

First Results for the Cornell ERL Injector

Bruce Dunham, for the ERL Team Cornell University Laboratory for Elementary-Particle Physics Ithaca, NY USA

ERL Team

- Ivan Bazarov
- S. Belomestnykh
- M. Billing
- E. Chojnacki
- Z. Conway
- J. Dobbins
- R. Ehrlich
- M. Forster
- S. Gruner
- G. Hoffstaetter
- V. Kostroun
- M. Liepe
- Y.Li

- X. Liu
- D. Ouzounov
- H. Padamsee
- D. Rice
- V. Shemelin
- C. Sinclair
- E. Smith
- K. Smolenski
- S. Temnykh
- M. Tigner
- V. Veshcherevich
- T. Wilksen

• An ERL at Cornell

The ERL Injector Prototype Project

- Overview
- DC Photoemission Gun/Laser
- Superconducting RF
- Beam Diagnostics
- Results and Prospects

ERL at Cornell

- Phase I: Build, test injector, LINAC modules; resolve machine issues. Engineering studies for Phase II (in process; \$30M NSF & NY State)
- Phase II: Build a high energy (5 GeV) ERL x-ray facility at Cornell as an upgrade to CESR. (5 year construction, no funding yet)

ERL Injector Prototype

Parameters:

- 100 mA avg current (5 MeV)
- 33 mA avg current (15 MeV)
- 77 pC / bunch at 1.3 GHz
- < 2 μm emittance
- < 2-3 ps bunch length

Demonstrate:

- Cathode longevity
- Low emittance
- $\mathsf{RF}\ \mathsf{controls}$
- Parameter sensitivity

reliability

Oct 1, 2008

The Photoemission DC Electron Gun

DC Photocathode Gun Design

Basic design has been used in GaAs polarized electron sources for decades (@ 100 kV).

Photoemission from GaAs

GaAs is still our cathode of choice . . .

- good quantum efficiency (QE)
- low thermal emittance (cold)
- fast time response (@520 nm)

But . . .

- need extreme UHV (< 1x10⁻¹¹ Torr)
- limited lifetime
- minimum thermal emittance near bandgap (where the QE is lowest)
- thermal emittance degrades at higher QE
- ... We are willing to try other cathodes

Oct 1, 2008

Insulator Design

- •Large size to keep field gradients low
- •Field emitted electrons can build up on the insulator and punch thru
- •External SF₆
- •High mechanical stresses due to SF₆ pressure and bakeouts
- •Difficult to find suppliers
- •Braze difficulties due to large size

Manufactured by CPI, Beverly, MA

Maximum voltage so far 440kV. Operating at 250-300 kV now until a spare is obtained

Oct 1, 2008

750 kV HV power supply

750 kV, 100 mA supply Kaiser Systems, Beverly, MA

Custom floating ammeter to measure field emission current during processing

Oct 1, 2008

Fiber Laser Description

For a 10% QE cathode, one needs ~2 Watts to reach 100 mA

Cornell University Laser Shaping - Beer Can Distribution

Gun Characterization

Beamline for characterizing the phase space from the gun

Oct 1, 2008

The RF and Superconducting RF Systems

Oct 1, 2008

- High RF power transfer to beam for acceleration of high current beam ⇒ input coupler challenge: 1 MeV per cavity * 0.1 A = 100 kW
- High beam loading needs to be compensated very accurately for injectors ⇒ RF control challenge.
- Emittance preservation ⇔ reduce beam-cavity interaction effects, small transverse kick fields, high RF field stability.
- Strong damping of HOMs (monopole, dipole and quadrupole) is essential for emittance preservation and to reduce monopole HOM power.
- CW cavity operation at higher fields \Rightarrow cryogenic power \Rightarrow cryostat design challenge.

ERL injector cryomodule

Injector cavity parameters

cavity frequency	1300 MHz	
cells per cavity	2	
R/Q per cavity	222 Ω	
acc. voltage per cavity	1 to 3 MV	
acc. gradient	4.6 to 13.8 MV/m	
Q ₀	> 1·10 ¹⁰	
Q _{ext}	> 4.6·10⁴ to 4.1·10⁵	
active cavity length	0.218 m	
total cavity length	0.536 m	

Oct 1, 2008

SRF and RF installation

Cryomodule installed at the ERL injector

Klystron gallery

Oct 1, 2008

Cavity	CW	Limit	Pulsed	Limit
1	2.8 MV	Cryogenics	4.35 MV	IC
2	2.9 MV	IC	3.75 MV	IC
3	3.5 MV	Cryogenics	3.66 MV	IC
4	3.4 MV	Cryogenics	4.15 MV	Quench
5	3.5 MV	none	5.20 MV	IC
All 5	2.4 MV/12 MV total	Cryogenics		

Beam Diagnostics and Beam Dump

Diagnostics

A-line: Full phase space characterization

emittance measurement slits (EMS), bpm's, flying wire, deflection cavity, energy spread, viewers

B-line: Merger studies (low average power)

emittance measurement slits, bpm's, viewers

C-line: phase and energy spread/stability, bunch length

THz interferometer, flying wire, bpm's, viewers

Oct 1, 2008 B. Dunham

Beam Dump

Beam Dump undergoing e-beam welding, manufactured by Metalex, Inc. Due to ship this week

Up to 500 kW average power in the beam for the Phase 1 injector, probably need 1.5 MW for the final ERL design

Before reaching the dump, the 1 mm dia, 500 kW beam is expanded and rastered to reduce the instantaneous power load. Aluminum is used to minimize neutron production

- All construction (except for dump and final shielding) is complete
- RF and SRF commissioning nearly complete
- Diagnostics commissioning is underway
- Beam through all beamlines, 5 MeV, 50 uA max
- All components ready for 100 mA
- Phase space measurements to begin soon

Acknowledgements

This work is supported by NSF PHY-0131508

Industrial Partners:

Communication and Power Industries (CPI) - DC Gun and RF couplers

e2V - 100 kW klystrons

Accel - HOM loads

Kaiser Systems - 750 kV power supply

Metalex - 500 kW beam dump

Myer Tool - Cryomodule

Pritel - Laser oscillator

Oct 1, 2008

The next ERL workshop is in Ithaca, NY

Coupler design highlights

Design features:

- Design derived from the TTF-III coupler
- The cold part was completely redesigned using a 62 mm, 60 Ohm coaxial line for stronger coupling, better power handling and avoiding multipacting
- □ Antenna tip was enlarged and shaped for stronger coupling
- □ "Cold" window was enlarged to the size of "warm" window
- Outer conductor bellows design was improved for better cooling (added heat intercepts)

Manufactured by CPI, Beverly, MA

HOM load design

Total # loads	3 @ 78mm + 3 @ 106mm
Power per load	26 W (200 W max)
HOM frequency range	1.4 – 100 GHz
Operating temperature	80 K
Coolant	He Gas
RF absorbing tiles	TT2, Co2Z, Ceralloy

2 proto-types fabricated at Cornell 6 production loads fab'ed by ACCEL

- Beam position resolution: 10 μ m (spec)
- Energy spread resolution: 10⁻⁴
- Transverse beam profile resolution: 30 μ m (viewscreens)

10 μ m (slits)

30 μm (flying wire)

- Angular spread resolution: 10 μrad
- Pulse length (deflecting cavity&slits): 100 fs
- RF phase angle: 0.5°

Ability to take phase space snapshots of the beam, both transverse planes, and longitudinal phase space