzle and air). The definition of the 255 clinical energies was given by the Medical Physics team after measuring the beam ranges at the iso-center. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR036 | Extraction Commissioning for MedAustron Proton Operation | synchrotron, resonance, simulation, sextupole | 1327 |
|
|||
MedAustron is a synchrotron based ion beam therapy center for proton (62-250 MeV) and carbon ion (120-400 MeV/n) treatments. The MedAustron synchrotron uses a betatron core driven slow extraction scheme based on a third order resonance. The commissioning of the extraction from the synchrotron involved the setup of the correct orbit and optics at flattop. In order to maximize the momentum spread before extraction and optimize spill structure the RF system enforces a so called RF-phase jump to the unstable phase. Different scenarios were simulated using MADX-PTC [1] in combination with Python to overcome the static nature of PTC. Simulations have shown that the initial phase of the beam and a finite time to jump to the unstable fix point have a strong impact on the performance. Using a high frequency intensity monitor in the extraction channel (QIM), the spill structure was analysed and used for optimization. Simulation and measurements of the procedure are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR037 | Betatron Core Driven Slow Extraction at CNAO and MedAustron | betatron, synchrotron, resonance, proton | 1330 |
|
|||
The Italian Centre for Hadrontherapy (CNAO) and the MedAustron Hadrontherapy Center in Austria are synchrotron-based medical therapy centers. The CNAO machine has five years of experience in patient treatments, whereas MedAustron will soon start patient treatments with protons. Their accelerator systems have common characteristics, in particular in regards to the extraction system: at acceleration flattop, particles are slowly driven through the third integer resonance longitudinally by a betatron core. This setup enables smooth extracted beam intensities. The rationale behind the use of a betatron core, its impact on the extracted beam quality and the performance from operation and commissioning of the two centers will be here presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR037 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR038 | The Experimental Beam Line at CNAO | ion, proton, synchrotron, betatron | 1334 |
|
|||
The CNAO center has been conceived since the beginning with three treatment rooms and an 'experimental room' where research can be carried out without hindering the clinical activity. The room itself was built since the beginning, but the beam line was planned at a second moment in time to give priority to the treatments. The experimental room beam line has now been designed to be 'general purpose', to be used for research in different fields. Possible activities could be, as an example, irradiation of cells, test of beam monitors, development of in-beam monitoring devices or radiation hardness studies. In a second stage a third source will be added to the present two in order to carry on experiments with additional ion species besides the two used presently for treatments, protons and carbon ions. In this paper a description of the design and of the construction status is given. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR038 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR040 | The Development of a New Low Field Septum Magnet System for Fast Extraction in Main Ring of J-PARC | septum, operation, power-supply, vacuum | 1340 |
|
|||
The J-PARC Main Ring (MR) is being upgraded to improve its beam power to the design goal of 750 kW. One important way is to reduce the repetition period from 2.48 s to 1.3 s so that the beam power can be nearly doubled. We need to improve the septum magnets for fast extraction. We are improving the magnets and their power supplies. The present magnets which is conventional type have problem in durability of septum coil by its vibration, and large leakage field. The new magnets are eddy current type. The eddy current type does not have septum coil, but has a thin plate. We expect that there is no problem in durability, we can construct the thin septum plate, the leakage field can be reduced. The output of the present power supply are pattern current which of flat top is 10 ms width, the new one is short pulse which of one is 10 us. The short pulse consists of 1st and 3rd higher harmonic. We can expect that the flatness and reproducibility of flat top current can be improved. The calorific power can be also reduced. This paper will report the field measurement results with the eddy septum magnet systems. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR040 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR047 | Conceptual Design Considerations for the 50 TeV FCC Beam Dump Insertion | kicker, collimation, septum, optics | 1356 |
|
|||
Safely extracting and absorbing the 50 TeV proton beams of the FCC-hh collider will be a major challenge. Two extended straight sections (ESS) are dedicated to beam dumping system and collimation. The beam dumping system will fast-extract the beam and transport it to an external absorber, while the collimation system will protect the superconducting accelerator components installed further downstream. The high stored beam energy of about 8.5 GJ per beam means that machine protection considerations will severely constrain the functional design of the ESS and the beam dump line geometry, in addition to dominating the performance specifications of the main sub-systems like kickers and absorber blocks. The general features, including concept choice, optics in the ESS and beam dump line, passive protection devices, layout and integration are described and discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR047 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR050 | Upgrades to the SPS-to-LHC Transfer Line Beam Stoppers for the LHC High-Luminosity Era | proton, simulation, kicker, brightness | 1367 |
