A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

emittance

Paper Title Other Keywords Page
MO204 The Injector Systems of the FAIR Project ion, linac, heavy-ion, rfq 31
 
  • W. Barth
    GSI, Darmstadt
 
 

Funding: EU-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (CARE, contract number RII3-CT-2003-506395); EU-INTAS Project Ref. no. 06-1000012-8782
The present GSI accelerator chain will serve as an injector for FAIR. The linear accelerator UNILAC and the heavy ion synchrotron SIS18 should deliver up to 1012 U28+ particles/sec. In the past two years different hardware measures and a careful fine tuning of the UNILAC resulted in a 35% increase of the beam intensity to a new record of 1.25*1011 U27+ ions per 100μs or 2.3*1010 U73+ ions per 100μs. The increased stripper gas density, the optimization of the Alvarez-matching, the use of various newly developed beam diagnostics devices and a new charge state separator system in the foil stripper section comprised the successful development program. The contribution reports results of beam measurements during the high current operation with uranium beams (pulse beam power up to 0.65 MW). The UNILAC upgrade for FAIR will be continued by assembling a new front-end for U4+, stronger power supplies for the Alvarez quadrupoles, and versatile high current beam diagnostics devices. Additionally, the offered primary proton beam intensities will be increased by a new proton linac, which should be commissioned in 2013.

 

slides icon

Slides

 
MO302 Overview of Recent RFQ Projects rfq, ion, linac, ion-source 41
 
  • A. Schempp
    IAP, Frankfurt am Main
 
 

RFQs are the new standard injector for a number of projects. The development of the 4-Rod RFQ structure has led to a number of interesting developments, which will be discussed with actual projects as examples. Recent work on the FAIR - p linac, the GSI - high charge state injector upgrade, the GSI - HITRAP, the new BNL - EBIS-RFQ, and the RFQ of the MSU - CW Reaccelerator will be presented and the status of these projects and will be discussed.

 

slides icon

Slides

 
MOP029 Beam Dynamics Studies for the SCREX-ISOLDE Linac at CERN cryomodule, linac, cavity, simulation 127
 
  • M. Pasini, D. Voulot
    CERN, Geneva
  • M.A. Fraser, R.M. Jones
    UMAN, Manchester
 
 

For the REX-ISOLDE upgrade a superconducting linac based on 101.28 MHz Quarter Wave Resonators (QWRs) is foreseen downstream the normal conducting (NC) linac. Currently the REX-ISOLDE linac can accelerate ions with a mass to charge ratio in the range of 3 < A/q < 4.5 and up to an energy of 3 MeV/u. The upgrade aims to reach a final beam minimum energy of 10 MeV/u for A/q=4.5 in two main stages. The first stage consists of installing two cryomodules loaded with 10 cavities able to reach 5.5 MeV/u at the end of the present linac and the second consists of replacing part of the existing NC linac and adding further cryomodules. We report here on a beam dynamics study of the accelerator for the two installation stages and the transport line to the experimental station.

 
MOP030 Multiple User Beam Distribution System for FRIB Driver Linac kicker, septum, linac, simulation 130
 
  • D. Gorelov, V. Andreev, S. Chouhan, X. Wu, R.C. York
    NSCL, East Lansing, Michigan
 
 

Funding: Work was supported by DOE grant DE-FG02-04ER41324
The proposed Facility for Radioactive Ion Beams (FRIB)* will deliver up to 400 kW of any stable isotope to multi-target experimental complex. Operational efficiency will be best served by a system that can distribute the beam current, variable in a large dynamic range, to several independent targets simultaneously. The proposed FRIB Beam Switchyard (BSY) utilizes an rf kicker with subsequent magnetostatic septum system to split the beam on micro-bunch to micro-bunch basis. The micro-bunches can be differentially loaded at the front-end of the Driver Linac**. The detailed analysis of the beam dynamics performance in the proposed BSY system is presented.


*D.Gorelov, et al, proc of EPAC 2002, Paris, France, 2002.
**M. Doleans, et al, LINAC 2006, Knoxville, TN, USA, 2006.

 
MOP031 Estimates of Energy Fluence at the Focal Plane in Beams Undergoing Neutralized Drift Compression solenoid, target, bunching, induction 133
 
  • J.J. Barnard
    LLNL, Livermore, California
  • J.E. Coleman, D. Ogata, P.A. Seidl
    LBNL, Berkeley, California
  • D.R. Welch
    Voss Scientific, Albuquerque, New Mexico
 
 

Funding: Work performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at LLNL, and University of California contract DE-AC03-76SF00098 at LBNL.
We estimate the energy fluence (energy per unit area) at the focal plane of a beam undergoing neutralized drift compression and neutralized solenoidal final focus, as is being carried out in the Neutralized Drift Compression Experiment (NDCX) at LBNL. In these experiments, in order to reach high beam intensity, the beam is compressed longitudinally by ramping the beam velocity (i.e. introducing a velocity tilt) over the course of the pulse, and the beam is transversely focused in a high field solenoid just before the target. To remove the effects of space charge, the beam drifts in a plasma. The tilt introduces chromatic aberrations, with different slices of the original beam having different radii at the focal plane. The fluence can be calculated by summing the contribution from the various slices. We develop analytic formulae for the energy fluence for beams that have current profiles that are initially either constant or parabolic in time. We compare with envelope and particle-in-cell calculations. The expressions derived are useful for predicting how the fluence scales with accelerator and beam parameters.

 
MOP032 Upgrade of the Unilac High Current Injector RFQ rfq, simulation, ion, focusing 136
 
  • A. Kolomiets, S. Minaev
    ITEP, Moscow
  • W. Barth, L.A. Dahl, H. Vormann, S. Yaramyshev
    GSI, Darmstadt
 
 

Funding: Work supported by the European Community INTAS Project Ref. no. 06-1000012-8782.
For the operation of the GSI-accelerator chain as an injector for the future FAIR facility a considerable increase of the heavy ion beam intensity by a factor 3-5 at the end of the UNILAC is required. The bottleneck of the whole UNILAC, is the front-end system of the High Current Injector. It is shown that the transverse RFQ-acceptance can be significantly increased while the emittance growth can be reduced. Both goals are achieved with only a moderate change of the RFQ electrode geometry; the intervane voltage raised from 125 kV to 155 kV keeping the design limit of the maximum field at the electrode surface. The changed resonant frequency can be compensated with a relatively small correction of the carrying rings. The beam parameters in the final focusing elements of the LEBT were improved together with the input radial matcher design; the length of the gentle buncher section was considerably increased to provide slow and smooth bunching resulting in a reduce influence of space charge forces. DYNAMION-simulation with the modified electrode design resulted in an increase of U4+-beam current of up to 20 emA. It is planned to start the upgrade measure in spring 2009.

 
MOP033 The New EBIS RFQ for BNL rfq, ion, linac, alignment 139
 
  • M. Vossberg, B. Hofmann, A. Schempp, J.S. Schmidt, C. Zhang
    IAP, Frankfurt am Main
  • J.G. Alessi, D. Raparia, L. Snydstrup
    BNL, Upton, Long Island, New York
 
 

A new RFQ is being built as a part of the new EBIS-linac at BNL. The RFQ accepts highly charged ions from the EBIS ion source with energy of 17 keV/u and ion currents of up to 10 mA. The operation frequency will be 100.625 MHz . The design had been optimized to get a rather short structure with LRFQ=3.1 m with moderate electrode voltages of UQ = 70 kV. The resonant insert has a cooled base plate and solid stems and vane-electrodes. The mechanical design is very stiff, with a precise base-structure. The top lid along the RFQ allows installation, alignment, inspection and maintenance. After the mechanical alignment of the electrodes the longitudinal electrode voltage distribution will be adjusted with tuning plates between the stems. The properties of the RFQ, the results of the tuning and the status of the project will be discussed.

 
MOP036 The IFMIF-EVEDA RFQ: Beam Dynamics Design rfq, focusing, space-charge, beam-losses 145
 
  • M. Comunian, A. Pisent
    INFN/LNL, Legnaro, Padova
  • E. Fagotti
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
 
 

The IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) project foresees the construction of a high intensity deuteron accelerator up to 9 MeV, with the characteristics required for the actual IFMIF facility. The linac will be installed in Rokkasho, and INFN is in charge of the construction of a 5 MeV, 125 mA, deuteron RFQ operating at 175 MHz. In this article the beam dynamics design of this challenging RFQ is described, namely the design, the main outcomes in terms of beam particles physics, and finally the study of mechanical and rf field error tolerances. The RFQ design method has been aimed to the optimization of the voltage and R0 law along the RFQ, the accurate tuning of the maximum surface field and the enlargement of the acceptance in the final part of the structure. As a result this RFQ is characterized by a length shorter than in all previous design, very low losses (especially at higher energy) and small rf power dissipation.

 
MOP040 The Radiofrequency Quadrupole Accelerator for the Linac4 rfq, linac, cavity, quadrupole 157
 
  • C. Rossi, P. Bourquin, J.-B. Lallement, A.M. Lombardi, S.J. Mathot, M.A. Timmins, G. Vandoni, M. Vretenar
    CERN, Geneva
  • S. Cazaux, O. Delferrière, M. Desmons, R.D. Duperrier, A. France, D. Leboeuf, O. Piquet
    CEA, Gif-sur-Yvette
 
 

The first stage of acceleration in Linac4, the new 160 MeV CERN H- injector, is a 352 MHz, 3 m long Radiofrequency Quadrupole (RFQ) Accelerator. The RFQ will capture a 70 mA, 45 keV beam from the rf source and accelerate it to 3 MeV, an energy suitable for chopping and injecting the beam in a conventional Drift Tube Linac. Although the RFQ will be initially operated at low duty cycle (0.1%), its design is compatible with higher duty cycle (10%) as the front-end for a possible high-intensity upgrade of the CERN linac facility. The RFQ will be of the brazed-copper design and will be built and assembled at CERN. Beam dynamics design allows for a compact structure made of a single resonant unit. Field symmetry is ensured by fixed tuners placed along the structure. In this paper we present the rf and mechanical design, the beam dynamics and the sensitivity to fabrication and to rf errors.

 
MOP041 The Fabrication and Initial Testing of the HINS RFQ rfq, simulation, vacuum, quadrupole 160
 
  • G. Apollinari, B.M. Hanna, T.N. Khabiboulline, A. Lunin, A. Moretti, T.M. Page, G.V. Romanov, J. Steimel, R.C. Webber, D. Wildman
    Fermilab, Batavia
  • P.N. Ostroumov
    ANL, Argonne
 
 

Fermilab is designing and building the HINS front-end test facility. The HINS proton linear accelerator consists of a normal-conducting and a superconducting section. The normal-conducting (warm) section is composed of an ion source, a 2.5 MeV radio frequency quadrupole (RFQ), a medium energy beam transport, and 16 normal-conducting crossbar H-type cavities that accelerate the beam to 10 MeV. Production of 325 MHz 4-vane RFQ is recently completed. This paper presents the design concepts for this RFQ, the mechanical design and tuning results. Issues that arose during manufacturing of the RFQ will be discussed and specific corrective modifications will be explained. The preliminary results of initial testing of RFQ at the test facility will be presented and comparisons with the former simulations will also be discussed.

