A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

HOM

Paper Title Other Keywords Page
MO103 SNS Superconducting Linac Operational Experience and Upgrade Path cavity, cryomodule, linac, SRF 11
 
  • S.-H. Kim
    ORNL, Oak Ridge, Tennessee
 
 

Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy
The SNS Superconducting Linac (SCL) has been providing the main acceleration in two different accelerating sections with 33 medium beta and 48 high beta superconducting radio-frequency (SRF) 6-cell cavities. The use of superconducting elliptical cavities for particles whose velocity are less than the speed of light, make this accelerator a very important milestone for learning operating conditions of this cavity type. Since the SNS SCL is the first large-scale high energy pulsed-superconducting proton linac that provides high beam power utilizing H- beams, many aspects of its performance were unknown and unpredictable. A large amount of data has been collected on the pulsed behavior of cavities and cryomodules at various repetition rates and at various temperatures. This experience will be of great value in determining future optimizations of SNS as well in guiding in the design and operation of future pulsed superconducting linacs. This paper describes the details of the rf properties, performances, path-forward for the SNS power ramp-up goal, and upgrade path of the SNS superconducting linac.

 

slides icon

Slides

 
TUP032 Simulations on Impact of the 3.9 GHz RF Section on the Multi Bunch Emittance at FLASH cavity, emittance, damping, linac 465
 
  • Y.A. Kot
    DESY, Hamburg
 
 

In order to compensate nonlinear distortions of the longitudinal phase space a rf section operated at three times the 1.3 GHz frequency of the existing TTF cavities is foreseen in the next phase of FLASH. Four modules of a nine-cell 3.9 GHz cavities will be installed right after the first accelerating module ACC1. These cavities could cause additional long-range wake fields which would affect the multi bunch (mb) beam dynamics leading to increase of the mb emittance. The mb emittance at the end of the linac is determined by the strength of the transverse wake fields in the rf system. These higher order modes appear after any off-crest moving bunch, which could happen either due to the cavity misalignment, or by transverse position fluctuations of the injected bunches. It is intended to damp them by means of the HOM couplers, which may reduce the damping time by factor of 105. The misalignment of the cavities offsets is expected to be by 0.5 mm rms. The paper describes the results of the simulations on the dependence of the mb emittance on cavities misalignment offsets and damping strength of the HOM couplers in the planned 3.9 GHz rf section.

 
TUP057 Design and Fabrication of CLIC Test Structures damping, accelerating-gradient, wakefield, impedance 533
 
  • R. Zennaro, A. Grudiev, G. Riddone, A. Samoshkin, W. Wuensch
    CERN, Geneva
  • T. Higo
    KEK, Ibaraki
  • S.G. Tantawi, J.W. Wang
    SLAC, Menlo Park, California
 
 

Demonstration of a gradient of 100 MV/m at a breakdown rate of 10-7 is one of the key feasibility issues of the CLIC project. A high power rf test program both at X-band (SLAC and KEK) and 30 GHz (CERN) is under way to develop accelerating structures reaching this performance. The test program includes the comparison of structures with different rf parameters, with/without wakefield damping waveguides, and different fabrication technologies namely quadrant bars and stacked disks. The design and objectives of the various X-band and 30 GHz structures are presented and their fabrication methods and status is reviewed.

 
WE102 High Average Current SRF Cavities cavity, storage-ring, linac, luminosity 693
 
  • T. Furuya
    KEK, Ibaraki
 
 

Higher-order-mode (HOM) free superconducting (SC) single cell cavities were developed for the rf system of high luminosity storage ring colliders. Because of the successful results of these cavities under ampere-class beams, the components and technology of the SC cavities have immediately been applied to the middle sized storage rings upgrading the beam intensity by using a few SC cavities. Beside the storage ring rf, a SC based high intensity proton linac was commissioned for neutron physics. Recently, the feasibility study of energy recovery linacs has been carried at various laboratories aiming for the 4th generation light source. Status of these developments will be described.

