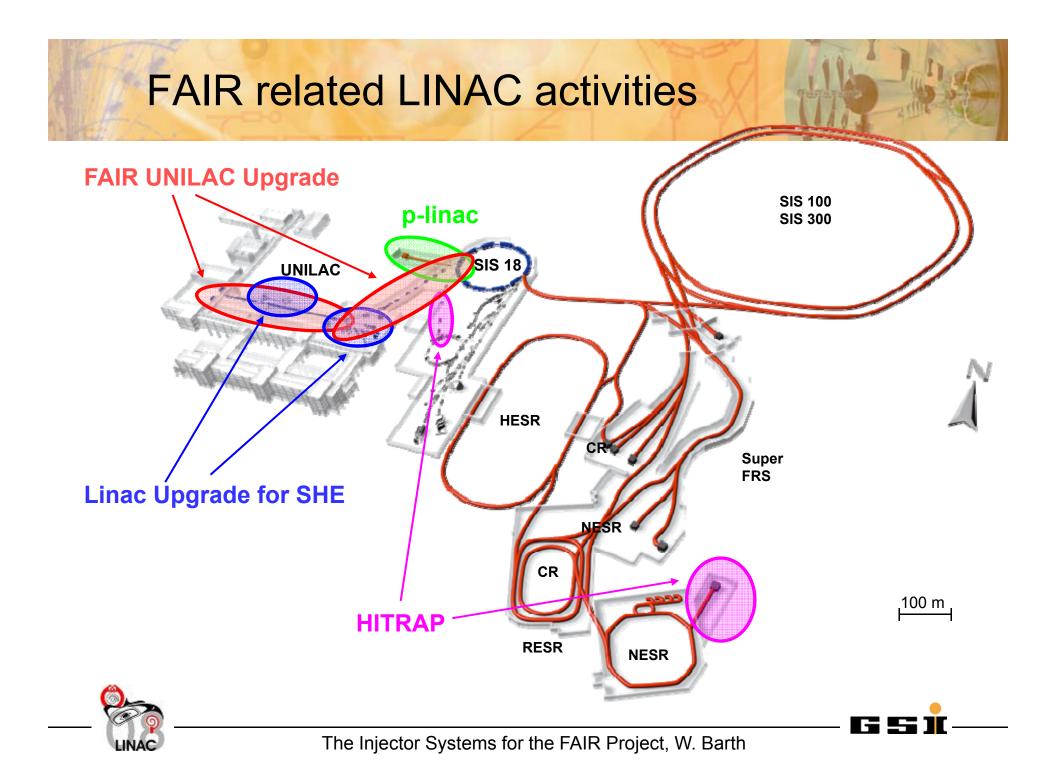
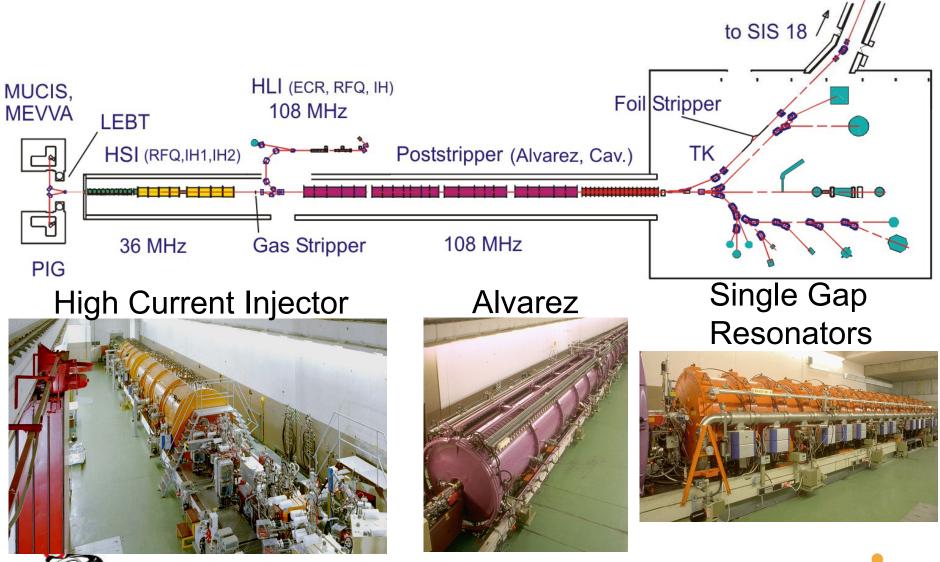

The Injector Systems for the FAIR Project

W. Barth, GSI - Darmstadt

- 1. FAIR Project status
- 2. GSI Accelerator Facility Injector for FAIR
- 3. Heavy Ion Linear Accelerator UNILAC
- 4. Unilac Upgrade Program
 - HSI Frontend
 - Stripper Sections
 - Alvarez Matching
 - Beam Diagnostics
- 5. Status of the Unilac High Current Performance & further Upgrade schedule
- 6. A Proton Linac for direct SIS-Injection
- 7. Commissioning of the HITRAP decelerator
- 8. Longterm Perspective for the FAIR-LINAC injectors
- 9. Summary



