Paper | Title | Other Keywords | Page |
---|---|---|---|
MOZA02 | Design and Optimization Strategies of Nonlinear Dynamics in Diffraction-limited Synchrotron Light Sources | lattice, optics, emittance, resonance | 33 |
|
|||
This talk introduces the most recent achievements in the control of nonlinear dynamics in electron synchrotron light sources, with special attention to diffraction limited storage rings. Guidelines for the design and optimization of the magnetic lattice are reviewed and discussed. | |||
![]() |
Slides MOZA02 [4.952 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOZA02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOOCB02 | A Lattice Correction Approach through Betatron Phase Advance | lattice, simulation, dynamic-aperture, betatron | 62 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy Most lattice correction algorithms, such as LOCO, rely on the amplitude of the BPM signals. However, these signals are a mixture of the BPM gain and beta-beat. Even though BPM gain can be fitted by analyzing the statistics of all the BPMs in a ring accelerator, we found the uncertainty is on the order of a few percent. On the other hand, the betatron phase advance, which is obtained from the correlation of two adjacent BPMs, is independent of the BPM gain and tilt error. It was found at NSLS-II that the measurement precision of the phase advance is typically 0.001 radian, which corresponds to about 0.2% of beta beat. The phase error can be corrected similarly using a response matrix, and at NSLS-II the phase error can be corrected to <0.005 radian (p-p) in less than half an hour. The same technique can be applied to the nonlinear lattice. By comparing the phase advance differences between the on- and off- orbit lattices, the sextupole strength error can be identified. Simulation and experimental results will be demonstrated in the paper. |
|||
![]() |
Slides MOOCB02 [1.554 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOOCB02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOBA03 | Application of Differential Evolution Algorithm in Future Collider Optimization | dynamic-aperture, lattice, collider, emittance | 1025 |
|
|||
Funding: Project U1332108 supported by NSFC. The dynamic aperture of is very limited due to the very small beta at IP in the SuperKEKB. In the storage ring based Higgs factory, the vertical beta function is not so small, but the much larger circumference enlarge the detuning term especially in horizontal direction. It is very hard to optimize the dynamic aperture in the future colliders. The particle loss may comes from different cause for different energy or different transverse coupling. The design of CEPC is still in process. The construction of SuperKEKB is nearly finished, but there still exist some problem which could reduce the performance. There are a few hundred parameters to be varied in the future colliders. The global optimization may be a good way to enlarge the dynamic aperture. Differential Evolution is a very simple population based, stochastic function minimizer which is very powerful at the same time. In this paper we show some application of the algorithm in the two machines. It has the potential to help us optimize the machine. |
|||
![]() |
Slides TUOBA03 [2.289 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBA03 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOCB03 | Magnet Development for SPring-8 Upgrade | dipole, alignment, quadrupole, undulator | 1093 |
|
|||
One of the features for newly designed magnets for the SPring-8 major upgrade plan* is permanent magnet based dipole magnets for substantial energy saving. The new dipole magnets have been designed to be equipped with (i) a field variable function by controlling magnetic flux into a beam axis, (ii) a nose structure on iron poles for smooth B-field transition in the longitudinal gradient field, and (iii) a nearly zero temperature coefficient of magnet circuit with the help of a shunt alloy**. Demagnetization due to radiation is also a critical issue. At SPring-8, demagnetization process has been intensively studied, and the effect has been considered in the design of dipole magnets. Although electromagnet based multi-pole magnets are rather conventional technologies, yet new magnets need to be designed to fit in the next generation high packing factor lattice with as reasonably lower energy consumption as possible. Magnet alignment will be a key development as well; in order to secure adequate dynamic apertures, magnets ought to be aligned within tens of microns. Current design and recent progress in the developments of magnets and alignment schemes will be presented.
* H. Tanaka et al., SPring-8 Upgrade Project, in the abstracts. ** T. Taniuchi et al., Proc. of IPAC2015, WEPMA050. |
|||
![]() |
Slides TUOCB03 [4.014 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOCB03 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB001 | Magnets for the ESRF-EBS Project | quadrupole, dipole, permanent-magnet, octupole | 1096 |
|
|||
A major upgrade project known as ESRF-EBS, Extremely Brilliant Source is planned at the European Synchrotron Radiation Facility (ESRF) in the coming years. A new storage ring will be built, aiming to decrease the horizontal emittance and to improve the brilliance and coherence of the X-ray beams. The lattice of the new storage ring relies on magnets with demanding specifications: dipoles with longitudinal gradient (field ranging from 0.17 T up to 0.67 T), strong quadrupoles (up to 90 T/m), combined function dipole-quadrupoles with high gradient (0.57 T and 37 T/m), strong sextupoles and octupoles. The design of these magnets is based on innovative solutions; in particular, the longitudinal gradient dipoles are permanent magnets and the combined dipole-quadrupoles are single-sided devices. The design of the magnets is finished and prototypes of innovative magnets have been built. The procurement of the magnets has started. Call for Tenders have been sent to a pre-qualified short list of magnet manufacturers. The longitudinal gradient dipoles will be assembled and measured in house. The design of the magnets, the prototype results and procurement status will be presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB002 | Status of THOMX Storage-ring Magnets | quadrupole, storage-ring, dipole, electron | 1100 |
|
|||
The THOMX facility is a compact X-Ray source based on the Compton back scattering aiming at a flux of 1011 to 1013 ph/s in the range of energy from 40 to 90 keV. Due to the compactness and the expected stability of this machine, high requirements are set for all magnets in terms of design and manufacturing. First, the design optimization of the magnets is presented, leading to high performance in terms of harmonics. Issues regarding the cross-talk between quadrupole and sextupole fields are then discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB003 | ILSF Booster Magnets for the New Low Emittance Lattice | booster, quadrupole, dipole, extraction | 1104 |
|
|||
Iranian light source facility is a 3 GeV storage ring with a booster ring which is supposed to work at 150Kev injection energy and guide the electrons to the ring energy 3GeV. In this paper magnet design of the booster ring is discussed. It consists of 50 combined bending magnets in 1 type, 50 quadrupoles and 15 sextupoles in 1 family. Using POISSON, Maxwell Ansys and Radia codes, two and three dimensional pole and yoke geometry was designed, also cooling and electrical calculations have been done. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB004 | ILSF Low Emittance Storage Ring Magnets | dipole, quadrupole, multipole, storage-ring | 1107 |
|
|||
The Iranian Light Source Facility (ILSF) is a new 3 GeV synchrotron radiation laboratory in the design stage. The ILSF storage ring (SR) is based on a Five-Bend Achromat lattice providing an ultr-alow horizontal beam emittance of 0.48 nm-rad. The ring is consisting of 100 pure dipole magnets, 320 quadrupoles and 320 sextupoles. In this paper, we present some design features of the SR magnets and discuss the detailed physical and mechanical design of these electromagnets. The physical designs have been performed relying on two dimensional codes POISSON [1] and FEMM [2]. Three dimensional RADIA [3] and MERMAID [4] were practiced too, to audit chamfering values and get the desired magnetic length. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB004 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB005 | Design and Fabrication of the Compact-Erl Magnets | simulation, quadrupole, linac, electron | 1111 |