 
MOP046 Commissioning of the New GSI-Charge State Separator System for High Current Heavy Ion Beams ion, space-charge, dipole, heavy-ion 175
 
  • W. Barth, L.A. Dahl, P. Gerhard, L. Groening, M. Kaiser, S. Mickat
    GSI, Darmstadt
 
 

A dedicated charge separator system is now installed in the transfer line to the GSI-synchrotron SIS18. In former times charge separation was performed with a single 11 degree dipole magnet after a 25 m beam transport section. This was not adequate to meet the requirements during high current operation for FAIR: it only allows for charge state separation of low intensity and low emittance beams. With the new compact charge separator system emittance blow up and unwanted beam losses for high intensity beam operation will be avoided. Additionally a new beam diagnostics test bench is integrated. With this the beam parameters (ion current, beam profile, beam position, transversal emittance, bunch structure and beam energy) for the injection into the SIS18 can be measured in parallel to the routine operation in the transfer line. Results of the commissioning with high intensity argon beams as well as with an uranium beam will be reported.

 
MOP052 Re-phasing of the ISAC Superconducting Linac with Computed Values linac, cavity, ISAC, simulation 193
 
  • M. Marchetto, R.E. Laxdal, F. Yan
    TRIUMF, Vancouver
 
 

The ISAC superconducting linac is a fully operational machine that routinely provides beam to experiments. The linac consists of twenty superconducting independently phased cavities housed in five cryomodules. The initial tune is done manually aided by MATLAB routines to phase the linac and set the correct optics. From the initial tune we calculate the gradient at which each cavity operates based on the energy gain, the transit time factor and the geometry of the cavity itself. Then in the event of a gradient change of one or more cavities we can calculate the rf phase shift of each downstream cavity using the initial gradients, the known geometry of the entire linac and assuming linearity of the rf controls. This possibility has been investigated and we have demonstrated that the calculated phase shift can be implemented automatically thus avoiding a complete retune of the machine. In this paper we will present the calculations and the results of the online tests.

 
MOP057 Linac Front-End Upgrade at the Cancer Therapy Facility HIT rfq, linac, solenoid, ion 208
 
  • M.T. Maier, W. Barth, A. Orzhekhovskaya, B. Schlitt, H. Vormann, S. Yaramyshev
    GSI, Darmstadt
  • R. Cee
    HIT, Heidelberg
 
 

A clinical facility for cancer therapy using energetic proton and ion beams (C, He and O) has been installed at the Radiologische Universitätsklinik in Heidelberg, Germany. It consists of two ECR ion sources, a 7 MeV/u linac injector, and a 6.5 Tm synchrotron to accelerate the ions to energies of 430 MeV/u. The linac comprises a 400 keV/u RFQ and a 7 MeV/u IH-DTL operating at 216.8 MHz and has been commissioned successfully in 2006. Yet the overall achieved transmission through the injector linac did not exceed 30% due to a mismatch of the beam at the RFQ entrance. Thus a detailed upgrade programme has been started to exchange the RFQ with a new radial matcher design, to correct the alignment and to optimize beam transport to the IH-DTL. The aim is to achieve a sufficient linac transmission above 60%. The new design of the RFQ has been finished in 2007 and the RFQ is currently in production. A test bench comprising a full ion source and LEBT setup to commission the RFQ in 2008 is under construction at Danfysik in Danemark. The current status of this upgrade programme will be reported in this contribution.

 
MOP066 Status of MICE: the International Muon Ionization Cooling Experiment cavity, proton, solenoid, coupling 229
 
  • D. Huang
    IIT, Chicago, Illinois
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
  • M.S. Zisman
    LBNL, Berkeley, California
 
 

Funding: This work was partially supported by the Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-05CH11231.
A key unanswered question in particle physics is why the universe consists only of matter. It is believed that CP violation in the lepton sector is the answer. The best tool to find this is a muon-based Neutrino Factory. Muons can also be used for an energy-frontier collider that would fit on an existing laboratory site. Since muons are produced as a tertiary beam, their phase space and energy spread are large and must be reduced (cooled) to create a usable beam. Ionization cooling, comprising momentum loss in material followed by rf reacceleration, is the only suitable technique. A cooling channel is merely a linac with absorbing material in the beam path. To demonstrate an understanding of the physics and technology issues, MICE will test a section of cooling channel exposed to a muon beam derived from the ISIS synchrotron at RAL. The muon beam line is now installed and commissioning is under way. Fabrication of cooling channel components and the required detector systems has begun and will be described. A successful demonstration will go a long way toward proving the value of muon beams for future accelerator-based particle physics experiments.

 
MOP068 Trains of Sub-Picosecond Electron Bunches for High-Gradient Plasma Wakefield Acceleration plasma, wakefield, electron, simulation 235
 
  • P. Muggli
    UCLA, Los Angeles, California
  • M. Babzien, K. Kusche, J.H. Park, V. Yakimenko
    BNL, Upton, Long Island, New York
  • M.J. Hogan
    SLAC, Menlo Park, California
  • E. Kallos
    USC, Los Angeles, California
 
 

Funding: Work Supported by US Department of Energy
In the plasma wakefield accelerator (PWFA), high quality accelerated electron bunches can be produced by injecting a witness bunch behind a single drive bunch or a train of N bunches. To operate at large gradient the plasma density must be in the 1017/cc range, corresponding to a typical bunch separation of the order of the plasma wavelength or ≈100μm. We have demonstrated that such a sub-picosecond temporal bunch structure can be produced using a mask to selectively spoil the emittance of temporal slices of the bunch*. The bunches spacing, as well as their length can be tailored by designing the mask and choosing the beam parameters at the mask location. The number of bunches is varied by using an adjustable width energy limiting slit. The bunches spacing is measured with coherent transition radiation interferometry. Experimental results will be presented and compared to simulations of the bunch train formation process with the particle tracking code ELEGANT.


*P. Muggli et al., to appear in Phys. Rev. Lett. (2008).

 
MOP072 Beam Dynamics Simulation of the Low Energy Beam Transport Line for IFMIF/EVEDA simulation, rfq, space-charge, injection 242
 
  • N. Chauvin, O. Delferrière, R.D. Duperrier, R. Gobin, P.A.P. Nghiem, D. Uriot
    CEA, Gif-sur-Yvette
 
 

The purpose of the IFMIF-EVEDA (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities) demonstrator is to accelerate a 125 mA cw deuteron beam up to 9 MeV. Therefore, the project requires that the ion source and the low energy beam transport (LEBT) line deliver a 140 mA cw deuteron beam with an energy of 100 keV and an emittance of 0.25 π .mm.mrad (rms normalized) at the entrance of the RFQ. The deuteron beam is extracted from a 2.45 GHz ECR source based on the SILHI design*. A LEBT with a two solenoids focusing system is foreseen to transport and adapt the beam for the RFQ injection. In order to validate the LEBT design, intensive beam dynamics simulations have been carried out using a parallel implementation of a particle-in-cell 3D code which takes into account the space charge compensation of the beam induced by the ionisation of the residual gas. The simulations results (in particular from the emittance growth point of view) performed under several conditions of gas species or gas pressure in the beam line are presented.


*R. Gobin et al, Rev. Sci. Instrum. 79, 02B303 (2008).

 
MOP073 Parameter Design and Beam Dynamics Simulations for the IFMIF-EVEDA Accelerators linac, space-charge, quadrupole, rfq 245
 
  • P.A.P. Nghiem, N. Chauvin, O. Delferrière, R.D. Duperrier, A. Mosnier, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Comunian
    INFN/LNL, Legnaro, Padova
  • C. Oliver
    CIEMAT, Madrid
 
 

One major subsystem of IFMIF (International Fusion Materials Irradiation Facility) is its accelerator facility, consisting of two 175 MHz CW accelerators, each accelerating a deuteron beam of 125 mA to the energy of 40 MeV. This high power beam, 10 MW, induces challenging issues that lead to plan a first phase called EVEDA (Engineering Validation and Engineering Design Activity), where only the portion up to 9 MeV of one accelerator will be constructed and tested. For these accelerators, the Parameter Design phase is about to be completed. This paper presents the status of these studies. Due to the very high beam intensity, particular efforts have been dedicated to minimise the space charge effect that can strongly increase the beam size via the halo, and the losses that can prohibit the requested hand-on maintenance. For that, Beam Dynamics simulations have been performed with 106 macro-particles, and a great vigilance has been granted to the emittance growth and the particles on the beam edge. Several possible solutions are presented, for which advantages and drawbacks to fulfil the specifications are discussed.

 
MOP074 Beam Dynamics Simulations of Sub-ps Electron Bunch Produced in a Photo-Injector simulation, electron, laser, gun 248
 
  • R. Roux
    LAL, Orsay
 
 

A growing number of experiments require low emittance ultra-short electron bunches in the 100 fs range (rms value) for the production of coherent light or the injection in plasma for laser-plasma acceleration. Especially in the last case it is highly desirable to have a compact accelerator; hence a strong experimental activity is carried out to get such a beam directly from a photo-injector. We have performed beam dynamic simulations using the PARMELA code to study the performances of the alphaX photo-injector installed in the University of Strathclyde in UK. This rf gun is aimed to produce electron bunches of 100 pC bunch charge, 100 fs bunch length and 1 mmmrad transverse emittance. We will show the results of systematic parametric studies as a function of charge and laser pulse duration as well as the natural evolution of the beam phase space as a function of the distance from the photo-cathode.

 
MOP075 Benchmarking of Measurement and Simulation of Transverse RMS-Emittance Growth Along an Alvarez DTL DTL, simulation, quadrupole, linac 251
 
  • L. Groening, W. Barth, W.B. Bayer, G. Clemente, L.A. Dahl, P. Forck, P. Gerhard, I. Hofmann, G.A. Riehl, S. Yaramyshev
    GSI, Darmstadt
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
  • D. Uriot
    CEA, Gif-sur-Yvette
 
 

Funding: CARE, contract number RII3-CT-2003-506395) European Community INTAS Project Ref. no. 06-1000012-8782
Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriate tools to simulate the beam dynamics are indispensable. This paper is on benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittance growth for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the mean value of final horizontal and vertical rms-emittances can be reproduced well by the codes.