 

slides icon

Slides

 
TH101 Superconducting RF R&D Toward High Gradient cavity, niobium, SRF, superconducting-cavity 725
 
  • C.M. Ginsburg
    Fermilab, Batavia
 
 

High-beta superconducting rf elliptical cavities are being developed in large numbers for several accelerator projects including the International Linear Collider (ILC). In recent years, the understanding of cavity performance limitations has improved significantly, leading to better than 40 MV/m in some cavities. However, further improvement is needed to reach reliably the 31.5 MV/m operating gradient proposed for the ILC Main Linac cavities. World-wide R&D on the cavity gradient frontier includes improved surface cleaning and smoothing treatments, development of alternative cavity shapes and materials, and novel cavity manufacturing techniques. Substantial progress has been made with diagnostic instrumentation to understand cavity performance limitations. Some highlights of the efforts in superconducting rf R&D toward achieving higher gradients in high-beta elliptical cavities are reviewed.

 

slides icon

Slides

 
THP014 Recent Results of 1.3 GHz Nine-Cell Superconducting Cavities for the European XFEL cavity, niobium, superconductivity, superconducting-cavity 806
 
  • L. Lilje, D. Reschke
    DESY, Hamburg
 
 

In preparation for the series production of roughly 800 superconducting accelerating structures, several tests with an industrial-like production sequence have been tested for their accelerating gradient and quality factor. The main part of the surface preparation is being done with electropolishing. with ethanol rinse. For the two different final preparation steps namely electropolishing and etching the performance is compared. The results will be also put into the perspective of earlier cavity production cycles that were tested at DESY.

 
THP019 Third Harmonic Superconducting Cavity Prototypes for the XFEL cavity, linac, cryomodule, pick-up 821
 
  • P. Pierini, A. Bosotti, N. Panzeri, D. Sertore
    INFN/LASA, Segrate (MI)
  • H.T. Edwards, M.H. Foley, E.R. Harms, D.V. Mitchell
    Fermilab, Batavia
  • J. Iversen, W. Singer, E. Vogel
    DESY, Hamburg
 
 

The third harmonic cavities that will be used at the injector stage in the XFEL to linearize the rf curvature distortions and minimize beam tails in the bunch compressor are based on the rf structures developed at FNAL for the DESY FLASH linac. The design and fabrication procedures have been modified in order to match the slightly different interfaces of XFEL linac modules and the procedures followed by the industrial production of the main (1.3 GHz) XFEL cavities. A revision of the helium vessel design has been required to match the layout of the cryomodule strings, and a lighter version of the tuner has been designed (derived from the 1.3 GHz ILC blade tuner activities). The main changes introduced in the design of the XFEL cavities and the preliminary experience of the fabrication of three industrially produced and processed third harmonic rf structures are described here.

 
THP028 Status of 3.9 GHz Superconducting RF Cavity Technology at Fermilab cavity, alignment, cryomodule, status 845
 
  • E.R. Harms, T.T. Arkan, V.T. Bocean, H. Carter, H.T. Edwards, M.H. Foley, T.N. Khabiboulline, M.W. McGee, D.V. Mitchell, D.R. Olis, A.M. Rowe, N. Solyak
    Fermilab, Batavia
 
 

Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Fermilab is involved in an effort to design, build, test and deliver four 3.9 GHz superconducting rf cavities within a single cryomodule to be delivered to DESY as a 'third harmonic' structure for the FLASH facility to improve the longitudinal emittance. In addition to an overall status update we will present recent results from single 'dressed' cavity horizontal tests and shipping and alignment measurements.