|
|||
The compact Energy Recovery Linac (cERL) was con-structed and operated at KEK. For the cERL we designed and fabricated the eight main bending magnets, fifty seven quadrupole magnets, four sextupole magnets and sixteen small bending magnets [1]. These magnets are used at 3 MeV (for low energy part) and 20 MeV (high energy part) beam energy now, but we designed them to be used maximum 10 MeV and 125 MeV beam energy for future upgrade of the cERL. The magnetic field analysis was done by 2D and 3D simulation code (OPERA) to design magnet shape. The main bending magnets and quadrupole magnets are made of electromagnetic steel sheet and the other magnets are made of electromagnetic soft iron. In this paper, we show the detail of the design-ing and fabricating work of those magnets. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB005 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB025 | Conceptual Design of Storage Ring Magnets for a Diffraction Limited Light Source Upgrade of ALS, ALS-U | lattice, dipole, quadrupole, magnet-design | 1161 |
|
|||
Funding: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Lawrence Berkeley National Laboratory (LBNL) has been engaged in an internal laboratory directed research and development project to define a suitable accelerator physics lattice to support the diffraction limited upgrade of the Advanced Light Source*. Diffraction limited lattices require strong focusing elements throughout. Magnetics design is challenging in that the high gradient magnetic structures are required to operate in close proximity. Lattice development requires a coordinated engineering design effort to ensure the lattice design feasibility. We will present a review of the results of our magnet scoping studies as well as conceptual design specifications for the ALS-U lattice dipole, quadrupole, and sextupole magnet systems. Additionally we will present a conceptual design of refined super-bend magnets for the ALS-U lattice including a discussion of their potential impact on beam emittance. * C. Steier, et al. Progress of the R&D towards a Diffraction Limited Upgrade of the Advanced Light Source, Proceedings of IPAC 2015, |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB031 | From Design Towards Series - The Superconducting Magnets for FAIR | quadrupole, dipole, superconducting-magnet, ion | 1167 |
|
|||
The Facility for Anti-proton and Ion Research (FAIR-project) is now under construction. The heavy ion synchrotron SIS100 and the Super Fragment Separator (Super-FRS) use mainly superferric magnets as beam guiding elements. We present the design status of the magnets next to the experience obtained on the first magnets which were produced for SIS100. Finally we give an overview of the preparation for the series production and testing of the cryomagnetic modules. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB032 | Magnetic Field Characterisation of the First Series Dipole Magnet for the SIS100 Accelerator of FAIR | dipole, multipole, superconductivity, ion | 1171 |
|
|||
The procurement of the SIS100 dipoles was contracted without building and testing an appropriate model magnet. So the thorough test of the first of series magnet is the key issue for the final realisation of the complete series production. The core of these tests is the measurement and analysis of the magnetic field of the first dipole. We describe the adapted measurement technics next to a detailed analysis of the obtained field quality and point out the critical issues of the series production | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB037 | Instruments and Methods for the Magnetic Measurement of the Super-FRS Magnets | dipole, quadrupole, cryogenics, octupole | 1183 |
|
|||
The Super-FRS is a new fragment separator to be built as part of the Facility for Antiproton and Ion Research (FAIR) [\ref{fairweb}] at Darmstadt. The acceptance tests and magnetic measurements of the superferric separation dipoles and multiplets (containing quadrupole and higher-order magnets) will be performed at CERN in collaboration with GSI/FAIR [\ref{abstractfacility}]. This paper presents the methods and challenges of the magnetic field measurements, and the required instruments for measuring the transfer function, field quality, and magnetic axis. A prototype for each system has been produced in order to validate the measurement methods, the instruments, and the mechanical integration. In this paper will present the design and production of the prototypes, the design of the instruments for the series measurements, and the results of the metrological characterization. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB037 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMB041 | The SuperKEKB Interaction Region Corrector Magnets | quadrupole, octupole, optics, luminosity | 1193 |
|
|||
Work for the SuperKEKB luminosity upgrade of the KEKB asymmetric e+e− collider is near completion. In this paper we review the design, production and testing of superconducting correction coils, that are needed to achieve the desired IR optics performance, and are integrated with the final focus magnets. For SuperKEKB 43 coils were produced at BNL using Direct Wind techniques. These coils underwent preliminary warm field harmonic quality assurance measurements before shipment to KEK. At KEK final cold measurements of these coils were made prior to their ultimate integration with the SuperKEKB IR magnets. SuperKEKB corrector production was challenging due to the large number of coil types and configurations that had to be fitted into very limited available space. Also the nature of the SuperKEKB optics sets fairly stringent local field quality requirements for these coils. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMR036 | Extraction Commissioning for MedAustron Proton Operation | extraction, synchrotron, resonance, simulation | 1327 |
|
|||
MedAustron is a synchrotron based ion beam therapy center for proton (62-250 MeV) and carbon ion (120-400 MeV/n) treatments. The MedAustron synchrotron uses a betatron core driven slow extraction scheme based on a third order resonance. The commissioning of the extraction from the synchrotron involved the setup of the correct orbit and optics at flattop. In order to maximize the momentum spread before extraction and optimize spill structure the RF system enforces a so called RF-phase jump to the unstable phase. Different scenarios were simulated using MADX-PTC [1] in combination with Python to overcome the static nature of PTC. Simulations have shown that the initial phase of the beam and a finite time to jump to the unstable fix point have a strong impact on the performance. Using a high frequency intensity monitor in the extraction channel (QIM), the spill structure was analysed and used for optimization. Simulation and measurements of the procedure are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW020 | Status of the Beam Optics of the Future Hadron-Hadron Collider FCC-hh | collider, dipole, optics, closed-orbit | 1470 |
|
|||
Funding: This work was supported by the HORIZON 2020 project EuroCirCol, grant agreement 654305. Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched a design study for possible future circular collider projects, FCC, to investigate their feasibility for high energy physics research. The study covers three options, a proton-proton collider, a circular e+/e− collider and a scenario for e-p collisions to study deep inelastic scattering. The present paper describes the beam optics and the lattice design of the Future Hadron-Hadron Collider (FCC-hh). The status of the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV cm. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW029 | Tune and Chromaticity Control During Snapback and Ramp in 2015 LHC Operation | injection, controls, dipole, lattice | 1501 |
|
|||