FAIR-schedule


- All legal documents being finalized (decision to be taken at next ISC meeting Oct. 1st)
- Aim: Signature of convention end of 2008
- Foundation of FAIR GmbH beginning of 2009
- First Experiments at Super-FRS 2014 (with beam from SIS18)

Schedule - Accelerators

	Year	2008	2009	2010	2011	2012	2013	2014	2015	2016
Startversion	Super FRS									
	p-bar target									
	Op-Linac					L.				
	SIS100									
	CR									
	NESR									
	RESR									
	HESR									
hase B	SIS300									
	ER									
O		UNILAC upgrade								
		The Injector Systems for the FAIR Project, W. Barth							- 6 -	

The GSI UNIversal Linear ACcelerator

The Injector Systems for the FAIR Project, W. Barth

UNILAC-Upgrade for FAIR

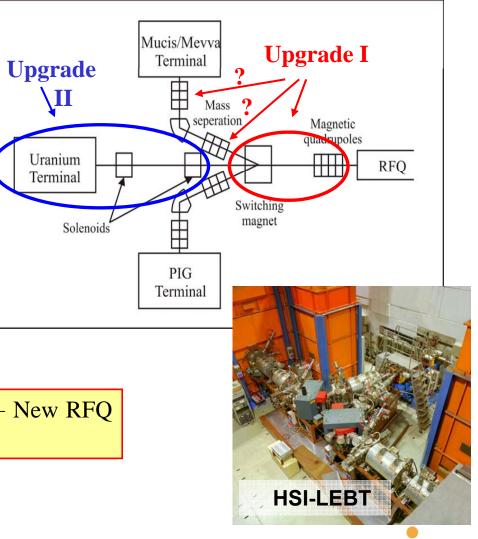
(FAIR-Technical Report 2005)

sub-project	aim
 High Current test bench → U⁴⁺-ion source terminal for the High Current Injector U⁴⁺-Compact Low Energy Beam Transport 	18 emA, U ⁴⁺ , 1.4 MeV/u
• HSI-RFQ-Upgrade	
• Gasstripper	 13% stripping efficiency for U²⁸⁺, 100 % transmission
• Power Supplies for 178 Alvarez- quadrupoles	$\sigma_{o} = 55^{\circ}, U^{28+}$ (improved beam quality)
• 11.4 MeV/u charge state separator	charge state separation for a 5 emA U^{73+} beam
• High Current beam diagnostics	Measurement of ion current, transmission, beam profile, position, energy, transverse and longitudinal emittance

HSI-LEBT Upgrade

Upgrade 0

- High Current test stand measurements


Upgrade I

- Switching magnet with increased aperture
- Quadrupole quartet (matching to the RFQ) with increased apertures

Upgrade II (Compact LEBT)

- Beam line with direct injection to the RFQ (integrated into the existing layout)

Previous simulations: Compact LEBT + New RFQ \rightarrow 20 mA behind RFQ !

Schematic layout of the LEBT

HSI-RFQ upgrade (2009)

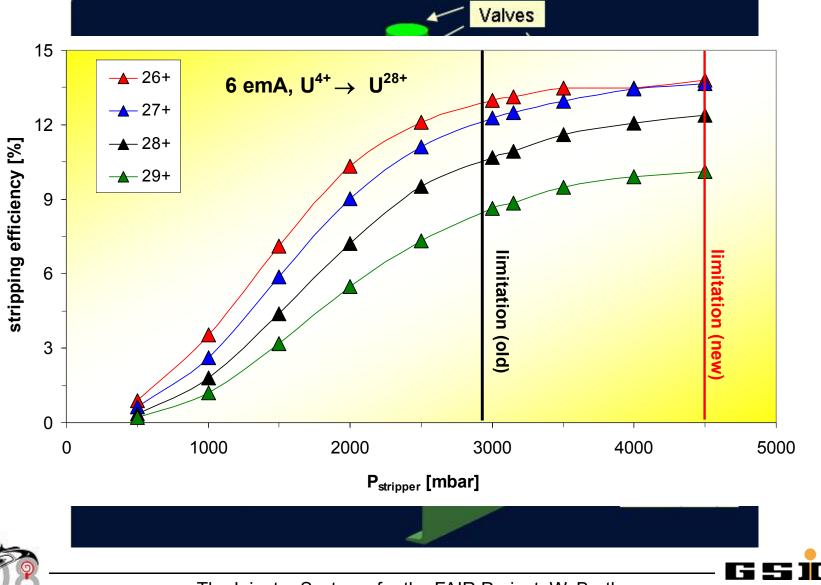
- Higher transverse acceptance and phase advance (keeping maximum field at the electrode surface)
- New Input Radial Matcher design → improved beam matching
- Improved beam dynamics for gentle buncher optimized for rapid and uniform separatrix filling
- Resonant frequency shift with increased average radius and reduced electrode thickness can easily be compensated
- Beam dynamics studied with DYNAMION& PARMTEQ-M
- Beam intensity at HSI-RFQ output (18 mA of U⁴⁺ ions) meets the FAIR requirement