 
MOP077 Beam Dynamics Studies on the EURISOL Driver Accelerator linac, target, rfq, proton 257
 
  • A. Facco, A.I. Balabin, R. Paparella, D. Zenere
    INFN/LNL, Legnaro, Padova
  • D. Berkovits, J. Rodnizki
    Soreq NRC, Yavne
  • J.-L. Biarrotte, S. Bousson, A. Ponton
    IPN, Orsay
  • R.D. Duperrier, D. Uriot
    CEA, Gif-sur-Yvette
  • V. Zvyagintsev
    TRIUMF, Vancouver
 
 

Funding: We acknowledge the financial support of the European Community under the FP6 "Research Infrastructure Action-Structuring the European Research Area" EURISOL DS Project Contract No. 515768 RIDS.
A 1 GeV, 5 mA cw superconducting proton/H- linac, with the capability of supplying cw primary beam to up to four targets simultaneously by means of a new beam splitting scheme, is under study in the framework of the EURISOL DS project which aims to produce an engineering-oriented design of a next generation European Radioactive beam facility. The EURISOL driver accelerator would be able to accelerate also a 100 muA 3He beam up to 2 GeV, and a 5 mA deuteron beam up to 200 MeV. The linac characteristics and the status of the beam dynamics studies will be presented.

 
MOP078 Transverse Beam Matching and Orbit Corrections at J-PARC LINAC linac, injection, beam-losses, DTL 260
 
  • H. Sako, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Akikawa, M. Ikegami
    KEK, Ibaraki
  • T. Ohkawa
    JAEA, Ibaraki-ken
  • A. Ueno
    KEK/JAEA, Ibaraki-Ken
 
 

In the design of the very high intensity proton beam of the J-PARC LINAC, precise control of transverse beam dynamics is extremely important for suppression of beam loss. We present results of transverse beam matching and orbit corrections. The linac has 7 matching sections, each of which consists of 4 quadrupole magnets and 4 wire scanners. At 5 matching sections, beam widths at wire scanners are designed to agree with each other. This condition is used in the newly developed algorithm of quadrupole field correction based on a transport model, XAL. Excellent matching performance has been achieved with mismatch factor less than 5% at beam current of 5 to 30 mA. Control of beam parameters from linac into RCS is important for RCS paint injection. Beam studies and comparison to a model have been performed with linac wire scanners combined with multi-wire proportional monitors in the injection line. Orbit corrections with dipole steering magnets based on XAL model have been performed. Orbit deviations were suppressed within 1 mm in horizontal and vertical directions in the whole linac. For these measurements, detailed comparisons to a multi-particle simulation will be shown.

 

slides icon

Slides

 
MOP083 Analysis of Input Coupler Asymmetry Influence on Beam Dynamics in Accelerators with Superconducting Cavities cavity, electron, superconducting-cavity, simulation 269
 
  • N.P. Sobenin, S.V. Kutsaev, M.V. Lalayan, V.A. Makarov
    MEPhI, Moscow
  • A.A. Krasnov
    ScanTech, Atlanta, Georgia
  • V.I. Shvedunov
    MSU, Moscow
  • A.A. Zavadtsev
    Introscan, Moscow
 
 

Analysis of input coupler asymmetry influence on beam dynamics in superconducting cavities of Energy Recovery Linac (ERL) injector is presented. Both coaxial and waveguide, single and twin input couplers were analyzed. Using computer simulation electromagnetic fields distribution in accelerating cavity was obtained and recalculated to the transverse-kick to the bunch passing the coupler. Also calculation of external coupling was done. RTMTRACE code was adapted for particle beams dynamic simulation. Acceptable transverse emittance growth was achieved for twin-coaxial (4%) and waveguide (5%) input coupler designs.

 

slides icon

Slides

 
MOP086 End to End Beam Dynamics and RF Error Studies for Linac4 linac, DTL, klystron, booster 275
 
  • G. Bellodi, M. Eshraqi, J.-B. Lallement, S. Lanzone, A.M. Lombardi, E.Zh. Sargsyan
    CERN, Geneva
  • R.D. Duperrier, D. Uriot
    CEA, Gif-sur-Yvette
 
 

Linac4 is a normal conducting H- linac to be built at CERN as a new injector to the PS Booster and later on as a front end of a Superconducting Proton Linac (SPL). The layout consists of a H- rf source, a magnetic LEBT, a RFQ (accelerating the beam from 45 keV to 3 MeV), a chopper line, a conventional Drift Tube Linac (from 3 MeV to 50 MeV), a Coupled Cavity Drift Tube Linac (from 50 MeV to 100 MeV) and a pi-mode structure (PIMS, from 100 to 160 MeV), all operating at a frequency of 352 MHz. End-to-end beam dynamics simulations have been carried out in parallel with the codes PATH and TRACEWIN to optimise the design and performance of the accelerator and at the same time to guarantee a cross-check of the results found. An extensive statistical campaign of longitudinal error studies (static and dynamic) was then launched for validation of the proposed design and to assess the maximum level of RF jitter/inaccuracies (in both phase and amplitude) the system can tolerate before beam quality at injection in the PS Booster - and later in the SPL- is compromised.

 
MOP088 Particle Dynamics Calculations and Emittance Measurements at the FETS rfq, simulation, ion, ion-source 281
 
  • J.K. Pozimski, S. Jolly
    Imperial College of Science and Technology, Department of Physics, London
  • J.J. Back
    University of Warwick, Coventry
  • D.C. Faircloth, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • C. Gabor, D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

In order to contribute to the development of high power proton accelerators in the MW range, to prepare the way for an ISIS upgrade and to contribute to the UK design effort on neutrino factories, a front end test stand (FETS) is being constructed at the Rutherford Appleton Laboratory (RAL) in the UK. The aim of the FETS is to demonstrate the production of a 60 mA, 2 ms, 50 pps chopped beam at 3 MeV with sufficient beam quality. The results of numerical simulations of the particle dynamics from the charge separation dipole behind the ion source to the end of the MEBT will be presented. Previous measurements showed that the emittance of the beam delivered by the ion source exceeded our expectations by more than a factor of 3. Since then various changes in the beam extraction/post accelerator region reduced the beam emittance by a factor of 2. Simulations of the particle dynamics in the FETS based on distributions gained from recent measurements of the transversal beam emittance behind the ion source will be presented and the results for different input distributions discussed.

 
MOP089 Beam Dynamics and Wake-field Simulations for High Gradient ILC Linacs cavity, simulation, linac, wakefield 284
 
  • R.M. Jones, C.J. Glasman
    UMAN, Manchester
 
 

Higher order modes (HOMs) are simulated with finite element and finite difference computer codes for the ILC superconducting cavities currently under investigation for the ILC. In particular, HOMs in KEK's Ichiro type of cavity and Cornel University's Re-entrant design are focussed on in this work. The aim, at these Universities and laboratories, is to achieve an accelerating gradient in excess of 50 MV/m in 9-cell superconducting cavities whilst maintaining a high quality and stable electron beam. At these high gradients, electrical breakdown is an important cause for concern and the wakefields excited by the energetic electron beams are also potentially damaging to the beam's emittance. Here we restrict the analysis to performing detailed simulations, on emittance dilution due to beams initially injected with realistic offsets from the electrical centre of the cavities and due to statistical misalignments of the cavities. We take advantage of the latest beam dynamics codes in order to perform these simulations.

 
MOP091 End-to-End Simulation of the SNS Linac Using TRACK linac, rfq, simulation, DTL 290
 
  • B. Mustapha, P.N. Ostroumov
    ANL, Argonne
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
 
 

Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357.
In an effort to simulate the SNS linac using the beam dynamics code TRACK and to benchmark the results against the recent commissioning data, we have started updating TRACK to support SNS-type elements such as DTL's and CCL's. After successfully implementing and simulating the DTL section of the SNS linac*, we have implemented the CCL section and the high energy superconducting (SC) section up to 1 GeV. Results from end-to-end simulations of the SNS linac using TRACK will be presented and compared to simulations using other codes and to the recent commissioning data.


*"First TRACK Simulations of the SNS linac", B. Mustapha et al., in Proceedings of Linac-06 Conference, Knoxville, Tennessee, August 21-25, 2006.

 
MOP093 Study of IBS Effects for High-Brightness Linac Beams linac, scattering, lattice, brightness 296
 
  • A. Xiao
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Intrabeam scattering (IBS) may become an issue for linac-based fourth-generation light sources such as X-ray free-electron lasers and energy recovery linacs (ERLs), both of which use high-brightness electron beams with extremely small emittance and energy spread. Any degradation of the extremely high beam quality could significantly reduce the X-ray performance. We present here a strategy first used in the code elegant for simulating IBS effects for high brightness linac beams. We also present an application to a possible ERL upgrade of the Advanced Photon Source.

 
MOP101 Simulation of Emittance Growth Using the UAL String Space Charge Model simulation, space-charge, electron, synchrotron 308
 
  • R.M. Talman
    CLASSE, Ithaca, New York
  • N. Malitsky
    BNL, Upton, Long Island, New York
  • F. Stulle
    CERN, Geneva
 
 

Evolution of short intense electron bunches passing through bunch-compressing beamlines is simulated using the UAL (Unified Accelerator Libraries) string space charge formulation. Excellent agreement is obtained with results obtained experimentally at CTF-II, the CERN "Compact Linear Collider'' test facility. The 40 MeV energy of these data is low enough for Coulomb and Biot-Savart forces to be important and high enough for coherent synchrotron radiation and centrifugal space charge forces to be important. UAL results are also compared with CSRtrack results for emittance growth in a 40 MeV 'standard' chicane. Vertical space charge forces are found to be important in this (low energy) case.

 
MOP104 Parallel 3D Finite Element Particle-In-Cell Code for High-Fidelity RF Gun Simulations simulation, gun, wakefield, space-charge 317
 
  • A.E. Candel, A.C. Kabel, K. Ko, L. Lee, Z. Li, C. Limborg-Deprey, C.-K. Ng, G.L. Schussman, R. Uplenchwar
    SLAC, Menlo Park, California
 
 

Funding: Work supported by DOE contract DE-AC02-76SF00515.
SLAC's Advanced Computations Department (ACD) has developed the first high-performance parallel Finite Element 3D Particle-In-Cell code, Pic3P, for simulations of rf guns and other space-charge dominated beam-cavity interactions. As opposed to standard beam transport codes, which are based on the electrostatic approximation, Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses advanced Finite Element methods with unstructured meshes, higher-order basis functions and quadratic surface approximation. A novel scheme for causal adaptive refinement reduces computational resource requirements by orders of magnitude. Pic3P is optimized for large-scale parallel processing and allows simulations of realistic 3D particle distributions with unprecedented accuracy, aiding the design and operation of the next-generation of accelerator facilities. Applications to the Linac Coherent Light Source (LCLS) rf gun are presented.