|
|||
Each of the 3 km long transfer lines between the SPS and the LHC is equipped with two beam stoppers (TEDs), one at the beginning of the line and one close to the LHC injection point, which need to absorb the full transferred beam. The beam stoppers are used for setting up the SPS extractions and transfer lines with beam without having to inject into the LHC. Energy deposition and thermo-mechanical simulations have, however, shown that the TEDs will not be robust enough to safely absorb the high intensity beams foreseen for the high-luminosity LHC era. This paper will summarize the simulation results and limitations for upgrading the beam stoppers. An outline of the hardware upgrade strategy for the TEDs together with modifications to the SPS extraction interlock system to enforce intensity limitations for beam on the beam stoppers will be given. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR051 | New Spill Control for the Slow Extraction in the Multi-Cycling SPS | quadrupole, controls, target, proton | 1371 |
|
|||
The flux of particles slow extracted with the 1/3 integer resonance from the Super Proton Synchrotron at CERN was previously controlled with a servo-spill feedback system which acted on the horizontal tune such as to keep the spill rate as constant as possible during the whole extraction time. The current in two servo-quadrupoles was modulated as a function of the difference between the measured and the desired spill rate. With servo quadrupoles at a single location in the SPS ring and the SPS in multi-cycling mode, the trajectory of the slow extracted beam was seen to change from cycle to cycle depending on the current applied by the servo feedback. Hence this system was replaced by a feed-forward tune correction using the main SPS quadrupoles. In this way the spill control can now be guaranteed without changing the trajectory of the extracted beam. This paper presents the algorithm and implementation in the control system and summarizes the advantages of the new approach. The obtained spill characteristics will be discussed. The technique implemented for the additional reduction of the 50 Hz noise on the spill structure will also be briefly outlined. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR051 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR052 | Commissioning Preparation of the AWAKE Proton Beam Line | proton, laser, plasma, experiment | 1374 |
|
|||
The AWAKE experiment at CERN will use a proton bunch with an momentum of 400 GeV/c from the SPS to drive large amplitude wakefields in a plasma. This will require a ~830 m long transfer line from the SPS to the experiment. The prepa- rations for the beam commissioning of the AWAKE proton transfer line are presented in this paper. They include the detailed planning of the commissioning steps, controls and beam instrumentation specifications as well as operational tools, which are developed for the steering and monitoring of the beam line. The installation of the transfer line has been finished and first beam is planned in summer 2016. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR052 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOW055 | Coronagraph Measurements on the Australian Synchrotron Storage Ring Optical Diagnostic Beamline | synchrotron, background, diagnostics, photon | 1895 |
|
|||
A coronagraph was constructed on the Optical Diagnostic Beamline at the Australian Synchrotron to observe the tails of the stored beam and the injected beam on the first few turns. Some results are presented with special emphasis on the limitation of the dynamic range due to the quality of the synchrotron light extraction mirror. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW055 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOY002 | AOC, A Beam Dynamics Design Code for Medical and Industrial Accelerators at IBA | cyclotron, space-charge, simulation, synchro-cyclotron | 1902 |
|
|||
The Advanced Orbit Code (AOC) facilitates design studies of critical systems and processes in medical and industrial accelerators. Examples include: i) injection into and extraction from cyclotrons, ii) central region, beam-capture and longitudinal beam dynamics studies in synchro-cyclotrons, iii) studies of resonance crossings, iv) stripping extraction, v) beam simulation from the ion source to the extraction, vi) space charge effects, vii) beam transmission studies in gantries or viii) calculation of Twiss-functions. The main features of the code and some applications are discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOY004 | Recommissioning of the Marburg Ion-beam Therapy Centre (MIT) Accelerator Facility | ion, proton, operation, synchrotron | 1908 |
|
|||
The Marburg Ion-Beam Therapy Centre (MIT), located in Marburg, Germany, is in clinical operation since 2015. MIT is designed for precision cancer treatment using beams of protons or carbon nuclei, employing the raster scanning technique. The accelerator facility consists of a linac-synchrotron combination, developed by Siemens Healthcare/Danfysik, that was in a state of permanent stand-by upon purchase. With support from its Heidelberg-based sister facility HIT, the MIT operation company (MIT Betriebs GmbH) recommissioned the machine in only 13 months, reaching clinical standards of beam quality delivered to all four beam outlets. With the first medical treatment in October 2015, MIT became the third operational hadron beam therapy centre in Europe offering both proton and carbon beams. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY004 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOY006 | Improvement of Scanning Irradiation in Gunma University Heavy Ion Medical Center | ion, heavy-ion, acceleration, experiment | 1914 |