Because of current redistribution on the superconducting cables, the harmonic components of the magnetic fields of the superconducting magnets in the Large Hadron Collider (LHC) show decay during the low field injection plateau. This results in tune and chromaticity variations for the beams. In the first few seconds of the ramp the original hysteresis state of the magnetic field is restored - the field snaps back. These fast dynamic field changes lead to strong tune and chromaticity excursions that, if not properly controlled, induce beam losses and potentially trigger a beam dump. A feed-forward system applies predicted corrections during the injection plateau and to the first part of the ramp to avoid violent changes of beam conditions. This paper discusses the snapback of tune and chromaticity as observed in 2015, as well as the control of beam parameters during the ramp. It also evaluates the quality of the applied feed-forward corrections and their reproducibility. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMW036 | Optimizing Chromatic Coupling Measurement in the LHC | coupling, resonance, dipole, quadrupole | 1520 |
|
|||
Optimizing chromatic coupling measurement in the LHC Chromatic coupling introduces a dependency of transverse coupling with energy. LHC is equipped with skew sextupoles to compensate the possible adverse effects of chromatic coupling. In 2012 a beam-based correction was calculated and applied successfully for the fist time. However, the method used to reconstruct the chromatic coupling was dependent on stable tunes and equal chromaticities between the horizontal and vertical planes. In this article an improved method to calculate the chromatic coupling without these constraints is presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMW003 | NONLINEAR OPTIMIZATION OF CLIC DRS NEW DESIGN WITH VARIABLE BENDS AND HIGH FIELD WIGGLERS | dipole, damping, emittance, dynamic-aperture | 2416 |
|
|||
The new design of CLIC damping rings is based on longitudinal variable bends and high field superconducting wiggler magnets. It provides an ultra-low horizontal normalised emittance of 412 nm-rad at 2.86 GeV. In this paper, nonlinear beam dynamics of the new design of the damping ring (DR) with trapezium field profile bending magnets have been investigated in detail. Effects of the misalignment errors have been studied in the closed orbit and dynamic aperture. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW003 | Design Considerations of a 7BA-6BA Lattice for the Future Upgrade of SOLEIL | dipole, lattice, emittance, optics | 2815 |
|
|||
Previous studies indicated that adoption of a combination of 7 and 6BA cells in the existing SOLEIL ring enables reaching the target range of the horizontal emittance below 200 pm·rad as expected, in contrast to fewer dipole solutions such as a combination of 5 and 4BA studied earlier (IPAC 2014). However, the previous 7BA-6BA lattice resulted in having unacceptably strong gradients in quadrupoles and dipoles leading to high natural chromaticities. Several schemes that would allow for an improvement are explored, such as shortening the insertion device straight sections by one or two meters to create more space for the magnetic structure, lowering the dipole fields and the use of anti-bends as proposed by A. Streun. The effectiveness of each scheme is evaluated and the best combined use of them for SOLEIL is investigated. Ways to fulfil the constraints of the existing dipole beam lines are studied by introducing longitudinal gradient bends and/or multipole wigglers. The nonlinear optimisation to maximise the on and off-momentum apertures is made by using genetic algorithm-based numerical codes. A comparison of their performance and the obtained results are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW006 | Hybrid Multi Bend Achromat at 3 GeV for Future 4th Generation Light Sources | lattice, emittance, dynamic-aperture, dipole | 2822 |
|
|||
Starting from the Hybrid Multi Bend Achromat (HMBA) lattice designed for the 6GeV ESRF-EBS we rescale the lattice energy to 3GeV and optimize the lattice parameters to achieve dynamic apertures sufficient for injection and lifetimes of more than 7h without errors. The rescaling results to an emittance of roughly 140pmrad. Further optimizations of bending magnets longitudinal gradient, optics and sextupole fields show the possibility to further decrease emittance and increase the DA and lifetime. A comparison with other lattice designs is also presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW010 | Beam Lifetime Optimization by Adjusting the Sextupoles at the MLS and BESSY | emittance, storage-ring, radiation, operation | 2837 |
|
|||
The Metrology Light Source (MLS) is a dedicated elec-tron storage ring for metrology applications with three families of sextupoles. The existing setting of the three independently powered sextupole families respective to lifetime were roughly determined by scanning their strengths against each other. As a flexible machine the sextupole families of the MLS can be regrouped into new families, which increase the complexity of the scan pro-cedure. Consequently the former strategy would be too time-consuming for refined global scan and it has to be complemented with physical constraints. Therefore a scheme has been developed to keep the chromaticity in a reasonable range during the scan and to reduce the degree of freedom, which is even more important at BESSY II with increasing number of independent sextupole cir-cuits. This paper presents the principle of sextupole scan and the experimental results at the MLS and preliminary test at BESSY II. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW017 | Recent Progress on the Development of Iranian Light Source Facility (ILSF) Project | booster, quadrupole, storage-ring, synchrotron | 2861 |
|
|||
The Iranian Light Source Facility Project (ILSF) is a 3rd generation light source with energy of 3 GeV, a full energy injector and a 150 MeV linac as pre-injector. The stored beam current in top up mode is 400 mA, the beam lifetime is about 7 h, and the average pressure of vacuum chamber is approximately 1.33 × 10-7 Pa (1 nTorr). The ILSF storage ring has been designed to be competitive in the future operation years. Some prototype accelerator components such as high power solid state radio frequency amplifiers, LLRF system, thermionic RF gun, storage ring H-type dipole and quadruple magnets, Hall probe system for magnetic measurement and highly stable magnet power supplies have been constructed in ILSF R&D laboratory. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW021 | The Low Emittance Reconstruction of the Arc Section of the Photon Factory | emittance, dynamic-aperture, photon, lattice | 2874 |
|
|||
The present horizontal emittance of the Photon Factory (PF) ring is about 35.4 nmrad. By the reconstruction of the normal cells at the arc section, the emittance can be reduced to about 8 nmrad. The double number of the combined function short bending magnets are adopted and one present normal cell become two new normal cells. Although the lattice of the straight sections are not changed, the optics are optimized to reduce the non-linear effects of the sextupoles of the arc sections. By keeping the tune advance of the straight section as 3 for the horizontal direction and 2.5 for the vertical, the dynamic aperture as large as that of the present ring can be achieved with the magnetic errors. The difference of the optics of the straight sections are so little that the beam injection and the operation of the in-vacuum short-gap undulators can be maintained. The hardware design will be began as the next step for the realization of the plan. In this proceedings, the design, optimization and simulation results for the low emittance lattice are shown. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW025 | Exploring the Ultimate Linear and Nonlinear Performance of the HEPS hybrid 7BA design | emittance, lattice, storage-ring, optics | 2883 |
|
|||
The High Energy Photon Source (HEPS), a kilometre- scale diffraction-limited storage ring (DLSR) light source, with a beam energy of 5 to 6 GeV and transverse emittances of a few tens of pm.rad, is to be built in Beijing. We have obtained a hybrid 7BA lattice design, with a natural emittance of about 60 pm.rad and a circumference of about 1.3 kilometres, basically satisfying the requirement of on-axis longitudinal injection in HEPS. Nevertheless, it is interesting and necessary to explore the ultimate linear and nonlinear performance of the HEPS hybrid 7BA design. In this paper, we will introduce the multi-objective optimization with a successive and iterative implementation of the MOPSO and MOGA algorithms, and discuss certain relations between the nonlinear dynamics and linear optics of a hybrid MBA lattice. This study can provide reference for other DLSR lattice design and optimizations. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW026 | Recent Physical Studies for the HEPS Project | injection, lattice, booster, emittance | 2886 |