	Final Design	Existing Design	
Voltage, kV	155.	125.	
Average radius, cm	0.6	0.5245 - 0.7745	
Electrode width, cm	0.84	0.9 – 1.08	
Maximum field, kV/cm	312.0	318.5	
Modulation	1.012 - 1.93	1.012 – 2.09	
Synch. Phase, degree	-90 ⁰ 28 ⁰	-90°34°	
Aperture, cm	0.410	0.381	
Min. transverse phase advance, rad	0.555	0.45	
Norm. transverse acceptance, cm mrad	0.0856	0.73	
Output energy, MeV/u	0.120	≈ 0.1185	
Number of cells with modulation	394	343	
Length of electrodes, cm	921.74	921.74	

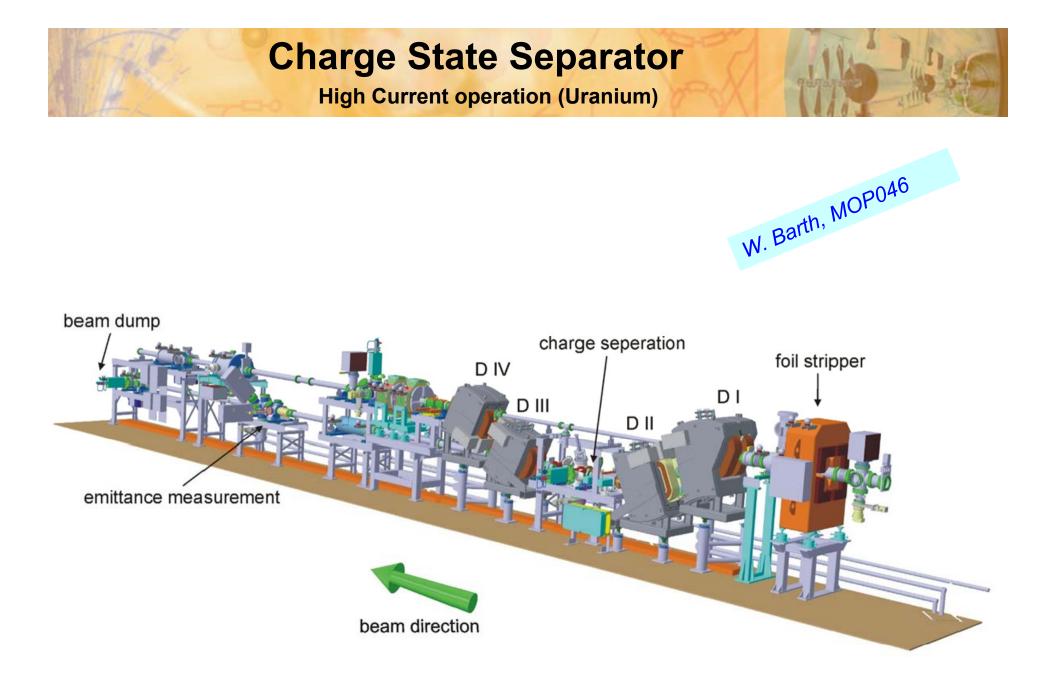
HSI End to end simulation

measurement for present RFQ :

LORASR (R. Tiede, Univ. Frankfurt) 15 mA ≈ 7.5 mA ≈ 8.5 mA $\mathbf{20}$ RFQ IH-1 **IH-2** SL 18 25 New RF 16 Beam current (mA) FAIR requirements 20 14 Beam current [mA] 12 Existing RFO 15 10 8 10 0 6 Ð HSI 4 \frown 5 2 output 0 0 10 8 500 1000 1500 2000 2500 3000 6 0 0 Transv. emittance (cm*mrad) Z [cm]

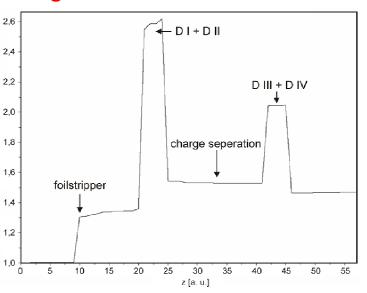

A. Kolomiets, MOP032

DYNAMION (S. Yaramyshev, GSI)