 

slides icon

Slides

 
THP029 Performance of 3.9-GHZ Superconducting Cavities cavity, superconductivity, status, SRF 848
 
  • E.R. Harms, H.T. Edwards, A. Hocker, T.N. Khabiboulline, N. Solyak
    Fermilab, Batavia
 
 

Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
3.9 GHz SRF cavities have been built and tested at Fermilab for use in the DESY FLASH facility. Six cavities have undergone testing in various scenarios. Comparisons of performance in these different conditions, from bare cavities in a vertical dewar to 'dressed' in the horizontal test stand and intermediate test configurations are presented. We also report on analysis of expected maximum performance and an estimate of same.

 
THP037 RF Design of a Spoke Resonator for High Power Free-Electron Lasers electron, free-electron-laser, laser, acceleration 866
 
  • F.L. Krawczyk, D.C. Nguyen
    LANL, Los Alamos, New Mexico
  • S.J. Cooke
    NRL, Washington, DC
  • B. Rusnak
    LLNL, Livermore, California
  • T.I. Smith
    Stanford University, Stanford, Califormia
  • E.L. Wright
    Beam-Wave Research, Inc., Union City
 
 

Funding: Supported by the High-Energy Laser Joint Technology Office
We are investigating spoke resonators that originally were proposed for moderate energy proton acceleration for application in high-average-current free-electron lasers (FEL). This structure holds the promise of alleviating the BBU limitations of conventional rf structures. Spoke resonator have several advantages: 1) strong coupling simplifies the access to higher order modes (HOM), 2) at the same frequency a spoke resonator is about half the size of an elliptical resonator, 3) the spokes provide additional mechanical stability and stiffening , 4) the power and HOM couplers can be attached to the cavity body and do not take up additional space along the length of the accelerator, 5) the presence of the spokes limits the polarizations of the HOMs to two orientations which facilitates the selection of HOM coupler positions. The rf performance of a spoke resonator specifically designed for high-current electron applications (beta=1.0) will be presented and compared with the expected performance of elliptical resonators designed for such applications. Besides the structure's effectiveness for acceleration also HOM properties will be presented.

 

slides icon

Slides

 
THP038 A New SRF Cavity Shape with Minimized Surface Electric and Magnetic Fields for the ILC cavity, dipole, coupling, wakefield 867
 
  • Z. Li, C. Adolphsen
    SLAC, Menlo Park, California
 
 

Funding: Work supported by DOE contract DE-AC02-76SF00515.
The TESLA-shape cavity has been chosen as the baseline design for the 1.3 GHz SCRF linacs of the International Linear Collider. However, there is ongoing research to develop new cavity shapes that will support higher gradients and hence lower the machine cost. The critical magnetic flux (Bc) of the niobium, which is approximately 180 mT, ultimately limits the gradient achievable in a superconducting cavity. Thus far, the new designs have focused on minimizing the peak surface magnetic field (Bs) for a given on-axis gradient, while relaxing the requirement on the peak surface electric field (Es). For example, the Low Loss (LL) design reduces Bs by more than 10% relative to the baseline design, which should allow a gradient of up to 50 MV/m with a 20% reduction in cryogenics loss. However, Es is about 15% higher in this case, which enhances field emission that in practice is one of the main impediments to achieving the Bc-limited gradient. In this paper, we will present an optimized cavity shape that reduces both Bs and Es, and thus should have a better chance of reaching higher gradients. The design of HOM couplers for wakefield damping in this cavity will also be presented.

 

slides icon

Slides

 
THP039 SRF Cavity Imperfection Studies Using Advanced Shape Uncertainty Quantification Tools cavity, cryomodule, SRF, dipole 870
 
  • V. Akcelik, K. Ko, L. Lee, Z. Li, C.-K. Ng, L. Xiao
    SLAC, Menlo Park, California
 
 

Funding: Work supported by DOE contract DE-AC02-76SF00515.
The shape deviation of a SRF cavity from the design shape may result in significant impact on cavity performance and wakefields that could lead to unexpected effects in beam dynamics. Yet, most of these deviations are unknown in the final cavity installation because of the complicated process of assembly and tuning. It is desirable to be able to uncover such distortions using measurable rf quantities. With these data, the cavity performance can be analyzed and realistic tolerance criteria may be implemented in the cavity design and manufacture for quality assurance. To perform such analyses, SLAC has developed advanced Shape Determination Tools, under the SciDAC support for high performance computing, that recover the real cavity shape by solving an inverse problem. These tools have been successfully applied to analyze shape distortions to many SRF cavities, and identified the cause of unexpected cavity behaviors. The capabilities and applications of these tools will be presented.