|
|||
The High Energy Photon Source (HEPS), a kilometre- scale storage ring light source, with a beam energy of 5 to 6 GeV and transverse emittances of a few tens of pm.rad, is to be built in Beijing and now is under design. In this paper we reported the progress and status of the physical studies for the HEPS project, covering issues of storage lattice design and optimization, booster design, injection design, collective effects, error study, insertion device effects, longitudinal dynamics, etc. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW027 | Initial Lattice Design for Hefei Advanced Light Source: A VUV and Soft X-ray Diffraction-limited Storage Ring | lattice, storage-ring, emittance, quadrupole | 2889 |
|
|||
The upgrade project of Hefei Light Source was successfully completed in 2014 and has been operated for synchrotron radiation users since 2015, which is a second generation light source in the range of VUV and soft X-ray at NSRL in China. To meet the future requirements for users, more efforts are now putting at NSRL into the design of Hefei Advanced Light Source (HALS), a new VUV and soft-X ray diffraction-limited storage ring. The HALS storage ring will have an energy of 2 GeV and a natural emittance of about 50 pm·rad. This paper reports the initial lattice design studies, including linear optics design and nonlinear dynamics optimization. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW027 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW028 | Applications of the Tune Measurement System of the HLS-II Storage Ring | storage-ring, quadrupole, betatron, EPICS | 2892 |
|
|||
Funding: Work supported by National Natural Science Foundation of China (11105141, 11175173) During the commissioning phase of the HLS-II storage ring, the betatron function, the natural chromaticity, the corrected chromaticity and the central RF frequency were measured using the Swept-Frequency-Exitation based tune measurement system. The betatron function was measured using the quadrupole modulation method. The natural chromaticity and the corrected chromaticity were measured using the dipole modulation method and the RF modulation method respectively. In addtion, the central RF frequency was measured using the sextupole modulation method, which can be viewed as a direct measure of the ring circumference. This paper describes the measurement details and presents the measurement results. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW038 | Proposed Upgrade of the SLS Storage Ring | emittance, lattice, storage-ring, optics | 2922 |
|
|||
A new storage ring is planned for the upgrade of the Swiss Light Source (SLS). It will replace the 12 triple bend achromats by twelve 7-bend achromats, which are based on low aperture longitudinal gradient bends (LGBs) and anti-bends (ABs), thus reducing the emittance from 5.0 nm to about 150 pm at 2.4 GeV while maintaining the source points of the undulator based beam lines. Sextupole and octupole strengths are determined using a multi-objective genetic algorithm (MOGA) and result in sufficient dynamic aperture for off-axis injection and several hours of Touschek lifetime. Superconducting LGBs of 5-6 T peak field will extend the photon range of the SLS up to 80-100 keV. The vacuum system will be based on a 20 mm inner diameter copper beam pipe with ante-chamber, and discrete getter pumps. It is planned to reuse the existing injector complex and the dynamically adjustable girder system. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW038 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW044 | Study of a Double Triple Bend Achromat (DTBA) Lattice for a 3 GeV Light Source | lattice, optics, quadrupole, dipole | 2940 |
|
|||
Starting from the concepts of the Hybrid Multi Bend Achromat (HMBA) lattice developed at ESRF and of the Double-Double Bend Achromat (DDBA) lattice developed at Diamond, we present a new cell that includes all the advantages of the two designs. The resulting Double Triple Bend Achromat (DTBA) cell allows for a natural horizontal emittance of less than 100 pm with a large dynamic aperture and lifetime. It includes two straight sections, for insertion devices, five and three meters long. The lattice is consistent with the engineering design developed for the ESRF-EBS lattice and the layout and user requirements of Diamond. The characteristics of the cell are presented together with the results of the optimisation process. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOW048 | Preparations for the Double Double Bend Achromat Installation in Diamond Light Source | dipole, feedback, vacuum, quadrupole | 2953 |
|
|||
We present the status of preparations for a major installation in the Diamond storage ring which is due to take place in 2016, namely the conversion of one cell of the ring from a double bend achromat (DBA) structure, to a double-DBA, or DDBA. We present results of measurements of the new narrow bore, high strength, quadrupoles and sextupoles, as well as the four new gradient dipoles. Fabrication of entirely new narrow-gap vacuum vessel strings, a mixture of copper and stainless steel is also described. The status of assembly of the two 7m long girders is presented, as well as other preparatory engineering, power supply, controls and high level software work. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPOY041 | Fast Tracking of Nonlinear Dynamics in the ESS Linac Simulator via Particle-Count Invariance | space-charge, proton, framework, multipole | 3080 |
|
|||
Real-time beam modeling has been used in accelerator diagnostics for several decades. Along the way, the theory for matrix calculations of linear forces has matured, allowing for fast calculations of a beam's momentum and position distributions. This formalism becomes complicated and ultimately breaks down with high-order beam elements like sextupoles. Such elements can be accurately modeled with a Lie-algebra approach, but these techniques are generally implemented in slower, offline multiparticle tracking software. Here, we demonstrate an adaptation of the conventional Lie techniques for rapid first-order tracking of position, which is accomplished by treating a bunch's particle count as an invariant. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB002 | Beam Dynamics and Closed Orbit Correction at the Collector Ring | optics, antiproton, ion, dipole | 3216 |
|
|||
The Collector Ring (CR) has been designed for fast cooling of hot antiproton or ion beams at FAIR. Its ion-optical layout and system design has been recently finalized after careful optimizations aiming at improvement of the beam parameters and machine performance. In this paper we present the simulations of the transverse beam dynamics for the different ion-optical modes of the CR. Particle tracking calculations have been performed to evaluate an influence of the magnet imperfections on the dynamic aperture. The analysis and correction of the closed orbit distortions due to the magnet misalignments is also discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB017 | The Errors Study on a Recent Heps Low-Beta Design | lattice, optics, emittance, quadrupole | 3260 |
|
|||
The next synchrotron light source High Energy Photon Source is currently studied at Beijing. A nominal design for the HEPS, in a hybrid 7BA lattice and with an emittance of 60 pm.rad in a circumference of 1.3 kilometers, is completed for further study. In this paper, we present some work on error effect based on the nominal lattice design. Topics covered include dynamic aperture and beam parameters affected by magnetic field error, systematic and random multipole errors and misalignment effect. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB018 | Candidate Booster Design for the HEPS Project | emittance, booster, lattice, injection | 3263 |
|
|||