|
|||
Funding: Work collaborated with Mitsubishi Electric Corporation Ltd. Work supported by JSPS Kakenhi 26860395, Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering by MEXT of Japan. Gunma University Heavy Ion Medical Center (GHMC) is a compact heavy ion treatment facility* and have experienced 5 years of successful treatment operation. GHMC has 3 treatment room using broad beam (wobbling) irradiation system and 1 experimental irradiation room for the research and development of a spot-scanning irradiation. During the study toward the treatment, several improvements were done in both accelerator and irradiation system. For accelerators, slow extraction from a synchrotron using a transverse rf field is tested**. Compared with conventional extraction system of rf acceleration, ripples of the beam spill (peak to bottom ratio) is reduced from almost 100% to 60%; the deviation of the beam center position and the deviation of the beam size (1σ) are reduced to the order of 0.1 mm. For irradiation system, regularly operation for biological experiments has started form June 2014. In order to shorten the experiment time, 2-dimensional optimization of the irradiation planning was carried out. After the optimization, the irradiation time was reduced by 30% with keeping the dose uniformity within ±2.5%. * T. Ohno et al., Cancers, 3, 4046 (2011) ** K. Noda et al., Nucl. Instrum. Meth. A492, 253 (2002) |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPOY017 | Beam Energy Deposition from PS Booster and Production Rates of Selected Medical Radioisotopes in the CERN-MEDICIS Target | target, proton, booster, ion | 1936 |
|
|||
CERN-MEDICIS uses the scattered (ca. 90%) 1.4 GeV, 2 uA protons delivered by the PS Booster to the ISOLDE target, which would normally end up in the beam dump. After irradiation, the MEDICIS target is transported back to an offline isotope mass separator, where the produced isotopes are mass separated, and are then collected. The required medical radioisotopes are later chemically separated in the class A laboratory. The radioisotopes are transported to partner hospitals for processing and preparation for medical use, imaging or therapy. Production of the isotopes is affected by the designs of the ISOLDE and MEDICIS targets. The MEDICIS target unit is a configurable unit, allowing for variations in target material as well as ion source for the production of selected medical radioisotopes. The energy deposition on both targets is simulated using the Monte Carlo code FLUKA, along with the in-beam production of some medical isotopes of interest. Diffusion and effusion efficiencies are then applied to estimate their production. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMR056 | Septum Magnet using a Superconducting Shield | septum, shielding, radiation, dipole | 2402 |
|
|||
A field-free region can be created within a dipole magnet using a superconducting shield, which maintains persistent eddy currents induced during the ramp-up of the magnet. We will study the possibility to realize a high-field superconducting septum magnet using this principle. Properties of different configurations will be presented, and compared to the requirements of the FCC dump system. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW011 | Stable Spin Direction Investigations in RHIC | kicker, emittance, septum, injection | 2442 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Beam and spin dynamics investigations are part of the preparations and studies regarding RHIC collider runs, they are part as well of the efforts dedicated to improving stored beam polarization, and in view of the eRHIC EIC project. Some recent studies and their outcomes are discussed. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMY031 | The Production of Negative Carbon Ions with a Volume Cusp Ion Source | ion, plasma, ion-source, electron | 2620 |
|
|||
Recent progress has been made at the newly commissioned Ion Source Test Facility (ISTF). Phase II, the final phase of the project, was completed in March 2016. First measurements were performed with D-Pace's TRIUMF licensed H− ion source. The source was first characterized with H− and an extraction study of the H− ions was performed. A study of the production of heavy negative ions with volume cusp sources was started. Measurements with helium revealed no negative ions were extracted. Negative carbon ions were produced with acetylene. The beam composition has been analysed with a spectrometer. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMY036 | Laser Ablation Ion Source for Highly Charge-State Ion Beams | ion, plasma, laser, target | 2632 |
|
|||
The KEK Laser ablation ion source (KEK-LAIS) is un-der development in order to generate highly ionized metal and fully ionized carbon ions for future applica-tions*. Laser ablation experiments have been carried out by using Nd-YAG laser (0.75 J/pulse, 20 ns) at the KEK test bench. Basic parameters such as a charge-state spec-trum and momentum spectrum of the plasma and extract-ed ion beam current have been obtained. Extraction of C ions from the LAIS is described.