 
MOP105 Beam Dynamics and Wake-field Simulations for the CLIC Main Linacs wakefield, cavity, damping, linac 320
 
  • R.M. Jones
    SLAC, Menlo Park, California
  • V.F. Khan
    UMAN, Manchester
 
 

The CLIC linear collider aims at accelerating multiple bunches of electrons and positrons and colliding them at a center of mass energy of 3 TeV. These bunches are accelerated through X-band linacs operating at an accelerating frequency of 12 GHz. Each beam readily excites wake-fields in the accelerating cavities of each linac. The transverse components of the wake-fields, if left unchecked, can dilute the beam emittance. The present CLIC design relies on heavy damping of these wake-fields in order to ameliorate the effects of the wake-fields on the beam emittance. Here we present initial results on simulations of the long-range wakefields in these structures and on beam dynamics simulations. In particular, detailed simulations are performed, on emittance dilution due to beams initially injected with realistic offsets from the electrical centre of the cavities and due to statistical misalignments of the cavities.

 
MOP106 Prediction of 4ν=1 Resonance of a High Intensity Linac resonance, linac, space-charge, simulation 323
 
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
  • G. Franchetti, L. Groening, I. Hofmann
    GSI, Darmstadt
 
 

The 4ν=1 resonance of a linac is found when the depressed tune is around 90 deg. It is observed that this fourth order resonance is dominating over the better known envelope instability and practically replacing it. Simulation study shows a clear emittance growth by this resonance and its stopband. Experimental measurement of the stopband of this resonance is proposed and conducted in early 2008 using the UNILAC at GSI. This study will serve as a excellent benchmarking.

 
MOP107 Transverse Matching of the SNS Linac Based on Profile Measurements linac, DTL, beam-losses, neutron 326
 
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
 
 

Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
For a high intensity linac such as the SNS linac, it matters to match adequately to minimize the beam mismatch and potential beam loss. The technique of doing the matching using the wire-scanners in series was employed. It was verified that matching was improved through the matching technique based on the beam profile measurements from wire-scanners in series.

 
TU104 Laser Acceleration of Quasi-Monoenergetic MeV-GeV Ion Beams laser, acceleration, ion, target 358
 
  • J.C. Fernandez
    LANL, Los Alamos, New Mexico
 
 

Laser interactions with thin solid targets can produce sheath fields of tens of TV/m, which have been used to accelerate ions to several MeV with ps pulse lengths, high currents, and low transverse emittance. While previous results have had 100% energy spread, recent experiments using foils coated with a few monolayers have produced quasi-monoenergetic beams with 17% energy spread near 3 MeV. Such beams may be of interest as injectors or sources. Simulations show the potential for acceleration to hundreds of MeV or GeV energies using very thin foils.

 

slides icon

Slides

 
TU301 Positron Beams Propagation in Plasma Wakefield Accelerators plasma, positron, electron, laser 374
 
  • P. Muggli
    UCLA, Los Angeles, California
 
 

Funding: Work Supported by US Department of Energy
Plasma-based accelerators are one of the emerging technologies that could revolutionize e-/e+ colliders, significantly reducing their size and cost by operating at multi-GeV/m accelerating gradients. Proof-of-principle experiments at SLAC have demonstrated the energy doubling of 42 GeV incoming e- in a plasma only ≈85 cm-long,* corresponding to an unloaded gradient of ≈50 GeV/m. Plasma wakes driven by e+ bunches are different from those driven by e- bunches. The acceleration of e+ in plasmas has been demonstrate,** but the acceleration of high-quality e+ beams is challenging. Measurements show that single e+ bunches suffer halo formation and emittance growth when propagating through dense meter-scale, uniform plasmas.*** Advanced schemes, such as hollow plasma channels, or e+ bunch acceleration on the wake driven by a e bunch, may have to be used in a future plasma-based linear collider. Experimental results obtained with e+ beams in plasmas will be reviewed and compared to those obtained with e- beams. Future experiments including a new scheme to produce a drive e bunch closely followed by a witness e+ bunch appropriate for PWFA experiments will also be discussed.


*I. Blumenfeld et al., Nature 445, 741-744 (15 February 2007).
**B.E. Blue et al., Phys. Rev. Lett. 90, 214801 (2003).
***P. Muggli et al., accepted for publication in Phys. Rev. Lett. (2008).

 

slides icon

Slides

 
TUP016 Status of an Automatic Beam Steering for the CLIC Test Facility 3 linac, quadrupole, lattice, simulation 422
 
  • E. Adli, R. Corsini, A.E. Dabrowski, D. Schulte, H. Shaker, P.K. Skowronski, F. Tecker, R. Tomás
    CERN, Geneva
 
 

An automatic beam steering application for CTF 3 is being designed in order to automatize operation of the machine, as well as providing a test-bed for advanced steering algorithms for CLIC. Beam-based correction including dispersion free steering have been investigated. An approach based on a PLACET on-line model has been tested. This paper gives an overview of the current status and the achieved results of the CTF3 automatic steering.

 
TUP018 A 150 MeV Pulse Electron Linac with a 1 mA Average Current electron, linac, simulation, target 428
 
  • V.A. Kushnir, M.I. Ayzatskiy, V.N. Boriskin, A.N. Dovbnya, I.V. Khodak, S.G. Kononenko, V.V. Mytrochenko, S.A. Perezhogin, Y.D. Tur
    NSC/KIPT, Kharkov
 
 

Funding: The present work is supported by the STCU project #P233
The accelerator driven subcritical assembly facility is under development in the National Science Center Kharkov Institute of Physics and Technology. The important component of the facility is an electron linac with energy of particles of 100-200 MeV and average beam current of 1 mA. In this paper we focus on the S-band electron linac design. The accelerator scheme includes the injector based on evanescence waves, rf chopper, five accelerating structures and energy compression system. The results of calculation of accelerating structure performances and linac systems are considered in the paper

 
TUP019 Injector of Intense Electron Beam electron, simulation, bunching, cavity 431
 
  • V.V. Mytrochenko, M.I. Ayzatskiy
    NSC/KIPT, Kharkov
 
 

The results of beam dynamic simulation in an S-band injector that can be used for creation of the powerful electron linac are presented in the report. The injector consists of a diode electron gun with beam current of up to 2 A at energy of electrons of 25 keV, the klystron type prebuncher and the three cavity buncher. In the buncher, due to the special choice of eigen frequencies of resonators, maximal amplitude of the field on the axis of resonators exponentially increase from the first (downstream of the beam) resonator to the last resonator. It allows effective bunching the intensive electron beam and accelerating it to relativistic velocities. For providing of low transversal beam emittance the injector is placed in the external magnetic field. The injector provides more than 1 A of beam current at particle energies of about 1 MeV. Attention is paid to research of transients and stability of injector work.

 
TUP023 Optimization of Lattice for an ERL Upgrade to the Advanced Photon Source brightness, radiation, lattice, optics 441
 
  • M. Borland, V. Sajaev
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
An Energy Recovery Linac (ERL) is one possibility for an upgrade to the Advanced Photon Source (APS). In addition to the linac itself, our concept involves a large turn-around arc (TAA) at 7 GeV that would eventually accommodate many new beamlines. Previously, we based the TAA design on isochronous triple-bend archromat (TBA) cells, since these are expected to provide some immunity to the effects of coherent synchrotron radiation. In the present work, we compare the previous TBA-based design to a new design based on double-bend achromat cells, in terms of emittance growth, energy spread growth, and energy recovery. We also explore the trade-off between optimization of the beta functions in the straight sections and minimization of emittance growth.

 
TUP024 Growth of Density Modulations in an Energy Recovery Linac Light Source due to Coherent Synchrotron Radiation and Longitudinal Space Charge lattice, linac, simulation, dipole 444
 
  • M. Borland
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
An Energy Recovery Linac (ERL) is one possibility for an upgrade to the Advanced Photon Source (APS). Such a system involves not only a long linac, but also long transport lines with many dipole magnets. Since the bunches are short, we may expect that coherent synchrotron radiation and longitudial space charge will have an affect on the beam dynamics. Although previous studies have shown minimal effects for an initially quiet beam distribution, the possibility of a microbunching instability seeded by initial density modulation must be evaluated. We present and discuss simulation results showing the growth of density modulations in two possible lattices for an ERL upgrade of the APS.

 
TUP026 Exploring Benefits of Using RF Deflection for Short X-Ray Pulse Generation for an Energy-Recovery Linac Upgrade to the Advanced Photon Source undulator, photon, cavity, radiation 447
 
  • V. Sajaev, M. Borland
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
One of the possible options for the Advanced Photon Source (APS) upgrade is an energy-recovery linac (ERL). In its main operating mode, the ERL bunch length would be two picoseconds. Even though this bunch length is already a factor of 20 shorter than the present APS bunch length, some experiments might require shorter X-ray pulses. For the APS storage ring, we plan to use an rf deflection technique* to generate one-picosecond X-ray pulses. In this approach, an rf cavity is used to deliver longitudinally dependent vertical kick to the electron beam and then a pair of slits is used to slice vertically streaked X-ray beam. We investigate the possibility and benefits of utilizing this technique to generate shorter X-ray pulses at the ERL.


*A. Zholents, et al., Nucl. Instr. and Meth. A 425 (1999) 385.

 
TUP028 Status of High Current R&D Energy Recovery Linac at Brookhaven National Laboratory electron, cavity, gun, SRF 453
 
  • A. Kayran, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K.A. Drees, G. Ganetis, D.M. Gassner, J.G. Grimes, H. Hahn, L.R. Hammons, A. Hershcovitch, H.-C. Hseuh, A.K. Jain, R.F. Lambiase, D.L. Lederle, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, T.C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, Z. Segalov, A.K. Sharma, J. Smedley, K. Smith, T. Srinivasan-Rao, J.E. Tuozzolo, G. Wang, D. Weiss, N. Williams, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Medford, NY
  • J.R. Delayen, L.W. Funk, H.L. Phillips, J.P. Preble
    JLAB, Newport News, Virginia
 
 

Funding: Work performed under contract No. DE-AC02-98CH10886 with the auspices of the DoE of United States.
An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing concepts for high-energy electron cooling and electron-ion colliders. One of the goals is to demonstrate an electron beam with high charge per bunch (~5 nC) and extremely low normalized emittance (~5 mm-mrad) at an energy of 20 MeV. Flexible lattice of ERL loop provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense cw e-beam. The superconducting 703 MHz rf photoinjector is considered as an electron source for such a facility. At first we develop the straight pass (gun – 5 cell cavity – beam stop) test for the SRF Gun performance studies. Then the novel injection line concept of emittance preservation at the lower energy will be tested at this ERL. In this paper we present the status and our plans for construction and commissioning of this facility.