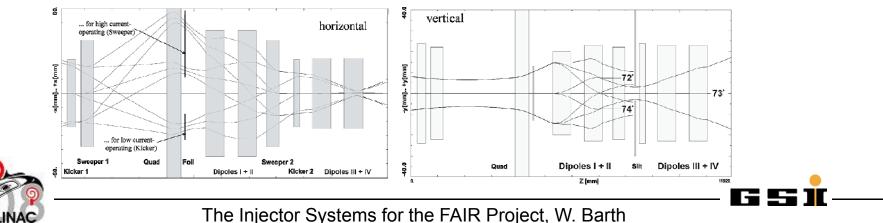

PARMTEQ (A. Schempp, Univ. Frankfurt)

Increased Stripper Gas Density

The Injector Systems for the FAIR Project, W. Barth



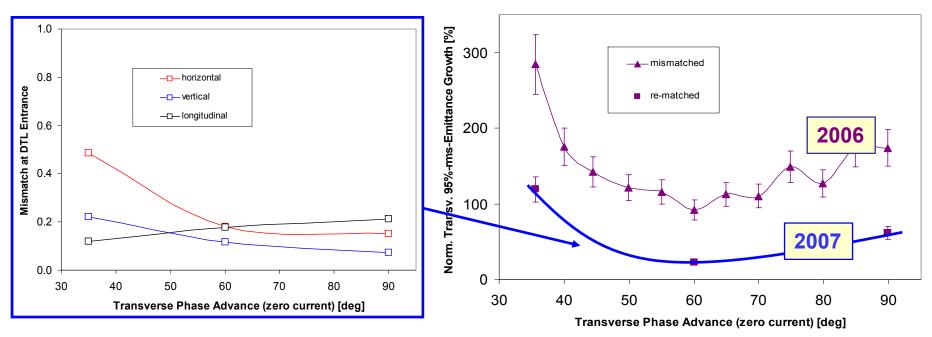
Beam commissioning of the Charge State Separator system



high current low current (4·ε_{rms} [μm]) ho vert. hor. vert. r. behind D II 9. 17,6 6,9 7,1 0 5 8 1 59 SIS 5.6 injection 5 emittance growth

High Current Emittance Growth

Beam Dynamics

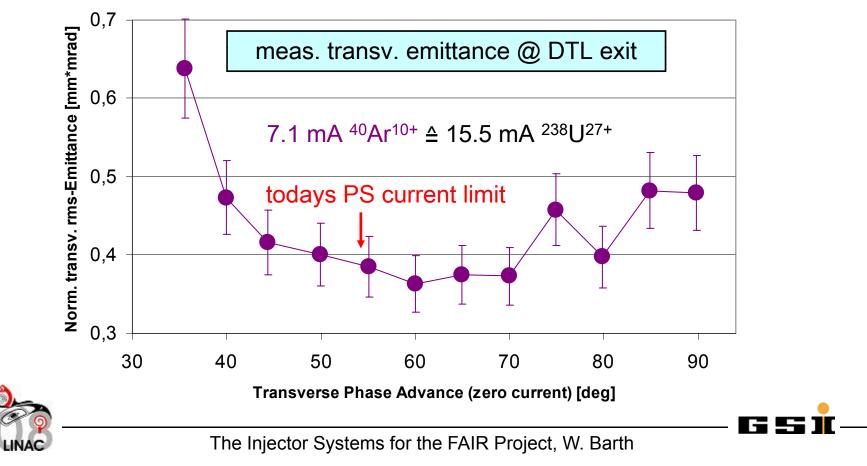


Reduction of Mismatch

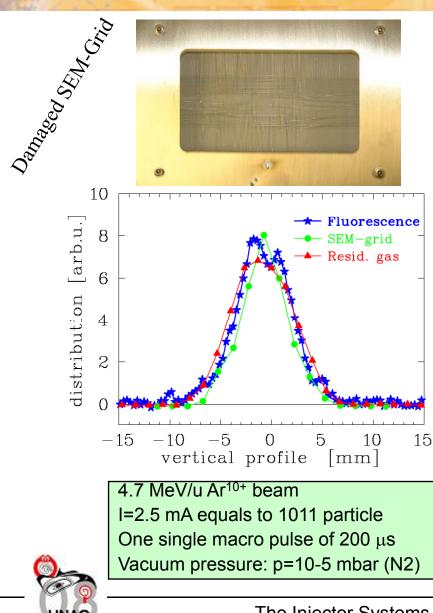
• new algorithm used to rms-match a (measured) initial distribution to periodic DTL

