TU301

POSITRON BEAMS PROPAGATION IN PLASMA WAKEFIELD ACCELERATORS

P. Muggli, UCLA, Los Angeles, California

Abstract

Plasma-based accelerators are one of the emerging technologies that could revolutionize e-/e⁺ colliders, significantly reducing their size and cost by operating at multi-GeV/m accelerating gradients. Proof-of-principle experiments at SLAC have demonstrated the energy doubling of 42 GeV incoming e⁻ in a plasma only ~85 cm-long,* corresponding to an unloaded gradient of ~50 GeV/m. Plasma wakes driven by e⁺ bunches are different from those driven by e^- bunches. The acceleration of e^+ in plasmas has been demonstrate,** but the acceleration of high-quality e⁺ beams is challenging. Measurements show that single e⁺ bunches suffer halo formation and emittance growth when propagating through dense meter-scale, uniform plasmas.*** Advanced schemes, such as hollow plasma channels, or e⁺ bunch acceleration on the wake driven by a e bunch, may have to be used in a future plasma-based linear collider. Experimental results obtained with e⁺ beams in plasmas will be reviewed and compared to those obtained with e⁻ beams. Future experiments including a new scheme to produce a drive e bunch closely followed by a witness e⁺ bunch appropriate for PWFA experiments will also be discussed.

* I. Blumenfeld *et al.*, Nature 445, 741-744 (15 February 2007).

*** B.E. Blue *et al.*, Phys. Rev. Lett. 90, 214801 (2003). **** P. Muggli *et al.*, accepted for publication in Phys. Rev. Lett. (2008).

> PERMISSION TO VIEW THE SLIDES NOT GRANTED BY THE SPEAKER