 
TUP031 Normal Conducting Options for the UK's New Light Source Project linac, klystron, cavity, FEL 462
 
  • C. Christou, R. Bartolini, J.H. Han, H.C. Huang, J. Kay
    Diamond, Oxfordshire
 
 

A New Light Source project has been initiated to deliver a conceptual design for a next-generation light source facility in the UK. One option for such a light source is a free electron laser based on normal-conducting linac technology. This paper considers the different options available for waveband, gun and rf design of a normal-conducting linac FEL, and presents an overview of accelerating structure, modulator and klystron capability and availability. Particular attention is paid to the issue of the operation of a normal-conducting device at repetition rates of several hundred pulses per second. Overall capabilities and limitations of this approach are illustrated by reference to a start-to-end model of a suitable 3 GeV S-band linac design.

 
TUP032 Simulations on Impact of the 3.9 GHz RF Section on the Multi Bunch Emittance at FLASH cavity, damping, HOM, linac 465
 
  • Y.A. Kot
    DESY, Hamburg
 
 

In order to compensate nonlinear distortions of the longitudinal phase space a rf section operated at three times the 1.3 GHz frequency of the existing TTF cavities is foreseen in the next phase of FLASH. Four modules of a nine-cell 3.9 GHz cavities will be installed right after the first accelerating module ACC1. These cavities could cause additional long-range wake fields which would affect the multi bunch (mb) beam dynamics leading to increase of the mb emittance. The mb emittance at the end of the linac is determined by the strength of the transverse wake fields in the rf system. These higher order modes appear after any off-crest moving bunch, which could happen either due to the cavity misalignment, or by transverse position fluctuations of the injected bunches. It is intended to damp them by means of the HOM couplers, which may reduce the damping time by factor of 105. The misalignment of the cavities offsets is expected to be by 0.5 mm rms. The paper describes the results of the simulations on the dependence of the mb emittance on cavities misalignment offsets and damping strength of the HOM couplers in the planned 3.9 GHz rf section.

 
TUP035 New Experimental Results from PITZ gun, cathode, cavity, laser 474
 
  • F. Stephan, J.W. Bähr, C.H. Boulware, H.-J. Grabosch, M. Hänel, Ye. Ivanisenko, M. Krasilnikov, B. Petrosyan, S. Riemann, S. Rimjaem, T.A. Scholz, R. Spesyvtsev
    DESY Zeuthen, Zeuthen
  • G. Asova, L. Staykov
    INRNE, Sofia
  • K. Flöttmann, S. Lederer
    DESY, Hamburg
  • L. Hakobyan, M.K. Khojoyan
    YerPhI, Yerevan
  • F. Jackson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P.M. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • R. Richter
    BESSY GmbH, Berlin
  • J. Rönsch
    Uni HH, Hamburg
  • A. Shapovalov
    MEPhI, Moscow
 
 

Funding: This work was partly supported by the European Community, contracts RII3-CT-2004-506008 and 011935, and by the 'Impuls- und Vernetzungsfonds' of the Helmholtz Association, contract number VH-FZ-005.
The Photo Injector Test facility at DESY, Zeuthen site, (PITZ) was built to develop and optimize high brightness electron sources for Free Electron Lasers (FELs) like FLASH and the European XFEL. In the last shutdown a new RF gun cavity with improved water cooling was installed and conditioned. It is the first rf gun where the surface cleaning was done with dry ice technique instead of high pressure water rinsing and it showed a 10 times lower dark current emission than its precursor gun, even at cathode gradients as high as 60M V/m. In addition, a new photo cathode laser system was installed and will be available for operation in spring 2008. It will allow flat-top temporal laser shapes with 2ps rise/fall time. According to beam dynamics simulations this will further improve the beam quality reported at earlier conferences* and will lead to unprecedented low transverse projected emittance beams at a charge level of 1nC. This contribution will summarize the experimental results from the summer 2008 running period covering transverse projected emittance optimization, thermal emittance from the photocathode, longitudinal phase space and first transverse slice emittance measurements.


* L. Staykov et al., "Measurements of the Projected Normalized Transverse Emittance at PITZ", Proceedings of the FEL 2007, Novosibirsk, Russia, August 2007.

 

slides icon

Slides

 
TUP040 Linear Accelerator for the PSI-XFEL FEL3 Beamline linac, FEL, gun, laser 483
 
  • Y. Kim, A. Adelmann, B. Beutner, M.M. Dehler, R. Ganter, T. Garvey, R. Ischebeck, M. Pedrozzi, J.-Y. Raguin, S. Reiche, L. Rivkin, V. Schlott, A. Streun, A.F. Wrulich
    PSI, Villigen
 
 

In the planned PSI-XFEL facility, three FEL branches will supply coherent, ultra-bright, and ultra-short XFEL photons at wide wavelength range. FEL branch 1 will use a 6.0 GeV driving linac to generate hard X-rays from 0.1 nm to 0.3 nm, while FEL branch 2 is foreseen for X-rays from 0.3 nm to 1.0 nm. However, FEL branch 3 was designed to supply spatially as well as temporally coherent soft X-rays from 1.0 nm to 10 nm with the High-order Harmonic Generation based seeded HGHG scheme. To reach emittances of 0.2 mm.mrad and to squeeze consequently the whole facility within an 800 m long tunnel, PSI is presently developing an advanced low emittance gun (LEG) based on a 1 MV high gradient pulsed diode and field emission. The advanced LEG will be used to drive FEL branch 1 and 2, while an RF photoinjector will be used to drive the FEL branch 3. In this paper, we describe a CTF3 RF gun based injector, two bunch compressors, two diagnostic sections, and linacs for the PSI-XFEL FEL branch 3.

 
TUP042 High Repetition Rate Electron Injectors for FEL Based Next Generation Light Sources gun, cavity, SRF, simulation 489
 
  • B.L. Militsyn, C.D. Beard, J.W. McKenzie
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

Several laboratories concentrate their efforts on development of high repetition rate FEL based next generation light sources. One particular concept under development at STFC Daresbury Laboratory specifies high brightness electron bunches with a charge of 0.2-1 nC which arrive with a frequency up to 1 MHz. As emittance of the bunches should not exceed 1 um, traditional high repetition rate thermionic injectors, similar to the ones used at high micropulse repetition rate FELs like ELBE or FELIX, may not be used. We consider three options of high repetition rate injectors based on photocathode guns - a high voltage dc gun, a one and half cell superconducting rf gun and a normal conducting VHF gun, recently proposed at LBNL. We consider practical injector schemes for all three guns and provide the results of beam dynamic simulations. We also discuss the photocathodes which may be used in each gun, as this critical component defines achievable beam parameters and operational efficiency of the injectors.

 
TUP045 Generation of Femtosecond Bunch Trains Using a Longitudinal-to-Transverse Phase Space Exchange Technique dipole, simulation, cavity, electron 498
 
  • Y.-E. Sun, P. Piot
    Fermilab, Batavia
 
 

Funding: Work supported by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. DOE and by Northern Illinois University under Contract No. DE-FG02-08ER41532 with the U.S. DOE
We demonstrate analytically and via numerical simulation, how a longitudinal-to-transverse phase space manipulation* can be used to produce a train of femtosecond electron bunches. The technique uses an incoming transversely-modulated electron beam obtained via destructive (e.g. using a multislits mask) or non destructive (e.g. transversely shaping the photocathode drive laser) methods. A transverse-to-longitudinal exchanger insertion is used to map this transverse modulation into a temporal modulation. Limitation of the proposed method and scalability to the femtosecond regime are analysed analytically and with the help of numerical simulation. Application of the method to generation of super-radiant far infrared (and shorter wavelength) radiation in an FEL is explored. Finally, a proof-of-principle experiment is discussed in the context of the Fermilab's A0 photoinjector.


*P. Emma, Z. Huang, K.-J. Kim, and P. Piot, Phys. Rev. ST Accel. Beams 9, 100702 (2006).

 
TUP046 Linac Design for an Array of Soft X-Ray Free Electron Lasers linac, electron, FEL, lattice 501
 
  • A. Zholents, G. Penn, J. Qiang, M. Venturini, R.P. Wells
    LBNL, Berkeley, California
  • E. Kur
    UCB, Berkeley, California
 
 

Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The design of the linac delivering the electron bunches into ten independent soft x-ray free electron lasers (FELs) is presented. The bunch repetition rate in the linac is 1 MHz and the bunch repetition rate in each FEL beam line is 100 kHz. Various issues regarding machine layout and lattice, bunch compression, collimation, and the beam switch yard are discussed. Particular attention is given to collective effects. A demanding goal is to preserve both a low beam slice emittance and low slice energy spread during acceleration, bunch compression and distribution of the electron bunches into the array of FEL beamlines. Detailed studies of the effect of the electron beam microbunching resulting from longitudinal space-charge forces and coherent synchrotron radiation as the beam undergoes compression have been carried out and are presented.

 
TUP053 Experimental Characterization and Optimization of High-brightness Electron Beam at the NSLS SDL laser, injection, solenoid, electron 521
 
  • X. Yang, J.B. Murphy, H.J. Qian, S. Seletskiy, Y. Shen, X.J. Wang
    BNL, Upton, Long Island, New York
 
 

The Source Development Laboratory (SDL) at the National Synchrotron Light Source (NSLS) is a laser linac facility dedicated for laser seeded FEL and beam physics R&D. The SDL consists of a RF synchronized Ti:sapphire laser, a BNL photocathode RF gun, a four-magnet chicane bunch compressor, and a 300 MeV linac. To further improve the performance of the laser seeded FEL at the NSLS SDL, we have carried out a systematic experimental characterization of the high-brightness electron beam generated by the photocathode RF gun. We will present the experimental studies of both transverse and longitudinal emittance of electron beam as a function of RF gun phase and solenoid magnet for electron beam charge ranging from 350 pC to 1 nC and their influences on FEL output.

 
TUP073 Tailoring the Emittance of a Charged Particle Beam with a Tunnel Emittance Meter ion, brilliance, ion-source, electron 561
 
  • R. Becker
    IAP, Frankfurt am Main
 
 

Based on the 'tunnel' emittance used for electron focusing, a similar procedure with two pairs of slits with variable widths is proposed to evaluate fractional emittances and brilliances for ion beams. The measurement starts with closing both slits (one after the other), until a certain fraction of the beam current is cut out. The emittance and brilliance then is well defined for the passing beam part. Formulae are given for the emittance as well as for the brilliance in dependence of the slit width and current. This emittance measurement is free from the background subtraction problem found in the classical density measurement of phase space(s). The functions for the decrease of the emittance and for the increase of the brilliance in dependence of the transmitted beam current provide a figure of merit for the quality of the investigated beam. The device at the same time is also an adjustable emittance filter for the passing beam. At the expense of current the emittance and/or brilliance of a beam can be tailored to any value, which is available by the beam quality.