The High Energy Photon Source (HEPS), with trans-verse emittances of a few tens of pm.rad, is to be built in the suburbs of Beijing, China. The HEPS booster is a 2 Hz electron synchrotron. It accelerates electron bunches from a 300 MeV linac to a final energy of 6 GeV, and then extracts and injects them into the stor-age ring. We have made a candidate booster design, with a circumference of about 432 m and a natural emittance of about 4 nm.rad at 6GeV, which will be located in a separate tunnel. This lattice has a four-fold symmetry. Each super-period is composed of 13 iden-tical cells and two matching cells. The lattice design and optimization and other considerations are present-ed in a detail. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB019 | Comparing the Performance of MOGA and MOPSO in Optimization of the HEPS Performance | emittance, lattice, quadrupole, storage-ring | 3266 |
|
|||
The High Energy Photon Source (HEPS), a kilometre- scale diffraction-limited storage ring light source, with a beam energy of 5 to 6 GeV and emittances of a few tens of pm.rad, is to be built in Beijing. A preliminary design with a hybrid 7BA lattice, an emittance of 60 pm.rad and a circumference of about 1.3 kilometers, has been made. Based on this design, we optimized the linear and nonlinear performance of the ring with the MOGA and MOPSO algorithms. From comparison of the performance of these two algorithms, it was found that MOPSO promises higher diversity than MOGA, while MOGA can reach better convergence than MOPSO. To reach a true Pareto front, a successive and iterative implementation of the PSO and MOGA, rather than using either of these two algorithms, is suggested. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB028 | Beam Optics of 180-degree Bending Section including a Charge Stripper | simulation, linac, optics, acceleration | 3291 |
|
|||
Funding: This work was supported by the Rare Isotope Science Project of Institute for Basic Science funded by Ministry of Science, ICT and Future Planning and National Research Foundation of Korea. The linac of RISP (Rare Isotope Science Project) includes a charge stripper to obtain better acceleration efficiency. It is located after the lower energy part of the superconducting linac which accelerates 2 charge states, 33 and 34 of uranium beams to about 18 MeV/u. After the charge stripper, 5 charge states around 79 are selected and transported into the higher energy part of the linac through a 180-degree bending section. This work focused on the charge stripper effects on the beam optics in the bending section. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB036 | Model-Dependent Accelerator Lattice Fit Based on BPM Data and Generating Functions | lattice, quadrupole, operation, alignment | 3311 |
|
|||
Obtaining accurate linear and nonlinear accelerator models is critical for routine accelerator operation. Here we consider a method based on BPM data and generating functions that provides fitted accelerator model. Using measurements from at least three BPMs and generating functions between them allows obtaining momenta at BPMs as the functions of model parameters and comparing them. Thus, lattice parameters can be fitted. Theoretical results are presented and the method is applied to the model examples. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMB045 | Comparison of Optics Measurement Methods in ESRF | optics, lattice, storage-ring, dipole | 3343 |
|
|||
The N-BPM and the Amplitude methods, which are used in the LHC for beam optics measurement, were applied to the ESRF storage ring. We compare the results to the Orbit Response Matrix (ORM) method that is routinely used in the ESRF. These techniques are conceptually different since the ORM is based on the orbit response upon strength variation of steering magnets while the LHC techniques rely on the harmonic analysis of turn-by-turn position excited by a kicker or an AC dipole. Finally, we compare these methods and show the differences in their performance in the ESRF environment. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR001 | Online Suppression of the Sextupole Resonance Driving Terms in the Diamond Storage Ring | resonance, storage-ring, optics, injection | 3381 |
|
|||
Suppression of the sextupole resonance driving terms (RDTs) is a widely used technique for optimising the theoretical on and off-momentum dynamic aperture for electron storage rings. Recently, this technique was applied online to the Diamond storage ring, with suppression of individual RDTs achieved via a sextupole family to RDT response matrix*. In this paper we present recent studies of the method, in which the ability to improve the lifetime and injection efficiency are investigated. An extension of the technique is investigated by combining it with the Robust Conjugate Direction Search (RCDS) optimisation algorithm**.
*J. Bengtsson, et al., Phys. Rev. ST Accel. Beams 18, 074002, (2015). **X. Huang, et al., Nucl. Instrum. Methods Phys. Res. Sect. A 726, 77, (2013). |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR002 | Optics Corrections with LOCO in the Fermilab Booster | lattice, optics, booster, quadrupole | 3385 |
|
|||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The optics of the Fermilab Booster has been corrected with LOCO (Linear Optics from Closed Orbits). However, the first corrections did not show any improvement in capture efficiency at injection. A detailed analysis of the results showed that the problem lay in the MADX optics file. Both the quadrupole and chromatic strengths were originally set as constants independent of beam energy. However, careful comparison between the measured and calculated tunes and chromatcity show that these strengths are energy dependent. After the MADX model was modified with these new energy dependent strengths, the LOCO corrected lattice has been applied to Booster. The effect of the corrected lattice will be discussed here. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR005 | Systematic Errors Investigation in Frozen and Quasi-Frozen Spin Lattices of Deuteron EDM Ring | lattice, storage-ring, dipole, experiment | 3394 |
|
|||
The search for the electric dipole moment (EDM) in the storage ring raises two questions: how to create conditions for maximum growth of the total EDM signal of all particles in bunch, and how to differentiate the EDM signal from the induced magnetic dipole moment (MDM) signal. The T-BMT equation distinctly addresses each issue. Because the EDM signal is proportional to the projection of the spin on the direction of the momentum, it is desirable to freeze the spin direction of all particles in a bunch along momentum. It can be successfully implemented in the Quasi Frozen (QFS) and Frozen (FS) Spin structures. However, in case of magnet misalignments, the induced MDM signal may arise in the same plane as the EDM signal and thereby prevent its registration. In this paper, we analyze the effect of errors together with the spin-tune decoherence of all particles in the bunch for FS and QFS options. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR005 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR012 | Optimization of Nonlinear Dynamics for Sirius | lattice, dynamic-aperture, optics, betatron | 3409 |
|
|||
In this work we describe the optimization of the non-linear dynamics for the Sirius storage ring. The strong sextupoles of the lattice, necessary to correct the linear chromaticities, generate higher order terms in the tune-shifts with amplitude and energy, which may result in a large tune footprint for the machine. The configuration the sextupole families found that wraps this tune footprint and thus avoids dangerous resonances was achieved with minimization of Hamiltonian driving terms and tracking-based multi-objective algorithms include realistic values of misalignment and excitation errors of the magnets, orbit correction, insertion devices fields and real vacuum chamber apertures. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR015 | RCDS Optimizations for the ESRF Storage Ring | injection, optics, emittance, resonance | 3420 |
|
|||
The Robust Conjugate Direction Search (RCDS)* optimizer is applied for online optimizations of the ESRF accelerators. This paper presents the successful application of the algorithm in reducing vertical emittance, improving injection efficiency and increasing lifetime. A new set of sextupole settings to increase chromaticity has been obtained with lifetimes comparable to the existing one. This allows to run with double current in a single bunch, and unifies the optics for few bunch (except 4x10 bunches) and multi-bunch modes.