L. Groening, MOP075

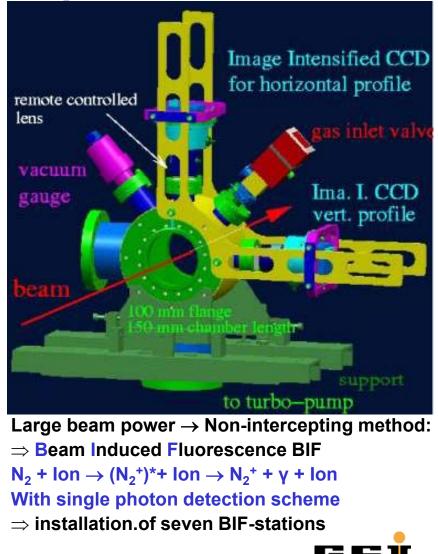
• test of matching by re-measuring emittance growth

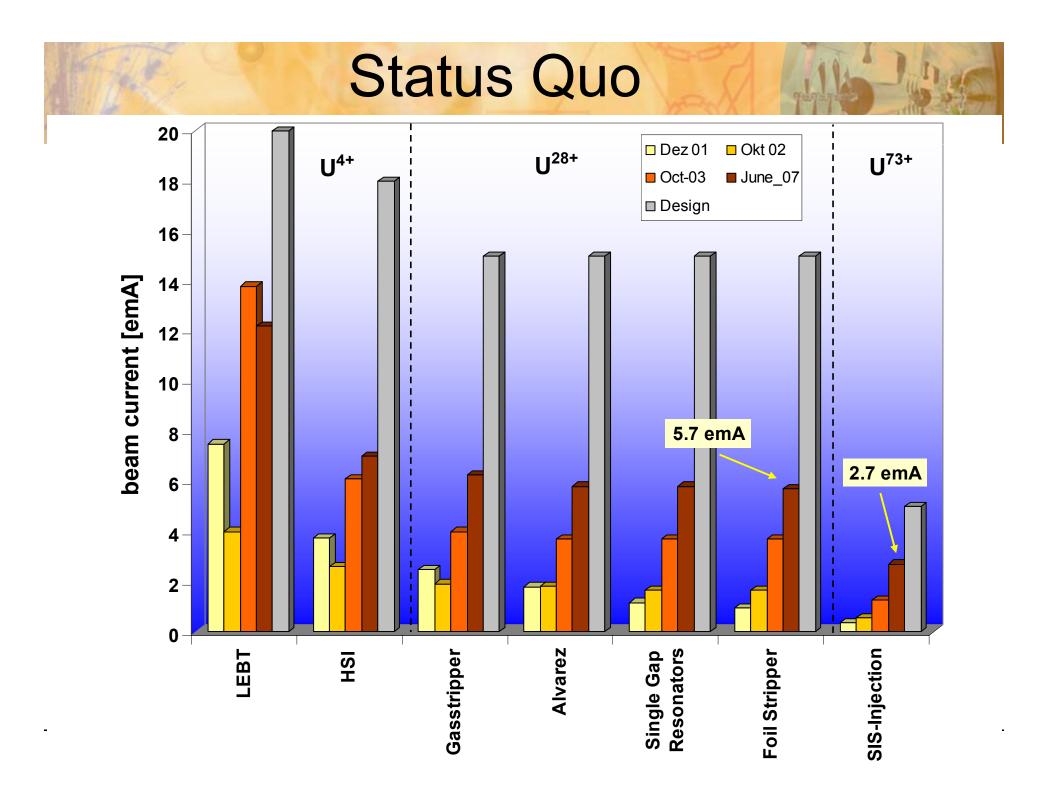


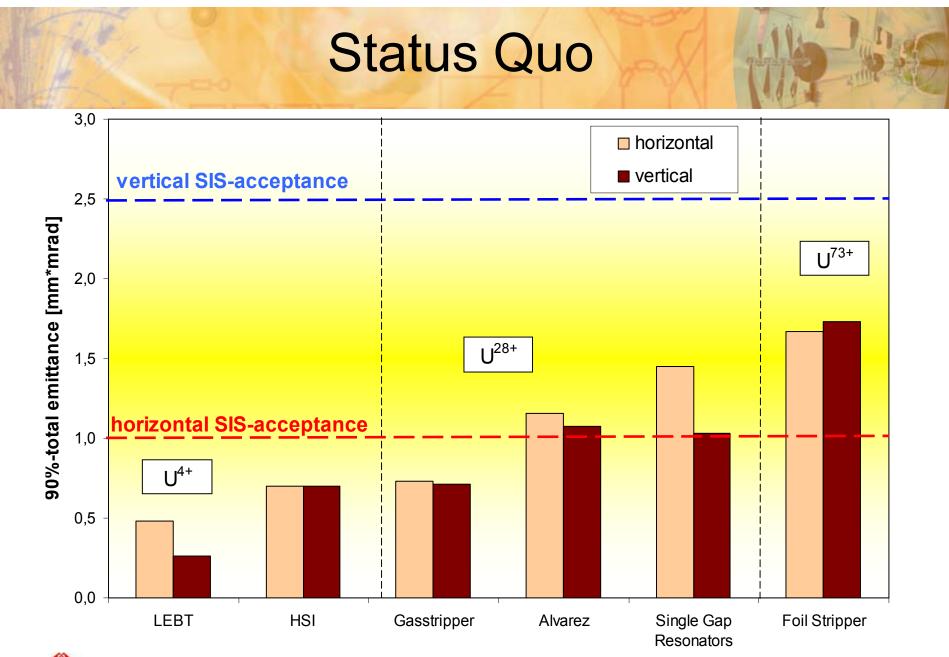
• significant reduction of emittance growth by rms-matching including space charge



