

An Overview of Recent RFQ Projects

A. Schempp

Institut für Angewandte Physik, Univ. Frankfurt am Main, Germany

Introduction recent present Summary Linac08, Victoria, Vancouver Island, Canada, Sept. 29, 2008

A. Schempp, Institut für Angewandte Physik (IAP), J.W.Goethe-Universität Frankfurt

structure: rf-properties, mechanics, experience general considerations riscs, reliability, costs, time (p. prejustice)

$$B \approx \frac{U_Q}{a_{eff}^2} * \lambda^2 \qquad \text{focusing strength}$$

 U_Q /a : limited by sparking, rf - power a : tolerances (mech. alignment, rf – field distribution) λ : size: RFQ-length, Ez ~ 1/ β (RFQ)

Institut für Angewandte Physik J.W. Goethe Universität, Frankfurt, Germany

Accelerator development Linacs, ion sources, beam transport Post accelerator structures, IH-DTL-linacs, nc-sc **RFQs** Design, prototype tests, beam test,, GSI, Desy, CERN, Orsay, Saclay, MPI, HMI, MSI,, BNL, MSU ,, Protons, heavy ions, clusters, RIB, applications: implantation, n-source, medical

RFQ design

Electrodes design input:

 $\begin{array}{ll} 1.) & U_Q, & 2.) & T_i, T_f, I_{lim}, \epsilon \\ design a,m, \phi \mbox{ as } f(n_i, L) \\ defines \mbox{ beam properties: transmission, rl-emittance} \\ defines \mbox{ structure properties: L, N} \end{array}$

rf-structure

a transformer producing electrode voltage type, impedance, stability, sparking,,,,

mechanics

stability, cooling, complexity, cost,,,,:

by AS-IAP-UF

Frequency = 175.242 Phase = 90 degrees

Туре

HOM Spektrum

Example for a dipole Mode (f₀=175MHz) $f_d > 2^* f_0$

PARAMETER	HLI	HLI-n
Frequency [MHz]	108.48	108.48
A/q	8.5	6
Input Energy [MeV/u]	0.0025	0.004
Output Energy [MeV/u]	0.3	0.3
Inter-ElectrodeVoltage[kV]	85	55
Ein norm., rms [π mm mrad]	0.07	0.1
Eoutx. n., rms [π mm-mrad]	0.12	0.1009
Electrode Length [cm]	305	199.5
Duty factor [%]	25	100

Higher duty cycle for A/q \leq 6 Ti = 4keV/u

eps

Transmission as function of the input emittance

radial and longitudinal output emittance as function of input emittance (I = 0 mA)

Another ECR-RFQ-IH-DTL combination

Operating frequency	216.816 MHz
Ion species	¹² C ⁴⁺ , protons
Length of tank	1.40 m
# of RFQ cells	219
Input/output energy	8 / 403 keV/u
Input emittance	$\epsilon_{x,y} = 150 \pi \text{mm mrad}$
Electrode voltage	70 kV
Power consumption	165 kW

- 2 ECR ion sources (p, C)
 - Circumference 65
 m
 - KO extraction (bunched)
 - Extraction time 5 s
 - Spill interruptions
 - 3 treatment places
- 7 MeV/u injector linac
 - 2 horizontal fixed beam
- Compact synchrotron
 - 1 isocentric gantry
- 1 research & QA place

Three more RFQs (built) aligned and tuned

M.Maier MOP057 B.Schlitt W205

HITRAP at GSI

W Barth MO204 L.Dahl MOP019

J. Pfister TUP074

Another ECR-RFQ-IH-DTL combination

HITRAP at GSI

Input energy / output energy	500 <u>keV</u> /u / 6kev/u
Charge-to-mass ratio q/A	> 1/3
Frequency	108.408 MHz
Electrode voltage	77.5 kV
RFQ length	1.9 m
Input emittance (norm.)	0.24 π mm <u>mrad</u>
Radial output emittance (norm.)	$0.37 \pi \mathrm{mm} \mathrm{mrad}$
RF-Power	90 kW

HITRAP-RFQ

HITRAP output beam

4-RodRFQ: 352MHz, 75keV-3MeV, I_{max} =100mA L.Groening (MOP075)

J.Alessi TUP120 M.Vossberg MOP033

	A/q
	Designed In
I ou amittanca	Designed O
	Calculated (
IIIah	Frequency []
nigii	Inter-Electro
transmission	$\mathcal{E}_{in}^{trans., n., rms}$
Compact Reduction of the exit angle	Peak Beam
	Minimum (A
	Minimum A
	Maximum N
	Kilpatrick F
-	$\mathcal{E}_{out}^{x., n., rms}$
	1