* N.Munemoto et al., Rev. Sci. Inst. 85, 02B922 (2014) |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR005 | Ground Motion Compensation using Feed-forward Control at ATF2 | ground-motion, quadrupole, controls, feedback | 2670 |
|
|||
Ground motion compensation using feed-forward control is a novel technique being developed to combat beam imperfections resulting from the vibration-induced misalignment of beamline components. The method is being evaluated experimentally at the KEK Accelerator Test Facility 2 (ATF2). It has already been demonstrated that the beam position correlates with the readings from a set of seismometers located along the beamline. To compensate for this contribution to the beam jitter, the fully operational system will use realtime measurement and processing in order to calculate and apply the feed-forward correction on a useful time scale. The progress towards a working system is presented in this paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR005 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOR021 | Residual Radiation Monitoring by Beam Loss Monitors at the J-PARC Main Ring | radiation, detector, proton, quadrupole | 2715 |
|
|||
At J-PARC (the Japan Proton Accelerator Research Complex), high intensity proton accelerator, controlling and localizing beam losses and residual radiations are key issue, because the residual radiation limits maintenance work in efficiency and working hours, and then limits machine availability. We are accumulating continuous measurement data of residual radiation after beam stop using beam loss monitors in the Main Ring (MR). The wire cylinder gaseous radiation detectors are used in a proportional counting region. The heads are DC-connected and have a gain as large as 30000 with a bias of -2 kV. We switch the DAQ trigger from "Beam Trigger" to "No Beam Trigger", change the ADC sampling rate to 16 ms, and raise the gain by changing the bias voltage from -1.6 kV to -2.0 kV with a few exceptions when the accelerator operation ends. The offsets are measured with zero bias voltage. Identification of radionuclides has been performed with time decay analysis, with assistance of energy spectrum measurements with the Gamma Ray Spectrometer, Kromek GR1-Spectro. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW024 | Commissioning of SESAME Booster | booster, injection, septum, quadrupole | 2880 |
|
|||
Commissioning of the 800 MeV booster of SESAME light source started in December 2013. The 38.4 m circumference booster is a part of SESAME injector which includes also a 20 MeV classical microtron as a pre-injector that is in operation since 2012. The main results and experience obtained during the commissioning period are reported in this paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW024 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THOAB01 | Status of Proton Beam Commissioning of the MedAustron Particle Therapy Accelerator | proton, synchrotron, quadrupole, ion | 3176 |
|
|||
MedAustron is a synchrotron-based ion beam therapy centre, designed to deliver clinical beams of protons (60-250 MeV) and carbon ions (120-400 MeV/u) to three clinical irradiation rooms (IR) and one research room, which can also host 800 MeV protons. The commission-ing activities for the first treatments with proton beams in IR3 have been completed and commissioning of IR1-2 is ongoing. The present paper describes the activities which took place during the last year, which involved all accel-erator components from the ion source to the IR. | |||
![]() |
Slides THOAB01 [4.483 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOAB01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB001 | Muon Production via the ESSnuSB Project | proton, target, linac, detector | 3213 |
|
|||
Funding: This project is now supported by the COST Action CA15139 "Combining forces for a novel European facility for neutrino-antineutrino symmetry-violation discovery" (EuroNuNet). ESSnuSB plans to produce very intense neutrino beams using the protons from the ESS linac (5 MW, 2 GeV) and a 4-targets horn system. In the ESSnuSB proposed facility a copious number of muons will also be produced. These muons could be used by a future Neutrino Factory to study CP violation in the leptonic sector but also to study neutrino cross-sections. They could also be used to feed a future muon collider. The feasibility and the issues of extracting the intense muon beam produced together with neutrinos are discussed. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB043 | Progress in Ultra-Low β* Study at ATF2 | emittance, optics, operation, linear-collider | 3335 |
|
|||
A nanometer beam size in the interaction point (IP) is required in case of future linear colliders for achieving the desired rate of particle collisions. KEK Accelerator Test Facility (ATF2), a scaled down implementation of the beam delivery system (BDS), serves for investigating the limits of electron beam focusing at the interaction point. The goal of the ultra-low beta∗ study is to lower the IP vertical beam size by lowering the betay∗ value while keeping the betax∗ value unchanged. Good control over the beam optics is therefore required. The first experience with low beta∗ optics revealed a mismatch between the optics designed in the model with respect to the beam parameters observed in the experiment. Additionally, existing methods of beam parameters characterization at the IP were biased with high uncertainties making it difficult to set the desired optics. In this paper we report on the new method introduced in ATF2 for IP beam parameters characterization which gives a good control over the applied optics and makes the ultra-low beta∗ study possible to conduct. It can be also used for verifying the performance of some of the existing beam instrumentation devices. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB043 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR043 | Performance of Transverse Beam Splitting and Extraction at the CERN Proton Synchrotron in the Framework of Multi-turn Extraction | septum, proton, resonance, sextupole | 3492 |