 
TUP074 Commissioning of the HITRAP Decelerator Using a Single-Shot Pepper Pot Emittance Meter ion, rfq, linac, electron 564
 
  • J. Pfister, R. Nörenberg, U. Ratzinger
    IAP, Frankfurt am Main
  • W. Barth, L.A. Dahl, P. Forck, F. Herfurth, O.K. Kester, T. Stöhlker
    GSI, Darmstadt
 
 

Funding: Work supported by BMBF under contract 06FY160I.
The Heavy highly charged Ion TRAP (HITRAP) project at GSI is in the commissioning phase. Highly charged ions up to U92+ provided by the GSI accelerator facility will be decelerated and subsequently injected into a large Penning trap for cooling to the MeV/u energy level. A combination of an IH- and an RFQ-structure decelerates the ions from 4 MeV/u down to 6 keV/u. In front of the decelerator a double drift-buncher-system is provided for phase focusing and a final de-buncher integrated in the RFQ-tank reduces the energy spread in order to improve the efficiency for beam capture in the cooler trap*. This contribution concentrates on the beam dynamics simulations and corresponding measurements in the commissioning beam times up to the position of the entrance to the RFQ. Single-shot emittance measurements at higher energies using the GSI pepper pot device and construction of a new device using Micro-Channel Plate technology for low energies as well as profile measurements are presented.


*HITRAP webpage of AP division at GSI, http://www.gsi.de/forschung/ap/projects/hitrap/index_e.html

 
TUP083 Diagnostics and Measurement Strategy for the CERN Linac 4 linac, diagnostics, DTL, pick-up 591
 
  • K. Hanke, G. Bellodi, J.-B. Lallement, A.M. Lombardi, B. Mikulec, M. Pasini, U. Raich, E.Zh. Sargsyan
    CERN, Geneva
  • H. Hori
    MPQ, Garching, Munich
 
 

Linac 4 is a 160 MeV H- linac which will become the new injector for CERN's proton accelerator chain. The linac will consist of 4 different rf structures, namely RFQ, DTL, CCDTL and PIMS running at 352.2 MHz with 2 Hz repetition rate and 0.4 ms pulse length. A chopper line ensures clean injection into the PS Booster. The combination of high frequency and a high-current, low-emittance beam calls for a compact design where minimum space is left for diagnostics. On the other hand, diagnostics is needed for setting up and tuning of the machine during both commissioning and operation. A measurement strategy and the corresponding choice of the diagnostic devices and their specific use in Linac4 are discussed in this paper.

 
TUP084 Emittance Measurement Instrument for a High Brilliance H- Ion Beam ion, laser, diagnostics, rfq 594
 
  • C. Gabor, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

Funding: Work supported by EU/FP6/CARE (HIPPI) RII3-CT-2003-506395
Among present challenges for beam diagnostics and instrumentation are issues presented by high beam intensity, brightness, resolution and the need to avoid inserting mechanical parts into the beam. This very often means applying non-destructive methods, which avoid interaction between ions and mechanical parts and, furthermore, allow on-line measurements during normal beam operation. The preferred technique for H- beams is the photo-detachment process where (laser) light within the range of 400-1000 nm has a sufficient continuous cross section to neutralize negative ions. The actual diagnostics are then applied to either the neutrals produced or the electrons. The latter are typically used for beam profiles whereas neutrals are more suitable for emittances, and form the subject of the present paper. This provides an overview of the basic features of the diagnostic technique, followed by a more intensive discussion of some experimental and theoretical aspects with emphasis on computing the 4 dimensional emittance using a method called Maximum Entropy (MaxEnt).

 

slides icon

Slides

 
TUP085 Four-Dimensional Emittance Meter for DC Ion Beams Extracted from an ECR Ion Source ion, ion-source, ECR, extraction 597
 
  • S.A. Kondrashev, A. Barcikowski, B. Mustapha, P.N. Ostroumov
    ANL, Argonne
  • N. Vinogradov
    Northern Illinois University, DeKalb, Illinois
 
 

Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
We have developed a pepper pot - scintillator screen system to measure the emittance of low-energy dc beams extracted from an ECR ion source and post-accelerated to an energy of 75 - 90 keV/charge. Different scintillators have been tested and CsI (Tl) was chosen due to its high sensitivity, wide dynamic range and long life-time. The linearity of both the scintillator and the CCD camera has been studied. A LabVIEW code has been developed and used for on-line emittance measurements. Un-normalized rms emittances measured for 209Bi20+ and 209Bi21+ beams with current of 1.0 - 1.5 pnA are usually ~30 π mm.mrad. A complicated structure of multiple images of individual holes has been observed. The innovative combination of a special type of scintillator, a CCD camera and a fast shutter allowed us to create a very efficient emittance meter for low-energy dc ion beams. Using on-line emittance measurements, it was possible to improve the beam quality by re-tuning the ion source conditions. Because of the two-dimensional array of holes in the pepper-pot, this emittance meter can be used to observe and study four-dimensional emittance correlations in beams from ECR ion sources.

 
TUP086 Initial Commissioning of a Dual-Sweep Streak Camera on the A0 Photoinjector laser, cavity, electron, optics 600
 
  • A.H. Lumpkin, T.W. Koeth, J. Ruan
    Fermilab, Batavia
 
 

Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Characterization of the micropulse bunch lengths and phase stability of the drive laser and the electron beam continue to be of interest at the Fermilab A0 Photoinjector facility. Upgrades to the existing Hamamatsu C5680 streak camera were identified, and initially a synchroscan unit tuned to 81.25 MHz was installed to provide a method for synchronous summing of the micropulses from the drive laser and the optical transition radiation (OTR) generated by the e-beam. A phase-locked delay box was also added to the system to provide phase stability of ~1 ps over tens of minutes. Initial e-beam measurements identified a significant space-charge effect on the bunch length. Recent measurements with a re-optimized transverse emittance allowed the reduction of the micropulse number from 50 to 10 with 1 nC each to obtain a useful streak image. This increased signal also would facilitate dual-sweep operations of the streak camera to explore macropulse effects. Installation of the recently procured dual-sweep module in the mainframe has now been done. Initial commissioning results and sub-macropulse effects in the beams will be presented as available.

 
TUP093 Activities on High Brightness Photo-injectors at the Frascati Laboratories, Italy FEL, linac, laser, radiation 618
 
  • R. Boni, D. Alesini, M. Bellaveglia, C. Biscari, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, B. Marchetti, A. Marinelli, C. Marrelli, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, F. Tazzioli, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, I. Boscolo, F. Broggi, F. Castelli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano
  • M. Bougeard, B. Carré, D. Garzella, M. Labat, G. Lambert, H. Merdji, P. Salières, O. Tchebakoff
    CEA, Gif-sur-Yvette
  • L. Catani, A. Cianchi
    INFN-Roma II, Roma
  • F. Ciocci, G. Dattoli, M. Del Franco, A. Dipace, A. Doria, G.P. Gallerano, L. Giannessi, E. Giovenale, A. Lo Bue, G.L. Orlandi, S. Pagnutti, A. Petralia, M. Quattromini, C. Ronsivalle, P. Rossi, E. Sabia, I.P. Spassovsky, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma)
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • M. Mattioli, M. Petrarca, M. Serluca
    INFN-Roma, Roma
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
  • J. Roßbach
    DESY, Hamburg
 
 

Funding: Work partially supported by the EU Commission in the sixth framework program. Contract No. 011935 EUROFEL and MIUR(Research Department of Italian Government).
An intense activity on high brilliance photo-injectors for SASE-FEL experiments and facilities, is being carried out, since 2003, in the research site of the INFN Frascati Laboratory, Rome, in collaboration with CNR and ENEA. The SPARC project, a 150 MeV photo-injector, is currently in advanced phase of commissioning. The electron beam, which drives a 530 nm FEL experiment, is being characterized in terms of emittance, energy spread, peak current. The matching with the linac confirmed the theoretical prediction of emittance compensation based on the invariant-envelope matching. The demonstration of the velocity-bunching technique is in progress too. The SPARC photo-injector is the test facility for the soft-X FEL project named SPARX, that is based on the generation of ultra high peak brightness electron beams at the energies of 1.2 and 2.4 GeV generating radiation in the 1.5-13 nm range. SPARX will be realized in the Tor-Vergata University campus. In this paper we report the experimental results obtained so far with SPARC and the design status of the SPARX project.

 

slides icon

Slides

 
TUP094 Development of a Photocathode RF Gun for an L-Band Electron Linac cavity, electron, gun, cathode 621
 
  • G. Isoyama, S. Kashiwagi, R. Kato
    ISIR, Osaka
  • H. Hayano, T. Muto, J. Urakawa
    KEK, Ibaraki
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
 
 

Funding: This research is partly supported by the accelerator support program to universities conducted by the High Energy Accelerator Research Organization in Japan.
We have begun a three-year project to develop a photocathode rf electron gun for the 40 MeV L-band linac at ISIR, Osaka University in collaboration with KEK. The L-band linac with an rf frequency of 1.3 GHz is equipped with a thermionic electron gun and it can accelerate a high-intensity single-bunch electron beam with charge up to 91 nC/bunch. Because the large emittance of ~100 pi mm x mrad is a limiting factor in the experiments, it is required to develop a new electron gun capable of providing an electron beam with much lower emittance. Since a group at the Accelerator Laboratory of KEK is developing a photocathode rf electron gun in the L-band for the International Linear Collider Project, we have joined the group to learn how to develop such an rf gun and also to obtain support from KEK. In this first year, characteristics of the rf gun will be measured at KEK for ILC fabricated by FNAL. We plan to optimize the structure of the rf gun for ISIR with computer simulation. We will report the plan and progress to develop a photocathode rf gun for the L-band linac.

 
TUP097 Measurements and Modeling at the PSI-XFEL 500 kV Low-Emittance Electron Source cathode, electron, simulation, laser 630
 
  • T. Schietinger, A. Adelmann, Å. Andersson, M. Dietl, R. Ganter, C. Gough, C.P. Hauri, R. Ischebeck, S. Ivkovic, Y. Kim, F. Le Pimpec, S.C. Leemann, K.B. Li, P. Ming, A. Oppelt, M. Paraliev, M. Pedrozzi, V. Schlott, B. Steffen, A.F. Wrulich
    PSI, Villigen
 
 

Paul Scherrer Institute (PSI) is presently developing a low emittance electron source for the PSI-XFEL project. The electron gun consists of an adjustable diode configuration subject to pulses of 250 ns (FWHM) with amplitude up to 500 kV from an air-core transformer- based high-voltage pulser. The facility allows high gradient tests with different cathode configurations and emission processes (field emission and photo emission). In the first stage, the beamline is only made up of focussing solenoids followed by an emittance monitor. Selected beam characterization measurements, from photo-cathode operation driven by a 266 nm UV laser system delivering 4 uJ energy during 6.5 ps (FWHM), are presented and compared to the results of 3D particle tracking simulations.