RHO_coefficient (R/r_0)	0.85
A/q	6.25 / 1
Designed Input Energy [MeV] (total / per nucleon)	0.10625 / 0.017
Designed Output Energy [MeV] (total / per nucleon)	1.87500 / 0.300
Calculated Output Energy [MeV]	1.886
Frequency [MHz]	100.625
Inter-Electrode Voltage [kV]	70
$\mathcal{E}_{in}^{trans., n., rms} / \mathcal{E}_{in}^{trans., n., real}$ [π mm-mrad]	0.0583 / 0.3498
Peak Beam Current [mA]	10
Minimum (Absolute) Synchronous Phase [°]	-30.21
Minimum Aperture [cm]	0.3172
Maximum Modulation	1.9505
Kilpatrick Factor	1.8290
$\mathcal{E}_{out}^{x, n, rms} [\pi cm-mrad]$	0.0082(100%) 0.0060(90%)
$\mathcal{E}_{out}^{y, n, rms} [\pi cm-mrad]$	0.0084(100%) 0.0063 (90%)
$\mathcal{E}_{out}^{z, rms} [\pi MeV-deg]$	0.1016(100%) 0.0561(90%)
Relative Energy Spread [%] (½ ΔW of 90% Transported Particles/Wout)	1.22
EXITFFL [cm]	5.0
Electrode Length [cm]	311.80
Total Number of Cells	190
Elimit [MeV]	1.1839
Beam Transmission Efficiency [%]	97.75 (4000)

Design Simulation,,,,,,, Puplication Proposal,,

CDR,TDR, PR

hardware

GSI-HITRAP

REX-Isolde

BNL: C1,C2,C3 are being built

Med-HE

The SARAF SC Linear Accelerator

Protons/Deuterons, 5 - 40 MeV, 40 µA - 4 mA, RF SC linac

SARAF – Soreg Applied Research Accelerator Facility

1st cryostat 6 SC HWR 176 MHz $\beta_0 = 0.09$ RFQ 176 MHz M/q≤2 1.5 MeV/u

ECR ion source 20 keV/u 5 mA

SARAF – RFQ: 3 MeV D+, 175MHz, CW

Another ECR-RFQ-IH-DTL combination FRANZ Key Parameters

FRANZ Overview

- Extracted source current : 200 mA dc
- Pulsed beam target : 10⁷ n / cm²s at *l*=0.8 m
- 'Straight' beam target : 10⁸ n / cm²s

Frequency	175 MHz	
Input energy	120 keV	
Output energy	0.7 MeV	
Beam current	150/200 mA	
output emittance rms norm.	0.1π mm mrad	
Long. Emittance	20keV*30degr.	
Electrode voltage	75 kV	
RFQ length	1.75 m	
cell number	95	

FRANZ – RFQ parameters A.Bechtold MOP001

O.Meusel MOP002

Modifications: Less complex Cooling simpler Size problem Example of alternative design:

Prototype

National Superconducting Cyclotron Facility

National user facility (700 users, 300 employees, NSF funded)

First facility to perform experiments with stopped (manipulated) projectile fragments

- Precision Penning trap mass measurements program with LEBIT since 2005
- Laser spectroscopy and beam polarization under development (2010)
- Re-accelerate stopped beams from projectile fragmentation in 2010

	RFQ LINAC CRYOMODUL	ES		
Q/A Selection		Target		
12 keV/u 600) keV/u 0.3 - 3 MeV/u			
	Γ	1		
High Co the second s	Frequency	80 MHz		
	Input energy	12 keV/u		
	Output energy	0.6 MeV/u		
CW	Charge to mass ratio	> 0.2		
	output emittance rms norm.	0.1 π mm mrad		
	Long. Emittance	30keV/u*degr.		
X. WU WOPUSS	Electrode voltage	87 kV		
	RFQ length	3.35 m		
	cell number	93		

Al-cavity, st.steel flanges, block milling, cooling tubes (el,st),

Check-NTG

IH-RFQ für MAFF:

W_{in}=2.5 keV/u W_{out}=300keV/u 101.28 MHz 3 m Length 0.32 m Diameter

IH-RFQ - GSI: 36 MHz 9.4 m 0.76 m Diameter

Ion source current/brillance: limited by the ion source / plasma density emittance is prop. to the beam current $\epsilon_N \sim I_{Ion}$

ideal: same emittance, twice the beam current $\epsilon_N \sim const.,$ higher currents at higher energies

Theory:

Two/multigap deflector

Critical matching

Sparking :

limits the voltage U_g which can be applied to a gap Improvement by surface preparation and conditioning and electronic control discharge started by electrons, dumps rf power "how many Kilpatrick?"

R+D

Designs of optimized Med-RFQs

Heavy ion linac design

Neutron generators

Radiography

Implanters

R+D Issues

Beam dynamics:

High current, small emittance growth Matching between stages Beam losses Beam forming, low voltage design (cw) \sum : fight Liouville, stay linear

Structures:

Duty Faktor Power density, cooling Materials Reliability integral high duty factor operation critical:

Power/length,

structure length/ λ

W.I.P.

Real critical points, problems ?

none !

responsible: recent: B.Hofmann, J.Thibus, P.Fischer,L.Brendel former: A.Bechtold, H.Zimmermann presently: M.Vossberg, N. Müller, J. Maus, P. Kolb, J. Schmidt, U. Bartz AS

NTG: support in engineering, precise manufacture

there are some minor technical problems to be solved, like tuning, cooling, copper plating, alignment, coupling, non-metric screws, GPM, psi,,-Units,,,,,, time schedules,,, I want to thank my colleagues and our RFQ-group for help and good teamwork, which is necessary for successful projects and thesises. I have to thank the partners in our collaborations for entrusting us with such work, for patience and understanding which sometimes is necessary, because of the special style of University people, old and young ones, and for the Germanenglish (Denglisch)