New Power Supplies for the UNILAC Alvarez dc-Magnets


- The achieved ratio current / rms-emittance at DTL exit is too low for FAIR
- Design: 15.5 mA / 0.25 μm; Achieved: 4.4 mA / 0.43 μm
- One measure of improvement → reduction of emittance growth along DTL
- Exp. and simulation: possible by increasing DTL quad strengths


High Current Beam Diagnostics: Beam Induced Fluorescence Monitor

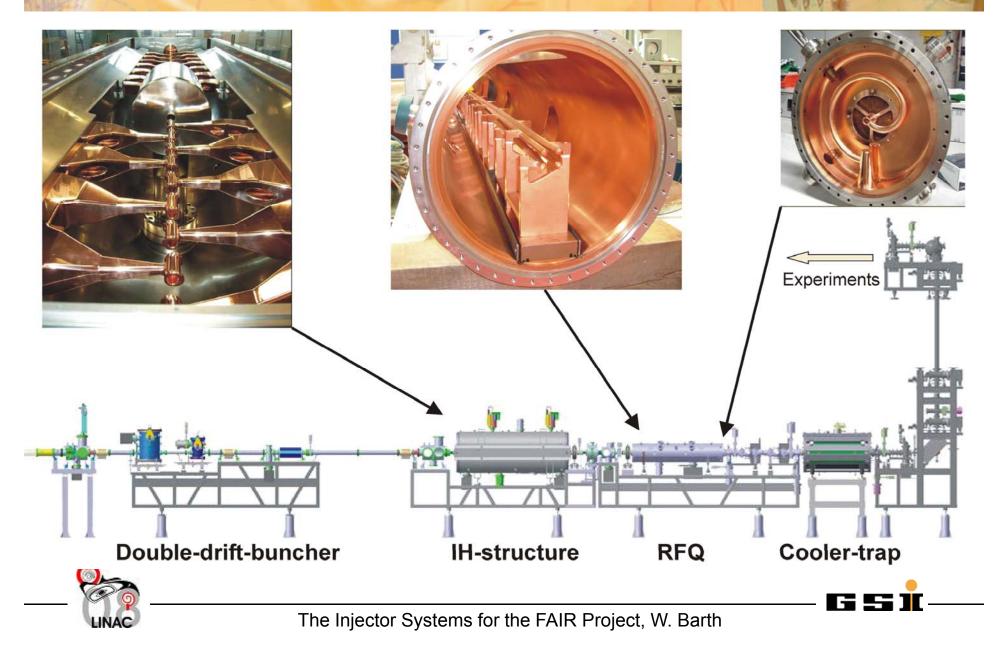


Compact chamber with 150 mm insertion:

The Injector Systems for the FAIR Project, W. Barth

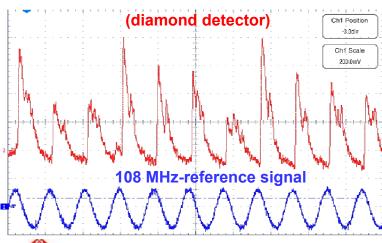
The Injector Systems for the FAIR Project, W. Barth

Status of the UNILAC Uranium-Performance


	Measured	Design (1999)	required for FAIR
²³⁸ U ⁴⁺			
Max. Beam Intensity I, (2.2 keV/u)	16 emA	16 emA	20 emA
I _{max} @beam power, (1.4 MeV/u)	6.5 emA @587 kW	15 emA@1250 kW	18 emA@1500 kW
Transv. Emittance (LEBT) (90%, total)	140 <i>π</i> ⋅mm⋅mrad	120 π⋅mm⋅mrad	120 π⋅mm⋅mrad
Macropulse Length	150 μs	150 μs	150 μs
Reproducibility/Transversal Emittance	±4.5%	-	-
Beam loading, 7emA (IH2)	350 kW	590 kW (15 emA)	710 kW (18 emA)
U ²⁸⁺			
Max. Beam Current, (1.4 MeV/u)	6.25 emA	12.6 emA	15.0 emA
Max. Beam Intensity, 11.4 MeV/u, I _{max} @beam power Transfer to the SIS18 <i>Ions/100µ</i> s	5.7 emA@567 kW 1.3·10 ¹¹	12.6 emA@1221 kW <i>2.8·10¹¹</i>	15.0 emA@1453 kW 3.3·10 ¹¹
U ⁷³⁺			
Max. Beam Intensity, 11.4 MeV/u, <i>Ionen/100μs</i>	2.7 emA 2.3 10 ¹⁰	4.6 emA <i>3.9</i> 10 ¹⁰	3.5 emA 3.0·10 ¹⁰
Transv. Emittance (11.4 MeV/u) (90%, tot.)	11.0 <i>π</i> ⋅mm⋅mrad	5.0 π·mm·mrad	7.0 π⋅mm⋅mrad