 

slides icon

Slides

 
TUP099 Design and Optimization of an S-Band Photoinjector gun, cavity, solenoid, laser 636
 
  • J.H. Han
    Diamond, Oxfordshire
 
 

Many X-ray Free Electron Laser (XFEL) projects are under construction or are being proposed. A photoinjector with low transverse emittance is one of the key elements for successful XFEL operation. For the last two decades, photoinjectors have been developed to reach the XFEL requirement, typically with a normalised emittance of 1 mm mrad for a 1 nC bunch and high peak current. Here, we make a further numerical optimization of an S-band photoinjector to achieve 0.5 mm mrad for 1 nC bunch in a structure that should permit high repetition rates to be achieved. Optimizations for alternative operation conditions with lower charge and lower emittance are also shown.

 
TUP100 The Optimization of a DC Injector for the Energy Recovery Linac Upgrade to APS laser, gun, linac, electron 639
 
  • Y.-E. Sun, M. Borland, K.C. Harkay, Y.L. Li, H. Shang
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
An energy recovery linac based light source is a potential revolutionary upgrade to the Advanced Photon Source (APS) at Argonne National Laboratory. The concept relies on several key research areas, one of which is the generation of ultra-low emittance, high-average-current electron beams. In this paper, we present our investigation of a dc-gun-based system for ultra-low emittance bunches in the 20 pC range. A parallel multi-objective numerical optimization is performed in multi-parameter space. Parameters varied include experimentally feasible drive-laser shapes, the dc gun voltage, and the thermal energy of the emitted photo-electrons. Our goal is to deliver a 10 MeV, 20 pC bunch at the entrance of the linac with an emittance of 0.1 μm or lower, rms bunch length of 2 to 3 ps, and energy spread no larger than 140 keV. We present the machine parameters needed to generate such an injector beam, albeit without a merger.

 
TUP101 Photocathode R&D Program at LBNL electron, photon, gun, cathode 642
 
  • W. Wan, C.E. Coleman-Smith, C.M.R. Greaves, H.A. Padmore, E. Pedersoli, A. Polyakov
    LBNL, Berkeley, California
  • G. Ferrini, M. Montagnese, S. Pagliara, F. Parmigiani
    Università Cattolica-Brescia, Brescia
 
 

Funding: US Deparment of Energy
The photocathode R&D program at Lawrence Berkeley National Laboratory is presented, including the status of the lab and experimental results. We will also present experimental result obtained at Brescia Italy and theoretical work on predicting minimum thermal emittance from metal cathodes and emittance growth due to stochastic Coulomb interaction.

 
TUP103 Analysis of Halo Formation in a DC Photoinjector cathode, electron, space-charge, laser 645
 
  • D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois
 
 

Funding: Work supported by the Department of Defense under contract N00014-06-1-0587 with Northern Illinois University
We discovered, by modeling the AES/JLab direct-current photoinjector with several beam-simulation codes, that nominal injector settings would create a large diffuse beam halo as a consequence of the internal space-charge force in the beam. The injector-induced halo is sensitive to the injector settings, but if the settings are judiciously chosen, it can be largely circumvented. We present an exploration of the parameter space for the AES/JLab photoinjector. Measurement of beam halo will be a crucial aspect of commissioning this machine.

 
TUP105 Simulation of the Upgraded Photoinjector for the 10 kW JLAB IR-FEL laser, simulation, cavity, FEL 649
 
  • D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois
  • C. Hernandez-Garcia, S. Zhang
    JLAB, Newport News, Virginia
 
 

Funding: Work supported by the Department of Defense under contract N00014-06-1-0587 with Northern Illinois University
The photoinjector of the JLab 10 kW IR FEL was recently upgraded: a new photocathode drive laser was commissioned and the booster section was replaced with 7-cell cavities. In this paper we present numerical simulation and optimization of the photoinjector perform with ASTRA, IMPACT-T and IMPACT-Z beam dynamics codes. We perform these calculations for two operating voltage of the dc gun: the nominal 350 keV and the planned 500 keV operating points.

 
TUP107 Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors diagnostics, luminosity, wakefield, bunching 655
 
  • P. Piot
    Fermilab, Batavia
  • A. Bracke, T.J. Maxwell, D. Mihalcea, M.M. Rihaoui
    Northern Illinois University, DeKalb, Illinois
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • J.G. Power
    ANL, Argonne
 
 

Funding: Work supported by US. Department of Energy, under Contract No. DE-FG02-06ER41435 with Northern Illinois University.
We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC electron injectors and bunch compressors. Techniques to measure first order moment and recover the first order longitudinal transfer map of the injector intricate bunching scheme are presented. Coherent transition radiation diagnotics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model. We finally introduce a new diagnostics capable of measuring time-transverse correlation along a single bunch. Such a diagnostics should be valuable for controlling emittance dilution via transverse wakefield and for properly setting the crab cavities needed for maximizing luminosity for non-zero crossing angle at the interaction point.

 
TUP110 Modeling of a Low Frequency SRF Electron Gun for the Wisconsin FEL gun, cavity, cathode, FEL 658
 
  • R.A. Legg
    UW-Madison/SRC, Madison, Wisconsin
 
 

Funding: This work is supported by the University of Wisconsin-Madison and MIT, and by the US NSF under award No. DMR-0537588
The Wisconsin FEL project is a 2.2 GeV, HHG seeded, FEL designed to provide six individual beamlines with photons from 5 to 900 eV. The FEL requires electron bunches with 1 kA peak bunch current and less than 1 mm*mrad transverse slice emittance. To meet those requirements a low frequency, SRF electron gun is proposed which uses "blow-out" mode bunches*. Blow-out mode produces ellipsoidal bunches which are easily emittance compensated**. They also have a very smooth density and energy distribution. Results of the modeling of the injector and a diagnostic beamline will be presented.


* O.J. Luiten, et al., Phys. Rev. Lett., 93, 094802-1 (2004)
** C. Limborg-Deprey, P. Bolton, NIM-A, 557 (2006) 106-116

 
TUP111 Longitudinal Bunch Lengthening Compensation in a High Charge RF Photoinjector gun, booster, electron, solenoid 661
 
  • S. Pei, C. Adolphsen
    SLAC, Menlo Park, California
 
 

Funding: Work supported by DOE contract DE-AC02-76SF00515
In high charge rf photo-injectors, due to the strong longitudinal space charge, bunch lengthening can readily occur. This paper presents beam dynamics studies of such bunch lengthening and methods to compensate it. With these methods, not only can the bunch length be preserved, but it can be shortened at the photo-injector exit.

 
TUP112 Laser Timing Jitter Measurements at the Fermilab A0 Photoinjector laser, cavity, electron, linac 664
 
  • J.K. Keung
    University of Pennsylvania, Philadelphia, Pennsylvania
  • S. Nagaitsev, J. Ruan
    Fermilab, Batavia
 
 

The Fermilab A0 Photoinjector is a 16 MeV high-intensity, low emittance electron linac used for advanced accelerator R&D. To achieve a high quality beam here it is important to maintain a stable laser in terms of both intensity and timing. This paper presents our measurement of the laser timing jitter, which is the random late or early arrival of the laser pulse. The seed laser timing jitter has been measured to less than 200 fs, by examining the power spectrum of the signal of a fast photodiode illuminated by it. The pulsed and pumped laser timing jitter has been measured with limited resolution to less than 1.4 ps, by examining the phase of a cavity impulsively excited by the signal from a fast photodiode illuminated by the laser pulse.

 
TUP113 Emittance Exchange at the Fermilab A0 Photoinjector cavity, optics, dipole, electron 667
 
  • T.W. Koeth
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
  • L. Bellantoni, H.T. Edwards, R.P. Fliller, A.S. Johnson, A.H. Lumpkin, J. Ruan, R. Thurman-Keup
    Fermilab, Batavia
 
 

Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
An experiment has been developed at the Fermilab A0 Photoinjector Lab to demonstrate the exchange of longitudinal emittance with the horizontal emittance. Our apparatus consists of a 3.9 GHz TM110 deflecting rf cavity placed between two magnetic dogleg channels. The first dogleg generates the needed dispersion to appropriately position the off-momentum electrons in the TM110 cavity. The TM110 cavity reduces the momentum spread and imparts a time dependent transverse kick. The second dogleg finishes the exchange and yields the exchange of the emittances. We report on the measurement of the exchange beamline matrix elements as well as an inital report on measuring the exchange emittances directly.

 

slides icon

Slides

 
TUP117 Development of Ultra-Low Emittance Injector for Future X-Ray FEL Oscillator linac, electron, cavity, gun 676
 
  • P.N. Ostroumov, K.-J. Kim
    ANL, Argonne
  • P. Piot
    Northern Illinois University, DeKalb, Illinois
 
 

Funding: This work was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC-02-06CH11357.
An XFELO proposed recently* requires a continuous sequence of electron bunches with ultra-low transverse emittance less than 0.1 mm-mr, a bunch charge of 40 pC, an rms energy spread of 1.4 MeV, repeating at a rate between 1 MHz to 100 MHz. The bunches are to be compressed to an rms lengths less than 2 ps at the final energy of 7 GeV. Following the successful commissioning of the pulsed injector based on a thermionic gun** we discuss a concept for ultra-low emittance injector to produce 100 MHz CW electron bunches. The electron beam is extracted by ~1MV rf voltage using low frequency ~100 MHz room temperature rf cavity. The injector also includes a chicane and slits to form a short ~1 nsec bunch, a pre-buncher a booster buncher to form low longitudinal emittance of the bunched beam, an accelerating section to ~50 MeV using higher harmonic cavities, and an rf cosine-wave chopper to form any required bunch repetition rate between 1 MHz and 100 MHz. The results of initial optimizations of the beam dynamics with the focus on extracting and preserving ultra-low emittance will be presented.


*K.-J. Kim, Y. Shvyd'ko, and S. Reiche, to be published in Physical Review Letters (2008)
**K. Togawa, et al., Phys. Rev. STAB 10, 020703 (2007)

 
TUP118 Extraction From ECR and Recombination of Multiple-Charge State Heavy-Ion Beams in LEBT ion, ECR, ion-source, acceleration 679
 
  • P.N. Ostroumov, A. Barcikowski, S.A. Kondrashev, B. Mustapha, R.H. Scott, S.I. Sharamentov
    ANL, Argonne
  • N. Vinogradov
    Northern Illinois University, DeKalb, Illinois
 
 

Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357.
A prototype injector capable to produce multiple-charge-state heavy-ion beams is being developed at ANL. The injector consists of an ECR ion source, a 100 kV platform and a Low Energy Beam Transport (LEBT). The latter comprises two 60-degree bending magnets, electrostatic triplets and beam diagnostics stations. Several charge states of bismuth ions from the ECR have been extracted, accelerated to an energy of 1.8 MeV, separated and then recombined into a high quality beam ready for further acceleration. This technique allows us to double heavy-ion beam intensity in high-power driver linac for future radioactive beam facility. The other application is the post-accelerators of radioactive ions based on charge breeders. The intensity of rare isotope beams can be doubled or even tripled by the extraction and acceleration of multiple charge state beams. We will report the results of emittance measurements of multiple-charge state beams after recombination.