|
|||
Considerable progress has been made in 2015 in the setting up of the multi-turn extraction (MTE) in the CERN Proton Synchrotron (PS). A key ingredient in this novel extraction technique is the beam splitting in transverse phase space. This manipulation is based on adiabatic trapping in stable islands of transverse phase space and requires mastering a number of devices in the PS ring. In addition, an in-depth review of all fast extractions schemes in the PS had been required due to the development and installation of a dummy septum to shield the actual magnetic septum. In this paper, the current performance of the beam splitting and of the extraction including the shadowing effect is presented. Future lines of development will also be discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR043 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW002 | Power Supplies for Main Magnet of J-PARC Main Ring | power-supply, controls, acceleration, experiment | 3534 |
|
|||
A large magnetic field ripple of the order of 10-2 were observed at the first beam commissioning of J-PARC main ring in 2008, To eliminate the ripple, we had improved the magnet power supplies by reconstructing a trap-filter of 600 Hz and adopting an additional DCCT. We made differencial circuit and symmetrical wiring for all magnets. On the other hand, acceleration period was reduced from 2.5 s to 1.4 s for increasing the beam power with feedforward control. We summarize the improvements of the magnet power supplies in this paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW034 | Review on the Effects of Characteristic Impedance Mismatching in a Stripline Kicker | impedance, kicker, damping, emittance | 3627 |
|
|||
A stripline kicker operates as two coupled transmission lines, with two TEM operating modes, known as odd and even modes. The characteristic impedance of these two modes is generally different, both only tend to the same value either when the electrodes are widely separated or when the electrodes are very close to the beam pipe wall. In all other cases, the even mode characteristic impedance is always higher than the odd mode characteristic impedance. The specifications required for a kicker operating in a low emittance ring are usually very challenging. In this situation it is desirable to match the even mode characteristic impedance of the striplines to the resistance of their termination. However a mismatched odd mode impedance can significantly influence the striplines performance. This paper presents predictions for the influence of the odd mode characteristic impedance upon the contribution of each field component, electric and magnetic, to the deflection angle. In addition, the variation of the characteristic impedance and field homogeneity with frequency are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW035 | Considerations on an Upgrade Possibility of the LHC Beam Dump Kicker System | kicker, operation, quadrupole, optics | 3631 |
|
|||
The LHC Beam Dump System (LBDS) is designed to safely dispose the circulating beams over a wide range of energy from 450 GeV up to 7 TeV, where the maximum stored energy is 362 MJ per beam. One of the most critical components of the LBDS are the extraction kickers that must reliably switch on within the 3 us particle-free abort gap. To ensure this functionality, even in the event of a power-cut, the power generator capacitors remain charged and hence the Gate Turn-Off (GTO) switch stack has to hold the full voltage throughout beam operation. The increase of the LHC collision energy to 13 TeV has increased the voltage levels at the GTO stacks and during re-commissioning an increased rate of high-voltage (HV) related issues at the level of the GTO stack was observed. Different solutions have been analysed and an improved GTO stack will be implemented. This paper also outlines the benefit of adding more kicker magnets to improve the voltage hold off issues and to improve the tolerance to missing kickers during extraction. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMY039 | RF Synchronization and Distribution for AWAKE at CERN | laser, proton, electron, controls | 3743 |
|
|||
The Advanced Wakefield Experiment at CERN (AWAKE) requires two particle beams and a high power laser pulse to arrive simultaneously in a rubidium plasma cell. A proton bunch from the SPS extracted about once every 30 seconds must be synchronised with the AWAKE laser and the electron beam pulsing at a repetition rate of 10 Hz. The latter is directly generated using a photocathode triggered by part of the laser light, but the exact time of arrival in the plasma cell still depends on the phase of the RF in the accelerating structure. Each beam requires RF signals at characteristic frequencies: 6 GHz, 88.2 MHz and 10 Hz for the synchronisation of the laser pulse, 400.8 MHz and 8.7 kHz for the SPS, as well as 3 GHz to drive the accelerating structure of the electron beam. A low-level RF system has been designed to generate all signals derived from a common reference. Additionally precision triggers, synchronous with the arrival of the beams, will be distributed to beam instrumentation equipment. To suppress delay drifts of the several kilometer long optical fibres between AWAKE and the SPS RF systems, a compensated fibre link is being developed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR034 | Bunch-by-bunch Position and Angle Stabilisation at ATF based on Sub-micron Resolution Stripline Beam Position Monitors | feedback, kicker, operation, linear-collider | 3859 |