 
THP044 Coaxial Coupling Scheme for Fundamental and Higher Order Modes in Superconducting Cavities cavity, coupling, damping, superconducting-cavity 885
 
  • J.K. Sekutowicz, G. Ciovati, P. Kneisel
    JLAB, Newport News, Virginia
  • L. Xiao
    SLAC, Menlo Park, California
 
 

Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Higher Order Modes generated by a particle beam passing through a superconducting accelerating cavity have to be damped to avoid beam instabilities. A coaxial coupler located in the beam pipes of the cavities provides for better propagation of HOMs and strong damping in appropriate HOM dampers. The whole damping device can be designed as a detachable system. If appropriately dimensioned, the rf currents can be minimized at the flange position. Additionally, the coaxial system also provides efficient coupling of fundamental mode rf power into the superconducting cavity. Compared to presently available solutions for HOM damping, this scheme provides for several advantages: stronger HOM damping, flangeable solution, exchangeability of the HOM damping device on a cavity, less complexity of the superconducting cavity, possible cost advantages. This contribution will describe the results of room temperature measurement and discuss modeling, which resulted in an optimized layout of a cavity-coupler system.

 
THP061 High Power Test of a Low Group Velocity X-Band Accelerator Structure for CLIC damping, vacuum, collider, luminosity 930
 
  • S. Döbert, A. Grudiev, G. Riddone, M. Taborelli, W. Wuensch, R. Zennaro
    CERN, Geneva
  • C. Adolphsen, V.A. Dolgashev, L. Laurent, J.R. Lewandowski, S.G. Tantawi, F. Wang, J.W. Wang
    SLAC, Menlo Park, California
  • S. Fukuda, Y. Higashi, T. Higo, S. Matsumoto, K. Ueno, K. Yokoyama
    KEK, Ibaraki
 
 

In recent years evidence has been found that the maximum sustainable gradient in an accelerating structure depends on the rf power flow through the structure. The CLIC study group consequently designed a new prototype structure for CLIC with a very low group velocity, input power and average aperture (a/λ = 0.12). The 18 cell structure has a group velocity of 2.4% at the entrance and 1% at the last cell. Several of these structures have been made in collaboration between KEK, SLAC and CERN. A total of five brazed-disk structures and two quadrant structures have been made. The high power results of some of these structures are presented. The first KEK/SLAC built structure reached an unloaded gradient in excess of 100 MV/m at a pulse length of 230 ns with a breakdown rate below 10-6. The high-power testing was done using the NLCTA facility at SLAC.

 
THP062 Design of an X-Band Accelerating Structure for the CLIC Main Linac damping, linac, accelerating-gradient, impedance 933
 
  • A. Grudiev, W. Wuensch
    CERN, Geneva
 
 

The rf design of an accelerating structure for the CLIC main linac is presented. The structure is designed to provide 100 MV/m averaged accelerating gradient at 12 GHz with an rf-to-beam efficiency as high as 27.7%. The design takes into account both aperture and HOM damping requirements coming from beam dynamics as well as the limitations related to rf breakdown and pulsed surface heating.

 
THP074 A New Accelerator Structure Concept: the Zipper Structure coupling, damping, wakefield, resonance 963
 
  • C.D. Nantista
    SLAC, Menlo Park, California
 
 

Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
I introduce a novel normal-conducting accelerator structure combining standing wave and traveling wave characteristics, with relatively open cells. I describe the concept and geometry, optimize parameters, and discuss the advantages and limitations this new structure presents.