FAIR The pro-	ton Linac		W. Vinzenz, H. Podlech,	THP078 THP011		
ECR Re-Bui Source LEBT RFQ	3 CCH		CCH	to SIS18		
95 keV 3 Me	V 35 N <u>C</u> rossed-bar <u>H</u> -Cavity (CH)	Beam energ	ду	70 MeV		
 ECR proton source & LEBT RFQ (4-rod) 		Beam curre <u>Beam curre</u> Beam pulse Repetition r	e <i>nt (des.)</i> e length	35 mA <u>70 mA</u> 36 µs 4 Hz		
 6 Pairs of Coupled CH-DTL 2 Bunchers 48 Quads 	Univ. Frankfurt	Rf-frequence Tot. hor em Tot. mom. s Linac lengt	cy it (norm.) spread	325.224 MHz 2.1 / <u>4.2</u> μm ≤ ± 10 ⁻³ ≈ 35 m		
 5.1 MW of beam loading (peak), 710 W (average) 11 MW of total rf-power (peak), 	Rf- <u>Coupled Crossed-bar</u> • reduce number of klystrons	_	E – Field			
1600 W (average) 41 beam diagnostic devices 	 reduce place requirements profit from 3 MW klystron de avoid use of magic T's 	evelopment	H – Field 💿 🛶 🖏 🗤			
• reduce cost for rf-equipment The Injector Systems for the FAIR Project, W. Barth						

HITRAP Decelerator

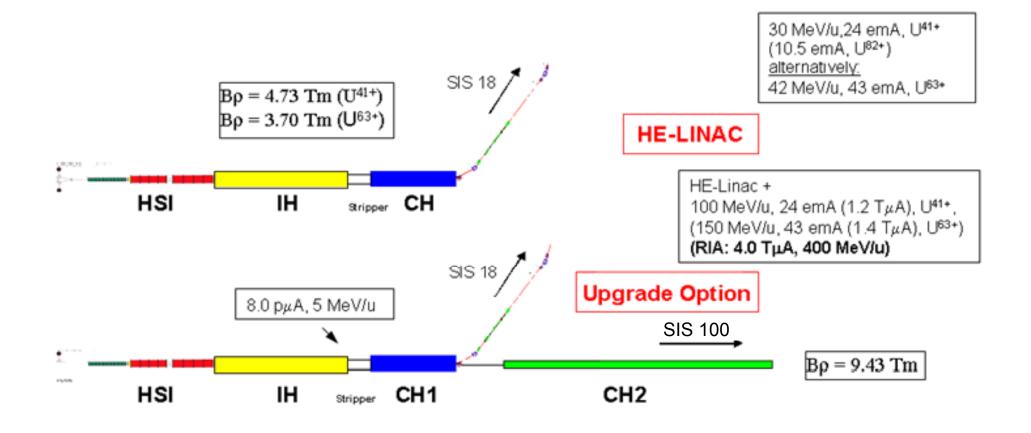

HITRAP-Commissioning

L. Dahl, MOP019 J. Pfister, TUP074 installations commissioning goal

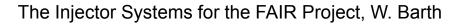
	species	mstunutions	commissioning gour	
May 2007	⁶⁴ Ni ²⁸⁺	ESR extraction beam	optimized beam transfer, system acceptance test, compilation of magnet settings, emittance	
1111 1 007	111	line and DDB section	measurements	
August 2007	²⁰ Ne ¹⁰⁺	DDB amplifiers	bunch shape optimization, determination of DDB working points, emittance measurements,	
August 2007		working	outen shape optimization, determination of DDD working points, emittance measurements,	
	¹⁹⁷ Au ⁷⁹⁺	IH tank including	IH tank transport and deceleration and determination of the working point,	
August 2008		200kW amplifier,	optimized beam parameters behind the matching section, beam energy	
		matching section	optimized beam parameters bennid the matering section, beam energy	
October 2008	⁶⁴ Ni ²⁸⁺		beam energy measurements (behind IH), phase + amplitude calibration of DDB and IH tank	
November 2008		installation of the RFQ		
November 2008		tank		
	not	HITRAP decelerator	phase and amplitude + calibration of rebuncher, RFQ and debuncher,	
2009	defined	completed inclusive	deceleration to 6 keV/u (RFQ), energy measurements, beam quality optimization	
	yet	cooler trap	deceleration to o ke v/u (KrQ), energy measurements, beam quanty optimization	