|
|||
A low-latency, sub-micron resolution stripline beam position monitoring (BPM) system has been developed and tested with beam at the KEK Accelerator Test Facility (ATF2), where it has been used to drive a beam stabilisation system. The fast analogue front-end signal processor is based on a single-stage radio-frequency down-mixer, with a measured latency of 16 ns and a demonstrated single-pass beam position resolution of below 300 nm using a beam with a bunch charge of approximately 1 nC. The BPM position data are digitised on a digital feedback board which is used to drive a pair of kickers local to the BPMs and nominally orthogonal in phase in closed-loop feedback mode, thus achieving both beam position and angle stabilisation. We report the reduction in jitter as measured at a witness stripline BPM located 30 metres downstream of the feedback system and its propagation to the ATF interaction point. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR035 | Development of a Low-latency, Micrometre-level Precision, Intra-train Beam Feedback System based on Cavity Beam Position Monitors | feedback, cavity, kicker, electron | 3862 |
|
|||
A low-latency, intra-train, beam feedback system utilising a cavity beam position monitor (BPM) has been developed and tested at the final focus of the Accelerator Test Facility (ATF2) at KEK. A low-Q cavity BPM was utilised with custom signal processing electronics, designed for low latency and optimal position resolution, to provide an input beam position signal to the feedback system. A custom stripline kicker and power amplifier, and a digital feedback board, were used to provide beam correction and feedback control, respectively. The system was deployed in single-pass, multi-bunch mode with the aim of demonstrating intra-train beam stabilisation on electron bunches of charge ~1 nC separated in time by c. 220 ns. The system has been used to demonstrate beam stabilisation to below the 75 nm level. Results of the latest beam tests, aimed at even higher performance, will be presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR048 | Beam Losses at CERNs PS and SPS Measured with Diamond Particle Detectors | detector, septum, injection, kicker | 3898 |
|
|||
Diamond particle detectors have been used in the LHC to measure fast particle losses with a nanosecond time resolution. In addition, these detectors were installed in the PS and the SPS. The detectors are mounted close to the extraction septum of the PS (transfer line to SPS) and the SPS (transfer lines TI2 and TI8 to LHC). Mainly, they monitor the losses occurring during the extraction process but the detectors are also able to measure turn-by-turn losses in the accelerators. In addition, detailed studies concerning losses due to ghost bunches were performed. This paper will describe the installed diamond detector setup, discuss the measurement results and possible loss mitigations. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR049 | Considerations for the Injection and Extraction Kicker Systems of a 100 TeV Centre-of-Mass FCC-hh Collider | kicker, injection, impedance, collider | 3901 |
|
|||
A 100 TeV center-of-mass energy frontier proton collider in a new tunnel of ~100 km circumference is a central part of CERN's Future Circular Colliders (FCC) design study. One of the major challenges for such a machine will be the beam injection and extraction. This paper outlines the recent developments on the injection and extraction kicker system concepts. For injection the system requirements and progress on a new inductive adder design will be presented together with first considerations on the injection kicker magnets. The extraction kicker system comprises the extraction kickers itself as well as the beam dilution kickers, both of which will be part of the FCC beam dump system and will have to reliably abort proton beams with stored energies in the range of 8 Gigajoule. First concepts for the beam dump kicker magnet and generator as well as for the dilution kicker system are described and its feasibility for an abort gap in the 1 μs range is discussed. The potential implications on the overall machine and other key subsystems are outlined, including requirements on (and from) dilution patterns, interlocking, beam intercepting devices and insertion design. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR049 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR051 | Beam Based Measurements to Check Integrity of LHC Dump Protection Elements | kicker, proton, operation, vacuum | 3908 |
|
|||
LHC operation is approaching its nominal operating goals and several upgrades are also being prepared to increase the beam intensity and brightness. In case of an asynchronous beam dump at 6.5 - 7 TeV a non-negligible fraction of the stored energy (360 MJ during nominal operation) will be deposited on the protection elements (TCDQ and TCDS) located downstream of the extraction kickers. These elements are designed to protect the machine aperture from the large amplitude particles resulting from the asynchronous dump. A number of checks and measurements with beam have been worked out to verify the integrity of these elements, after a potentially harmful event, without opening the machine vacuum. Details on measurements and simulations performed to evaluate the validity of the proposed method are presented in this paper. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR051 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR052 | A Beam-based Measurement of the LHC Beam Dump Kicker Waveform | kicker, simulation, operation, dumping | 3911 |