* X. Huang, J. Corbett, J. Safranek, J. Wu, "An algorithm for online optimization of accelerators", Nucl. Instr. Methods, A 726 (2013) 77-83. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR016 | Horizontal Phase Space Shaping for Optimized Off-axis Injection Efficiency | injection, optics, lattice, septum | 3424 |
|
|||
With the introduction of top-up operation at the ESRF it becomes important to reduce as much as possible any kind of perturbation seen by the users during injection. For this purpose, a novel technique to improve injection efficiency by shaping the horizontal beam phase space to better match the storage ring acceptance and hence reduce the duration of injections was developed. Theoretical concept, simulations and first experimental results are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR018 | Ion-Optics of Antiproton Separator at FAIR | antiproton, proton, target, collimation | 3431 |
|
|||
In the framework of antiproton program at FAIR project, the large acceptance antiproton separator is dedicated for the effective separation of the secondary antiprotons from the primary protons and the secondary beams of other particle species and subsequent transportation to the Collector Ring (CR). Here we present the latest ion-optical layout of the antiproton separator and possible second-order correction scheme as well. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR021 | Bmad Model of COSY, Status and Progress | lattice, proton, polarization, resonance | 3437 |
|
|||
Abstract The COSY in Jülich is a versatile machine with a long history of polarized proton acceleration. A new model of COSY based on the Bmad library was developed to simulate beam and spin dynamics. Original methods of lattice design, notably multi-objective lattice optimization, were explored. This contribution presents the status and development steps of the Bmad model of COSY. Some of the latest simulations will also be discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR022 | Non-linear Optimization of Storage Ring Lattice for the SPring-8 Upgrade | lattice, betatron, optics, injection | 3440 |
|
|||
A project of upgrading the SPring-8 facility is ongoing to convert the present storage ring to a high-coherence hard X-ray source (SPring-8-II). To achieve the emittance value of less than 0.2 nmrad at 6 GeV, we adopted a 5-bend achromat lattice with dipoles having longitudinal field gradient. In this lattice the betatron phase between the two dispersion arcs was set to (2n+1)PI to suppress dominant harmful effects of chromaticity-correcting sextupoles. By detuning this phase, optimizing sextupole strengths in a cell and introducing octupoles, we obtained a sufficient dynamic aperture (DA) for beam injection even for the symmetry-broken ring having four long straight sections and a high-beta injection section. However, the off-momentum behavior such as the non-linear chromaticity still needs to be optimized to achieve the momentum acceptance (MA) of 3% or larger. We have thus been investigating the possibility to increase both the DA and MA by introducing several phase-matched sextupole pairs. The presentation will report the obtained results by this approach. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR022 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR035 | Low Horizontal Beta Optics for ALBA | lattice, optics, dynamic-aperture, emittance | 3461 |
|
|||
The ALBA insertion device beamlines have a horizontal and vertical rms source size of 130 and 5.5 microns. Protein crystallography beamlines (Xaloc) would benefit from a reduction of the horizontal and increase of the vertical beam size, to gain spatial resolution and avoid anisotropy effects. A modified lattice with horizontal and vertical beam size of 74 and 9 microns has been setup and tested, breaking the ring symmetry, with different setting of the six neightbouring quadrupoles at each side of the Xaloc insertion device. Such configuration keeps the nominal emittance almost unvaried and the working point is recovered by small changes in the quadrupole strengths of the four symmetric matching sections. A dedicated setting of the nine available sextupole families has been obtained by numerical optimization of the dynamical apertures and tune shifts. The lattice settings have been satisfactorily tested. The measured lifetime is reduced a factor two and the injection efficiency decreases to 60%. Finally, the option of increasing the number of sextupole families, to recover the dynamic aperture and guarantee the injection efficiency, has been studied. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR035 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR036 | Improved Methods for the Measurement and Simulation of the CERN SPS Non-linear Optics | optics, octupole, multipole, impedance | 3464 |
|
|||
Good knowledge of the non-linear properties of the SPS lattice is crucial for modelling and optimising the machine performance in the presence of collective effects leading to incoherent tune spreads such as space charge, e-cloud and beam coupling impedance. In view of the LHC injectors upgrade (LIU) project and the future SPS operation in a regime dominated by such collective effects, detailed measurements of the SPS non-linear chromaticity and detuning with amplitude have been performed for the two optics configurations presently available for LHC type beams. The measurement results are used to fit systematic multipole components to the main magnets of the SPS MADX model as a basis for the non-linear machine model that can be used for beam dynamics simulations. The implications for the operation of the SPS with the LIU beam parameters are discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR043 | Performance of Transverse Beam Splitting and Extraction at the CERN Proton Synchrotron in the Framework of Multi-turn Extraction | extraction, septum, proton, resonance | 3492 |
|
|||
Considerable progress has been made in 2015 in the setting up of the multi-turn extraction (MTE) in the CERN Proton Synchrotron (PS). A key ingredient in this novel extraction technique is the beam splitting in transverse phase space. This manipulation is based on adiabatic trapping in stable islands of transverse phase space and requires mastering a number of devices in the PS ring. In addition, an in-depth review of all fast extractions schemes in the PS had been required due to the development and installation of a dummy septum to shield the actual magnetic septum. In this paper, the current performance of the beam splitting and of the extraction including the shadowing effect is presented. Future lines of development will also be discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR043 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR045 | CLIC Beam Delivery System Rebaselining and Long L* Lattice Optimization | luminosity, lattice, synchrotron-radiation, radiation | 3500 |
|
|||
This paper summarizes the re-optimization study made on the CLIC Beam Delivery System (BDS) in the framework of the rebaselining for beam collisions at 380 GeV for the initial energy stage. It describes the optimization process applied for the beam parameters as well as for the Final Focus system (FFS) lattice design with respect to the energy upgrade transition to 3 TeV. Both initial and final energy stages were optimized for a short (nominal) and a long L* (6 meters). The long L* option allows the last quadrupole (QD0) to be be located outward of the detector solenoid field influence. FFS optics designs based on the Local chromaticity correction and performance comparisons for both L* options are shown. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR045 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR046 | Advanced BBA Techniques for the Final Focuses of Future Linear Colliders | luminosity, collider, linear-collider, alignment | 3504 |
|
|||
Tuning the Final-Focus System of future linear colliders is one of the open challenges the linear collider community is undertaking. Future colliders like ILC and CLIC will feature complex lattice design to focus the beams to nanometer level at the Interaction Point. Standard Beam-Based Alignment (BBA) techniques have proven to hardly meet the requirements in terms of acceptable emittance growth, in both machines. A set of new techniques, respectively called: nonlinear Dispersion-Free Steering (DFS), DFS-knobs scan, and hybrid DFS-knobs with beamsize measurements, have been put in place to cope with the challenge. This paper will reveal the key ideas behind the new techniques, and compare their effectiveness w.r.t. the conventional BBA tuning procedures. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR046 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR047 | Two-beam Tuning in the CLIC BDS | luminosity, collider, linear-collider, simulation | 3508 |
|
|||
Beam tuning in the beam delivery system (BDS) is one of the major challenges for the future linear colliders. In those colliders, due to fast detuning of the final focus optics both beamlines will need to be tuned simultaneously. An initial two-beam tuning study for the Compact Linear Collider (CLIC) BDS had been performed, but was not fully satisfactory. In this paper a more extensive study is presented, as well as several improvements to the tuning algorithm. A comparative study between two competing CLIC final focus systems (FFS), the traditional and the compact FFS, will be discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR047 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMR050 | Studies to Install a Multipole Wiggler by Removing a Chromatic Sextupole in the Diamond Storage Ring | injection, optics, lattice, emittance | 3518 |
