A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

scattering

Paper Title Other Keywords Page
MOP015 Operational Status and Future Plans for the Los Alamos Neutron Science Center (LANSCE) neutron, proton, target, linac 88
 
  • K.W. Jones, K. Schoenberg
    LANL, Los Alamos, New Mexico
 
 

Funding: U. S. Department of Energy, National Nuclear Security Administration, Contract No. DE-AC52-06NA25396
The Los Alamos Neutron Science Center (LANSCE) continues to be a signature experimental science facility at Los Alamos National Laboratory (LANL). The 800 MeV linear proton accelerator provides multiplexed beams to five unique target stations to produce medical radioisotopes, ultra-cold neutrons, thermal and high-energy neutrons for material and nuclear science, and to conduct proton radiography of dynamic events. Recent operating experience will be reviewed and the role of an enhanced LANSCE facility in LANL's new signature facility initiative, Matter and Radiation in Extremes (MaRIE) will be discussed.


LA-UR-08-03581

 

slides icon

Slides

 
MOP090 Scattering Matrix Simulations of Fields and Dispersion Relations in Superconducting Cavities for XFEL and ILC coupling, cavity, simulation, impedance 287
 
  • R.M. Jones, I.R.R. Shinton
    UMAN, Manchester
 
 

The globalised scattering matrix (GSM) method provides an efficient means of obtaining the electromagnetic field in interconnected multi-cavity structures. In the proposed XFEL at DESY and the ILC facilities, energetic electron beams can readily excite higher order modes which if left unchecked can dilute the emittance of the beams. The GSM in conjunction with finite element modelling of the scattering matrices of the linac cavities is used to enable the characteristic eigenmodes to be rapidly obtained and the potential for trapped modes is investigated. This characteristic eigensystem allows the wakefield experienced by the beam to be analysed and the consequences on beam quality ascertained. The impact of fabrication errors on the transverse electromagnetic field and corresponding resonant frequencies of the modes is also explored in detailed simulations.

 
MOP092 Monte Carlo Simulation of Touschek Effects in a Linac Beam electron, simulation, beam-losses, linac 293
 
  • A. Xiao, M. Borland
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
We present a Monte-Carlo method implemented in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered particles can be obtained from the code. In addition, scattered particles can be tracked to the end of the beam line and the local beam loss rate and beam halo information recorded. This information can be used for beam collimation system design.

 
MOP093 Study of IBS Effects for High-Brightness Linac Beams linac, emittance, lattice, brightness 296
 
  • A. Xiao
    ANL, Argonne
 
 

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Intrabeam scattering (IBS) may become an issue for linac-based fourth-generation light sources such as X-ray free-electron lasers and energy recovery linacs (ERLs), both of which use high-brightness electron beams with extremely small emittance and energy spread. Any degradation of the extremely high beam quality could significantly reduce the X-ray performance. We present here a strategy first used in the code elegant for simulating IBS effects for high brightness linac beams. We also present an application to a possible ERL upgrade of the Advanced Photon Source.

 
TUP064 Nuclear Reaction Analysis by Using Quasi-Elastic Scattering of Ultra Low Intensity Electron Beams electron, neutron, target, radiation 542
 
  • R. Taniguchi, T. Kojima, S. Okuda, R. Sasaki
    Osaka Prefecture University, Sakai
 
 

Energetic electron beams higher than several MeV occasionally induce direct nuclear reactions with the target nuclei. These processes are attributed to the quasi-elastic scattering of electrons (e,e') with the target nuclei and similar to the photo-nuclear reactions. These reactions are considered to be useful for the non-destructive analysis of heavy elements such as U and Th. In addition, a two-dimensional analysis is realized only by scanning of electron beam. On the other hand, the huge X-ray burst caused by the bremsstrahlung with the electron pulse bombardment is the most harmful phenomenon for the radiation measurement system. In this study, an ultra low intensity electron beam was used for relieving the problem, which has been developed by modifying an electron linear accelerator. The minimum beam charge about several aC/pulse has been achieved at the present. Consequently, the neutron emitted by Pb(e,e'n)Pb reaction was measured successfully by the use of the low intensity beams. The linearity between the neutron count and the concentration of Pb in the target was verified experimentally.