|
|||
The increase of the LHC collision energy to 13 TeV after Long Shutdown 1 has doubled the operational energy range of the LHC beam dump system (LBDS) during Run 2. In preparation for the safe operation of the LHC, the waveform of the LBDS extraction kicker was measured using beam-based measurements for the first time during the machine's re-commissioning period. The measurements provide a reference for a more precise synchronisation of the dump system and abort-gap timing, and provide an independent check of the system's calibration. The precision of the beam-based technique allowed the necessary adjustments to the LBDS trigger delays to ensure the synchronous firing of the LBDS at all beam energies up to 6.5 TeV. In this paper the measurement and simulation campaign is described and the performance of the system reported. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR052 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR054 | Analysis of the SPS Long Term Orbit Drifts | closed-orbit, operation, dipole, injection | 3914 |
|
|||
The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessity to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR054 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR055 | Characterisation of the SPS Slow-extraction Parameters | simulation, proton, controls, target | 3918 |
|
|||
The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain but its main users are the fixed-target experiments located in the North Area (NA). The beams, which are among the most intense circulating in the SPS, are extracted to the NA over several thousands of turns by exploiting a third-integer resonant extraction. The unavoidable losses intrinsic to such an extraction makes its optimisation one of the main priorities for operation, to reduce beam induced activation of the machine. The settings of the extraction systems, together with the tune sweep speed and the beam characteristics (momentum spread, emittance, etc.) are the parameters that can be controlled for spill and loss optimisation. In this paper, the contribution of these parameters to the slow-extraction spill quality are investigated through tracking simulations. The simulation model is compared with beam measurements and optimisations suggested. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR055 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOW029 | Single Electron Extraction at the ELSA Detector Test Beamline | electron, synchrotron, injection, detector | 4002 |
|
|||
The Electron pulse Stretcher Facility ELSA delivers polarized and non-polarized electrons with an adjustable beam energy of 0.5 - 3.2 GeV to external experimental stations. Extraction currents available range down from 1 nanoampere to several atto-amperes provided by single electron extraction. Especially the high energy physics community requires detector test stations with electron tagging rates between 100 Hz to 100 kHz, imposing particular requirements for stable minimum-current extraction from the storage ring. These requirements are met with the implementation of a low-injection mode for the booster synchrotron and photomultiplier-based stored current monitoring, providing feedback for a selectable limit of the injected current. A homogeneous extraction current with duty factor > 80% is routinely granted by the excitation of a 3rd integer optical resonance. The setup of the low-current injection system and measurements of the extraction properties at the preliminary detector test beamline are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY001 | Implementation of a New Ramp Computation Scheme for the Magnet Power Supplies at ELSA | controls, power-supply, electron, injection | 4085 |
|
|||
At the ELSA electron stretcher facility new power supply control units have been commissioned. These require a new software interface for set-point calculation based on the accelerator and timing model. Goal of the new scheme is a strict separation of the bidirectional ramp computation into an accelerator model dependent, a magnet dependent and a power supply dependent part. This introduces possible calibration/correction factors on each layer, thus allowing easy component replacement of the power supplies, the control units or even the magnets without the need for recalibration of the whole chain. In this contribution we will provide insights into the implementation of the new modeling scheme. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY031 | A Holistic Approach to Accelerator Reliability Modeling | database, network, experiment, real-time | 4163 |
|
|||
Reliability has been identified as a key factor limiting the development of certain particle accelerator applications, for example Accelerator-Driven Systems (ADS) for energy production and waste-transmutation*. Previous studies of particle accelerator reliability have been undertaken using conventional techniques, such as Reliability Block Diagrams (RBD), Fault Tree Analysis (FTA), etc. Although limited data surrounding components and their failure modes limits the applicability of conventional techniques for analysing the reliability of particle accelerators. In addition industrial applications of particle accelerators, i.e. energy production, require a real time response to failure. In this paper we examine a holistic approach to accelerator reliability modelling using Electric Network Frequency (ENF) criterion to look for emergent behaviour of the particle accelerator, from complex datasets, such as beam current/charge, created by the diagnostics systems during the machines operation. To look for predictive characteristics just prior to a machine trip.