 
WE101 Energy Recovered Linacs electron, linac, laser, storage-ring 688
 
  • G.A. Krafft
    JLAB, Newport News, Virginia
 
 

Funding: Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In the last decade, stimulated by the success of the energy recovered free electron lasers, many projects have been initiated exploring the applications and limitations of beam energy recovery in recirculated linear accelerators (linacs). In this talk the performance of many existing energy recovered linacs is briefly reviewed. Looking forward, potential applications of energy recovered linacs such as

  1. recirculated linac light sources,
  2. high energy beam electron cooling devices, and
  3. electron beam sources for high energy colliders have been pursued with varying degrees of effort.
The types of new technology that must be developed for applications, and more broadly, some of the open issues regarding this technology, are discussed in detail. The talk concludes with some thoughts on the future developments in this important, and expanding field.

 

slides icon

Slides

 
WE104 First Tests of the Cornell University ERL Injector cavity, laser, gun, cathode 699
 
  • B.M. Dunham, I.V. Bazarov, S.A. Belomestnykh, M.G. Billing, E.P. Chojnacki, Z.A. Conway, J. Dobbins, R.D. Ehrlich, M.J. Forster, S.M. Gruner, G.H. Hoffstaetter, V.O. Kostroun, Y. Li, M. Liepe, X. Liu, D.G. Ouzounov, H. Padamsee, D.H. Rice, V.D. Shemelin, C.K. Sinclair, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, V. Veshcherevich, T. Wilksen
    CLASSE, Ithaca, New York
 
 

Funding: Work supported by the National Science Foundation under contract PHY 0131508
Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. The very small electron-beam emittance would produce an X-ray source that is significantly better than any existing storage-ring based light source. One major difference between an ERL and a typical light source is that the final electron beam emittance, and thus the X-ray beam brightness, is determined by the electron injector rather than the storage ring. We are currently constructing and commissioning an injector for an ERL with the goal of demonstrating the low emittances and high beam power required. The injector is designed to accelerate up to 100 mA cw electron bunches of 77 pC/bunch with an energy of 5 MeV (33 mA at 15 MeV) using 1.3 GHz superconducting cavities. A full suite of diagnostics will allow a complete phase space characterization for comparison with simulations and with the requirements. We will describe the current status of the injector along with results, difficulties and challenges to date.

 

slides icon

Slides

 
TH303 Towards a Model Driven Accelerator with Petascale Computing linac, simulation, beam-losses, rfq 766
 
  • B. Mustapha, P.N. Ostroumov, J. Xu
    ANL, Argonne
 
 

Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357.
Accelerator simulations still do not provide everything designers and operators need to deploy a new facility with confidence. This is mainly because of limitations preventing realistic, fast-turnaround, end-to-end simulations of the beam from the source all the way through to a final interaction point and because of limitations in on-line monitoring that prevent a full characterization of the actual beam line. As a result, once a machine is built there can be a gap between the expected behavior of the machine and the actual behavior. This gap often corresponds to enormous work and significant delays in commissioning a new machine. To address the shortcomings of the existing beam dynamics simulation codes, and to fulfill the requirements of future hadron and heavy-ion machines, a starting point for a realistic simulation tool is being developed at ANL that will support detailed design evaluation and also fast turnaround computation to support commissioning and operation of the facility. The proposed simulations will be performed on the fast growing computing facility at ANL with peta-scale capability.

 

slides icon

Slides

 
THP027 Welding Helium Vessels to the 3.9 GHz Superconducting Third Harmonic Cavities cavity, electron, monitoring, cryomodule 842
 
  • M.H. Foley, T.T. Arkan, H. Carter, H.T. Edwards, J. Grimm, E.R. Harms, T.N. Khabiboulline, D.V. Mitchell, D.R. Olis, T.J. Peterson, P.A. Pfund, N. Solyak, D.J. Watkins, M. Wong
    Fermilab, Batavia
  • G. Galasso
    University of Udine, Udine
 
 

Funding: This work was supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The 3.9 GHz 3rd harmonic cavities are designed to serve as compensation devices for improving the longitudinal emittance of the free-electron laser FLASH at DESY. These cavities operate in the TM010 mode, and will be located between the injector and the accelerating cavities. Fermilab is obligated to provide DESY with a cryomodule containing four 3rd harmonic cavities. In this paper we discuss the process of welding helium vessels to these cavities. Included will be a description of the joint designs and weld preparations, development of the weld parameters, and the procedure for monitoring the frequency spectrum during TIG welding to prevent the cavity from undergoing plastic deformation. Also discussed will be issues related to qualifying the dressed cavities as exceptional vessels (relative to the ASME Boiler and Pressure Vessel Code) for horizontal testing and eventual installation at DESY, due to the necessary use of non-ASME code materials and non-full penetration electron beam welds.

 
THP066 Breakdown in Pressurized RF Cavities cavity, electron, simulation, vacuum 945
 
  • R. Sah, M. Alsharo'a, R.P. Johnson, M.L. Neubauer
    Muons, Inc, Batavia
  • M. BastaniNejad, A.A. Elmustafa
    Old Dominion University, Norfolk, Virginia
  • J.M. Byrd, D. Li
    LBNL, Berkeley, California
  • D. Rose, C.H. Thoma, D.R. Welch
    Voss Scientific, Albuquerque, New Mexico
  • G.M. Wang
    ODU, Norfolk, Virginia
 
 

The performance of many particle accelerators is limited by the maximum electric gradient that can be realized in rf cavities. Recent studies have shown that high gradients can be achieved quickly in 805 MHz cavities pressurized with dense hydrogen gas, because the gas can suppress, or essentially eliminate, dark currents and multipacting. In this project, two new test cells operating at 500 MHz and 1.3 GHz will be built and tested, and the high pressure technique will be used to suppress the vacuum effects of evacuated rf cavities, so that the role of metallic surfaces in rf cavity breakdown can be isolated and studied as a function of external magnetic field, frequency, and surface preparation. Previous studies have indicated that the breakdown probability is proportional to a high power of the surface electromagnetic field, in accordance with the Fowler-Nordheim description of electron emission from a cold cathode. The experiments will be compared with computer simulations of the rf breakdown process.

 
THP069 Design and Test of the Triple-Harmonic Buncher for the NSCL Reaccelerator cavity, rfq, linac, simulation 948
 
  • Q. Zhao, V. Andreev, J. Brandon, G. Machicoane, F. Marti, J.C. Oliva, J. Ottarson, J.J. Vincent
    NSCL, East Lansing, Michigan
 
 

To meet the requirement of a small output longitudinal beam emittance from the reaccelerator, a triple-harmonic buncher operating at the fundamental frequency of 80 MHz upstream the Radio Frequency Quadrupole (RFQ) linac has been designed, manufactured and tested at the National Superconducting Cyclotron Laboratory (NSCL). The buncher consists of two coaxial resonators with a single gridded gap. One cavity provides both the fundamental and the third harmonic simultaneously with l/4 and 3l/4 modes respectively, while the other for the second harmonic with a l/4 mode. This buncher combines the advantages of using high quality factor resonator and only a pair of grids. Details on design considerations, electromagnetic simulations, and test results are presented.

 
THP075 X-Band Traveling Wave RF Deflector Structures impedance, kicker, factory, electron 966
 
  • J.W. Wang, S.G. Tantawi
    SLAC, Menlo Park, California
 
 

Funding: Work supported by U.S. Department of Energy, contract DE-AC02-76SF00515 (SLAC)
Design studies on the X-Band transverse rf deflectors operating at HEM11 mode have been made for two different applications. One is for beam measurements of time-sliced emittance and slice energy spread for the upgraded LCLS project, its optimization in rf efficiency and system design are carefully considered. Another is to design an ultra-fast rf kicker in order to pick up single bunches from the bunch-train of the B-factory storage ring. The challenges are to obtain very short structure filling time with high rf group velocity and good rf efficiency with reasonable transverse shunt impedance. Its rf system will be discussed.

 
FR102 Commissioning of the LCLS Linac laser, linac, FEL, electron 1095
 
  • H. Loos, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, D. Dowell, P. Emma, J.C. Frisch, A. Gilevich, G.R. Hays, P. Hering, Z. Huang, R.H. Iverson, C. Limborg-Deprey, A. Miahnahri, S. Molloy, H.-D. Nuhn, J.L. Turner, J.J. Welch, W.E. White, J. Wu
    SLAC, Menlo Park, California
  • D.F. Ratner
    Stanford University, Stanford, Califormia
 
 

Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
Construction of the Linac Coherent Light Source (LCLS) X-ray free electron laser at the Stanford Linear Accelerator Center (SLAC) is nearing completion. A new injector and upgrades to the existing accelerator were installed in two phases in 2006 and 2007. We report on the commissioning of the injector, the two new bunch compressors at 250 MeV and 4.3 GeV, and transverse and longitudinal beam diagnostics up to the end of the existing linac at 13.6 GeV. The commissioning of the new transfer line from the end of the linac through the undulator beam line to the main dump is scheduled to start in January 2009 and for the undulator magnets in March 2009 with first light to be expected by May 2009.

 

slides icon

Slides

 
FR201 The IFMIF 5 MW Linacs rfq, linac, target, simulation 1114
 
  • A. Mosnier
    CEA, Gif-sur-Yvette
 
 

The International Fusion Materials Irradiation Facility (IFMIF) is based on two high power cw accelerator drivers, each delivering a 125 mA deuteron beam at 40 MeV to the common lithium target. The present design of the 5 MW IFMIF Linacs, as well as the description of the prototype accelerator to be built in Japan are presented: the injector including the 140 mA ion source and the magnetic focusing LEBT, the RFQ for the bunching and acceleration to 5 MeV, the MEBT for the proper injection into the Drift-Tube-Linac where the beam is accelerated to the final energy of 40 MeV. Recently, the Alvarez type DTL was replaced by a superconducting Half-Wave Resonator Linac to benefit from the advantages of the SRF technology, in particular the rf power reduction, plug power saving, ability to accelerate high intensity cw beams with high flexibility and reliability. Last, a HEBT section transports and tailors the beam as a flat rectangular profile on the flowing Lithium target. The design and technology choices will be validated during the EVEDA phase, which includes the construction of one full-intensity deuteron linac, but at a lower energy (9 MeV) at Rokkasho Mura in Japan.

 

slides icon

Slides