Bunch measurement 4 MeV/u neon-beam

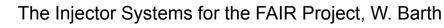
ion


Dealin i di diffeters								
HITRAP Section	Energy [MeV/u]	ΔΤ/Τ	$ \begin{aligned} \boldsymbol{\varepsilon}_{\mathbf{x},\mathbf{n}} &(= \boldsymbol{\varepsilon}_{\mathbf{y},\mathbf{n}}) \\ &[\boldsymbol{\pi} \cdot \mathbf{m} \mathbf{m} \cdot \mathbf{m} \mathbf{r} \mathbf{a} \mathbf{d}] \end{aligned} $	$\epsilon_x (= \epsilon_y)$ [$\pi \cdot \mathbf{mm} \cdot \mathbf{mrad}$]	total Transmission	particles/ spill		
	5.0	4.8 ·10 ⁻⁴	0.093	0.9		$1\cdot 10^6$ measured		
ESR	4.0		0.1	1.0	100%	$(6 \cdot 10^5)$ estimated		
	3.0	2.10-4	0.06	0.7		$\begin{array}{c} 2 \cdot 10^5 \\ \text{measured} \end{array}$		
Entrance Prebuncher	4.0	4.8 ·10 ⁻⁴	0.2	2.2	100 %	$6\cdot 10^5$		
Entrance IH	4.0	$\pm 1.3 \cdot 10^{-2}$	0.2	2.2	28 %	$\boldsymbol{1.7}\cdot\boldsymbol{10^5}$		
Exit IH / Entr. RFQ	0.5	$\pm 2.10^{-2}$	0.24	7.3	28 %	$1.7 \cdot 10^5$		
Exit RFQ	0.006	±7·10 ⁻²	0.37	100	26 %	$1.5 \cdot 10^5$		
LEBT, entrance of trap	0.006	±7·10 ⁻²	0.37	100	21 %	1.2 · 10 ⁵		

F- !

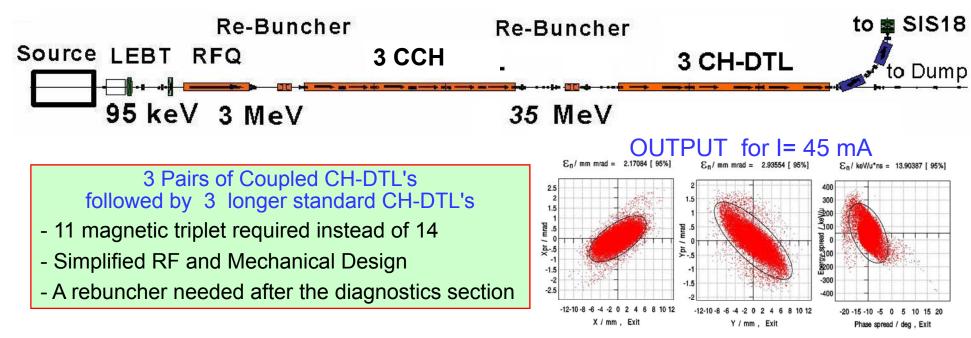

Beam Parameters

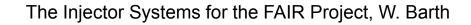
Longterm Perspective for the FAIR-LINAC injectors



Summary

- An extended upgrade program in the UNILAC in combination with machine investigations resulted in a uranium beam intensity of up to 5.7 emA (28+) for the injection into the synchrotron SIS 18.
- High Current UNILAC-Upgrade: Mainly the improved ion source performance, the increased stripper gas density, the improved DTL-performance, and the use high current beam diagnostics devices were responsible for the successful development program.
- FAIR-requirements: The UNILAC-upgrade will be continued with the upgrade of a new front end for U⁴⁺ (ion source terminal – LEBT –RFQ), stronger power supplies for the Alvarez quads, the charge state separator system and beam diagnostics devices, sufficient for the operation with megawatt heavy ion beams (until 2011).
- Primary proton beam intensities will be increased by a new proton linac (to be commissioned in 2013).
- The commissioning of the decelerator for the HITRAP will be finished in 2009.
 - The UNILAC (since more than 35 years in operation) will serve as an high current injector for FAIR at first long term perspective: substitution by a more effective high heavy ion linac used whether the serve as a serve





p-Linac: Alternative Layout USE of KONUS ⇒ Long section without triplet

- The GSI Proton injector will be based on H-Mode cavities in combination with the KONUS Beam Dynamics
- Design is based on RFQ-Output distributions up to 70 mA
- Two designs are under discussions and they are comparable in terms of beam quality
- Error Studies indicated that both designs are robust enough against fabrication errors and power supplies oscillations
- Tolerances are comparable with the ones of other High Intensity linacs such as LINAC 4 or SNS
- **Coupled CH 3 and 4 in preparation**