* Report from the DOE ADS White Paper Working Group, Stuart Henderson, Fermilab, October 26, 2011 |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY032 | The Dual Use of Beam Loss Monitors at FAIR-SIS100: General Diagnostics and Quench Prevention of Superconducting Magnets | ion, quadrupole, beam-losses, simulation | 4167 |
|
|||
In view of the planned coverage of the FAIR-SIS100 synchrotron with beam loss monitors (BLMs), FLUKA studies were performed aiming at two goals: i) evaluation of the sensitivity of the LHC-IC type detectors to the potential beam losses at SIS100; ii) estimation of the BLM quench prevention threshold via the correlation between the energy deposition inside the superconducting coils and the BLM active volume. A full spectrum of ion species and energies to be accelerated with SIS100 were considered in the simulations, showing a great sensitivity to the beam losses. An interesting finding of this study was that, for the same beam loss location, the quench prevention thresholds were almost identical for all ion species/energies including protons. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY033 | SIS100 Availability and Machine Protection | ion, dipole, septum, proton | 4171 |
|
|||
For the future FAIR driver accelerator, SIS100, a detailed System-FMEA (Failure Modes and Effects Analysis) according to IEC 61508 has been done. One the one hand, this has been done to identify possible shortcomings for machine protection and on the other hand to predict the machine's availabilty for beam on target. The methodology for the analysis and the main failure modes currently known for the machine and its environment are described in detail. An estimate of the total machine's availability is given. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY041 | CERN Beam Interlock Redundant Dump Trigger Module Performance during LHC Run 2 | operation, dumping, collider, radiation | 4189 |
|
|||
During the Long Shutdown 1 an additional link between the Beam Interlocks System and the LHC Beam Dumping System was installed. This third channel is a direct access from the BIS to the asynchronous dump triggering lines. This paper describes the experience collected for the first 10 months of operation and the improvements proposed for a future upgrade of the module.
IPAC 2014 THPRI021 |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOY056 | Implementation of SINAP Timing System in Shanghai Proton Therapy Project | timing, proton, hardware, synchrotron | 4231 |
|
|||
Funding: The project of SINAP Timing System was supported by the National Natural Science Foundation of China (No. 11305246). SINAP v2 timing system was implemented in the timing system of Shanghai Proton Therapy Project. The timing system in Shanghai Proton Therapy Project is required not only to generate operation sequence for medical proton synchrotron, but also to realize irradiation flow for beam delivery system. For these purposes, the firmware of SINAP v2 timing system is redesigned to satisfy both event code sequenced broadcasting to generate operation sequence and bidirectional event code transmit to realize irradiation flow. Thanks of the hardware advantage of SINAP v2 timing system, the event receiver (EVR) could transmit event code to event generator (EVG) and then broadcast to timing network by bidirectional transmit ability. By this design, the EVR installed in treatment room has ability to send event code to timing network to stop/start beam during slow extraction. The architecture of the timing system in Shanghai Proton Therapy Project is presented in the paper. The risk analysis is also described in detail. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRXAA01 | Korea Heavy Ion Medical Accelerator Project | ion, synchrotron, proton, cyclotron | 4243 |
|
|||
The Korea Heavy Ion Medical Accelerator (KHIMA) project is to develop 430-MeV/u heavy ion accelerator and therapy systems for medical applications. The accelerator system includes ECRIS, injector linac, synchrotron, beam transport lines, and treatment systems. The accelerator system is expected to provide stable beams very reliably, and there should be special cares and strategies in the machine construction and operations. This presentation covers all issues mentioned above. | |||
![]() |
Slides FRXAA01 [10.869 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-FRXAA01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||