|
|||
Investigations are underway for the possible use of an achromat to install a short multipole wiggler by removing a chromatic sextupole in cell-11 of the storage ring. The effect on emittance and energy spread are found to be small, however the impact on lifetime and injection are very significant if the chromaticity is corrected normally (globally). The MOGA genetic algorithm is used to optimize the lifetime and injection efficiency in this case. We used local mirror chromatic sextupole and other chromatic sextupole family for chromaticity correction in which case the genetic algorithm found solution that restores lifetime and injection efficiency. In this paper the results of MOGA simulations using various schemes for chromaticity correction and test results in presently operational optics will be discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW011 | Magnet Power Supplies Performance at the PLS-II Storage Ring | operation, quadrupole, storage-ring, power-supply | 3558 |
|
|||
Funding: This work is supported by the Ministry of science, ICT and Future Planning, Korea. Magnet power supplies(MPS) are operating unipolar(bending, main-quadrupole, sextupole and septum) and bipolar(slow corrector, fast corrector, aux-quadrupole and skew) at the PLS-II storage ring(SR). Unipolar MPSs maintain stability, and bipolar MPSs maintain stability, have best resolution performance total operation region including zero-crossing during beam operation. Slow and fast corrector MPSs for beam correction have good step response characteristics. In this paper, we present the improve activity and performance of the PLS-II SR MPS. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMW018 | Simulation a High Step-up DC-DC Converter for Accelerator | simulation, power-supply, operation, quadrupole | 3579 |
|
|||
This paper simulation a novel high step-up DC-DC high circuit architecture for storage ring quadrupole and sextupole power supply DC bus voltage. The input source is a low voltage photovoltaic energy through proposed circuit to increase high output voltage system. This volt-age can be as DC bus of quadrupole and sextupole power supply. The part of the circuit has a power switch, isolated transformer inductors, switched capacitors and diodes. This proposed circuit has the advantages of galvanic isolation function, small transformer and high step-up gain and efficiency. Continuous conduction mode (CCM) operation principles are discussed in this paper. Finally, Simplis software has been used for simulation a 24 Vdc step-up to 200 Vdc and 100 w DC-DC converters.
high step-up, switched capacitor, photovoltaic |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR001 | Tolerance Studies and Dispersion Free Steering for Extreme Low Emittance in the FCC-ee Project | emittance, lattice, collider, interaction-region | 3759 |
|
|||
The FCC-ee study is investigating the design of a 100 km e+/e− circular collider for precision measurements and rare decay observations in the range of 90 to 350 GeV center of mass energy with luminosities in the order of 1035 cm-2s-1. In order to reach such performances, an extreme focusing of the beam is required in the interaction regions with a low vertical beta function of 2 mm at the IP. Moreover, the FCC-ee physics program requires very low emittances never achieved in a collider with 2 nm for εx and 2 pm for εy, reducing the coupling ratio to 1/1000. With such requirements, any field errors and sources of coupling will introduce spurious vertical dispersion which degrades emittances, limiting the luminosity of the machine. This paper describes the tolerance study and the impact of errors will affect the vertical emittance. In order to preserve the FCC-ee performances, in particular εy, a challenging correction scheme is proposed to keep the coupling and the vertical emittance as low as possible. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR002 | Chromaticity Compensation Schemes for the Arc Lattice of the FCC-ee Collider | collider, quadrupole, lattice, optics | 3763 |
|
|||
FCC-ee is an 100 km e+/e− collider that is being designed within the Future Circular Collider Study organised by CERN. It's layout is optimised for precision studies and rare decay observations in the range of 90 to 350 GeV center of mass energy with luminosities in the order of 1035 cm-2s-1. Extremely small vertical beta functions of 1 - 2 mm are required at the two interaction points to reach this goal. The strong focusing required in the final doublet quadrupoles drives the chromaticity to more than -2000 units, far beyond the values that had been achieved in previous storage rings. As a consequence a pure linear chromaticity compensation scheme will not be sufficient to obtain the required ± 2 % energy acceptance. A state of the art multi-family sextupole scheme will have to be combined with a local chromaticity correction. This paper presents the design of the arc lattice, optimised for highest momentum acceptance and the results of systematic studies of the sextupole scheme in the arcs in order to gain highest chromaticity performance. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR004 | Magnetic Measurement for Superconducting-Quadrupole-Magnets of Final-Focus System for SuperKEKB | quadrupole, luminosity, octupole, radiation | 3771 |
|
|||
SuperKEKB is an upgrade project of KEKB to increase its luminosity to 8 x 1035 cm-2 s-1 based on the nano-beam scheme. In SuperKEKB, one of a key element is a final-focus system; it reduces e−/e+ beam size to 50 nm in vertical and 10 μm in horizontal direction at an interaction point (IP). The system consists of eight superconducting quadrupole magnets and four quadrupoles are aligned on the each beam line. The quadrupole, QC1P(QC1E), which is located at the closest position to the IP on the e+(e−) beam line, generates a field gradient of about 70 T/m. An inner diameter of coil and a magnetic length for QC1P(QC1E) are 25(33) mm and 334(373) mm, respectively. The production of all quadrupole magnets are completed. To confirm their field qualities, we performed magnetic measurement for each magnet in advance to be integrated into cryostats on the beam lines. In the measurement, the quadrupoles were cooled down to 4.2 K in a test vertical cryostat and field harmonic components were measured with harmonic coils. The magnitude of error multipole components for all magnets met requirements from beam optics design. In this paper we describe the measurement results. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR004 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR006 | SuperKEKB Main Ring Magnet System | dipole, wiggler, alignment, quadrupole | 3778 |
|
|||
SuperKEKB is an electron-positroncollider, which aims to achieve a peak luminosity 40 times higher than that of KEKB by using the so-called 'nano-beam' scheme. A major upgrade to the Main Ring (MR) magnet system was needed to realize this scheme. The upgrade includes 1) new beam lines in the entire interaction region;2) replacement of the main dipole magnets in the positron ring; 3) a new layout of the wiggler sections in the positron ring, and newly added wiggler section in the electron ring, and; 4) sextupole magnets with tunable tilting tables to control the ratio of skew/normal sextupole components in the positron ring. More than 400 magnets were designed, fabricated, field-measured, installed in the tunnel and aligned in time for Phase 1 commissioning. Alignment of the MR magnets was challenging, since the survey network was destroyed by the Great East Japan Earthquake. Tunnel position changes during the magnet alignment work caused by construction of a new facilities building made the alignment work even more challenging. Construction of the MR magnet system and its first commissioning are reported. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR007 | Optics Measurements and Corrections at the Early Commissioning of SuperKEKB | coupling, optics, quadrupole, emittance | 3782 |
|
|||
We present experimental results of measurements and corrections of the optics at the early Phase-1 commissioning of SuperKEKB which is a positron-electron collider built to achieve the target luminosity of 8x1035 cm-2s-1. We have three stages; the Phase-1 is the commissioning of the machine without the final focus magnets and detector solenoid(no collision); the collision with the final focus system and the Belle II detector will be performed at the Phase-2 and Phase-3. The strategy for the luminosity upgrade is a novel "nano-beam'' scheme found elsewhere*. In order to achieve the target luminosity, the vertical emittance has to be reduced by corrections of machine error measured by orbit responses. The vertical emittance should be achieved to be less than 6 pm(0.2 % coupling) during the Phase-1 by fully utilizing correction tools of skew quadrupole-like coils wound on sextupole magnets and power supplies for each correction coil in quadrupole magnets. In addition to the linear optics, the optics for off-momentum particles is also studied to understand a dynamic aperture affects the Touschek lifetime.
* "SuperB Conceptual Design Report", INFN/AE-07/2, SLAV-R-856, LAL 07-15, (2007). |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR007 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR010 | CEPC Parameter Choice and Partial Double Ring Design | luminosity, emittance, dynamic-aperture, optics | 3788 |
|
|||
Funding: Work supported by the National Foundation of Natural Sciences (11505198 and 11575218) In order to avoid the pretzel orbit, CEPC is proposed to use partial double ring scheme in CDR. Based on crab waist scheme, we hope to either increase the luminosity with same beam power as Pre-CDR, or reduce the beam power while keeping the same luminosity in Pre-CDR. FFS with crab sextupoles has been developed and the arc lattice was redesigned to acheive the lower emittance for crab waist scheme. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR011 | Design study of CEPC Alternating Magnetic Field Booster | dipole, dynamic-aperture, emittance, booster | 3791 |
|
|||
CEPC is next generation circular collider proposed by China. The design of the full energy booster ring of the CEPC is especially challenging. The ejected beam energy is 120GeV but the injected beam only 6GeV. In a conventional approach, the low magnetic field of the main dipole magnets creates problems. We propose to operate the booster ring as a large wiggler at low beam energies and as a normal ring at high energies to avoid the problem of very low dipole magnet fields. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR012 | Dynamic Aperture Study of the CEPC Main Ring with Interaction Region | dynamic-aperture, interaction-region, optics, resonance | 3795 |
|
|||
CEPC is a Circular Electron and Positron Collider proposed by China to mainly study the Higgs boson. In order to achieve factory luminosity, a strong focusing system and low-emittance are required. A momentum acceptance as large as 2\% is also required to get a reasonable beam lifetime. This is one of the key issues of the CEPC accelerator physics. In this paper, the optics design of the interaction region and the optimization of dynamic aperture for the whole ring (single ring scheme) will be presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR013 | Magnet Error Effect on Dynamic Aperture in CEPC | dynamic-aperture, multipole, quadrupole, lattice | 3798 |
|
|||
With the discovery of the higgs boson at around 125GeV, a circular higgs factory design with high luminosity (L ~ 1034 cm-2s−1) is becoming more popular in the accelerator world. The CEPC project in China is one of them. The performance of the machine can be influenced by the existence of every kind of inaccuracies of the magnets, such as misalignment errors and field errors, multipole errors etc on. In this paper, we reported the errors that used in the CEPC beam dynamic study, and the influence on dynamic aperture of the CEPC main ring when introducing these kinds of errors. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR013 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR019 | Momentum Acceptance Optimization in FCC-ee Lattice (CERN) | quadrupole, lattice, luminosity, dipole | 3814 |
|
|||
Funding: Work is supported by the Ministry of Education and Science of the Russian Federation. The part of the ongoing study of the future circular collider (FCC) is an electron positron machine with center of mass energy from 90 to 350 GeV. Crab waist collision scheme and small (1 mm) vertical beta function at the interaction point (IP) provide superior luminosity. At the top energy, radiation in the field of the opposite bunch (beamstrahlung) limits the beam lifetime and therefore achievable luminosity. Beamstrahlung influence depends on momentum acceptance of the lattice, the value of 2% provides acceptable lifetime. The small value of vertical beta function enhances effects of nonlinear chromaticity. The present work describes principles used in design and optimization of FCC-ee momentum acceptance optimization and are based on chromatic variations of beta function. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR022 | Design of Beam Optics for the FCC-ee Collider Ring | optics, radiation, quadrupole, synchrotron | 3821 |
|
|||
A design of beam optics will be presented for the FCC-ee double-ring collider. The main characteristics are 45 to 175 GeV beam energy, 100 km circumference with two IPs/ring, 30 mrad crossing angle at the IP, crab-waist scheme with local chromaticity correction system, and "tapering" of the magnets along with the local beam energy. An asymmetric layout near the interaction region suppresses the critical energy of synchrotron radiation toward the detector at the IP less than 100 keV, while keeping the geometry as close as to the FCC-hh beam line. A sufficient transverse/longitudinal dynamic aperture is obtained to assure the lifetime with beamstrahlung and top-up injection. The synchrotron radiation in all magnets, the IP solenoid and its compensation, nonlinearity of the final quadrupoles are taken into account. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR022 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR029 | First Start-to-End BBA Results in the CLIC RTML | emittance, quadrupole, coupling, alignment | 3841 |
|
|||
CLIC is a design study for a 3 TeV linear collider designed for the high-energy frontier in the post-LHC era. The Ring To Main Linac (RTML) part of CLIC is a long section that must transport the electron and the positron bunches through more than 20 km of beamlines, with minimal emittance growth. A sequence of three beam-based alignment (BBA) techniques must be used to transport the beam: one-to-one correction (OTO), dispersion-free steering (DFS), and sextupole correction (SCS). The performance of the whole correction procedure is tested under several realistic imperfections: magnets position offsets, magnets rotation errors, magnets strength errors and emittance measurement errors. The results show that the emittance growth budgets can be met both in the horizontal and vertical planes. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPOR032 | Effect and Optimisation of Non-Linear Chromatic Aberrations of the CLIC Drive Beam Recombination at CTF3 | optics, emittance, simulation, operation | 3852 |
|
|||
The CLIC design relies on the two-beam acceleration principle, i.e. the energy transfer from the so called drive beam to the main colliding beams. At the CLIC Test Facility (CTF3) at CERN the feasibility of this principle is being tested in terms of performance and achievable specifications. The high-current drive beam is generated by recombining its parts in a delay loop and a combiner ring. Preserving the drive beam emittance during the recombination process is crucial to ensure beam-current and power production stability. Present theoretical and experimental studies show that non-linear energy dependence of the transverse optics heavily spoils the quality of the recombined beam. Conventionally these effects are cured by means of non-linear corrections using sextupoles. In this work we propose a mitigation of these effects by optimising the linear lattice, leading to a more robust and easy to operate drive beam recombination complex. The latest results are presented. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||