

Stanford Linear Accelerator Center

Commissioning of the LCLS Linac

Henrik Loos for the LCLS Commissioning Team

3 October 2008 LINAC 08 Henrik Loos loos@slac.stanford.edu

Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing linac

Injector (35°) at 2-km point

Existing 1/3 Linac (1 km) (with modifications)

New e⁻ Transfer Line (340 m)

Hall

Extorer Ime

1.5-15 Å

Transport Line (200 m) Near Experiment Hall

Commissioning Highlights

- Done: Injector commissioning & Phase II commissioning
- Great drive-laser uptime (99%) and performance
- Projected emittances 0.7-1.6 µm near linac end
- Routine 30-Hz e⁻ to 14 GeV (~24/7 with ~90% up-time)
- BC1 dipoles & chicane motion fixed!
- BC2 compression fully demonstrated
- CSR effects measured and agree with codes
- Cathode replaced and design QE achieved
- Many beam & RF feedback systems running well
- Coherent OTR compromises most screens
- Electron beam bright enough for 1.5-Å FEL

- 2 Transverse RF cavities (135 MeV & 5 GeV)
- ~120 BPMs and toroids (75 more coming)
- **7** YAG screens (at $E \le 135$ MeV)
- 9 OTR screens at $E \ge 135$ MeV (3 more coming at 14 GeV)
- 11 wire scanners (each with x & y wires, with 4 more coming)
- CSR/CER pyroelectric bunch length monitors at BC1 & BC2
- 3 beam phase monitors (2856 51 MHz, 1 more coming)
- Gun spectrometer line + injector spectrometer line

YAG screens
OTR screens
Wire scanners
Phase monitors

Injector Drive Laser Cathode Laser Spot **Temporal Pulse Shaping** 1400 0.6 1200 0.4 1000 0.2 (m< 800 y (mm) 0 Signal 600 -0.2 τ_{STD} = 2.60 ps 400 τ_{FWHM} = 6.64 ps -0.4 200 -0.6 0└ -8 -2 -0.5 0.5 -6 0 2 6 0 -4 4 Time (ps) x (mm) Shaping with iris Ø1.2 mm Shaping with DAZZLER

S. Gilevich, G. Hays, P. Hering, A. Miahnahri, W. White

8

Laser Cleaning and New Cathode

Cathode Quantum Efficiency

Design and Achieved Parameters

	Design	Typical measured	Unit
Repetition Rate	120	30	Hz
Energy	13.6	13.6	GeV
Charge	1	0.25	nC
Bunch length	20	8-10	μm
Peak Current	3	3	kA
Projected emittance (injector)	1.2	0.7-1	μm
Slice emittance (injector)	1	0.6	μm
Projected emittance (linac end)	1.5	0.7-1.6	μm
Laser energy	250	20-150	μJ
Gun field at cathode	120	115	MV/m
Cathode quantum efficiency	6	0.7-7	10 ⁻⁵

Injector Emittance Commissioning

Emittance measured at OTR screen with upstream quad scan for 95% charge

Iterative Optimization with gun solenoid & quads, steering correctors, and matching to design Twiss

For 1 nC γε_x= 1.07 μm γε_y= 1.11 μm

3 October 2008 LINAC 08

Henrik Loos loos@slac.stanford.edu

Low Charge Time Slice Emittance

3 October 2008 LINAC 08 Henrik Loos loos@slac.stanford.edu

Bunch Compression in BC2

LINAC 08

CSR Emittance Growth in BC2

120

Good agreement with Elegant
simulationConfirms 100% projected
emittance growth at operating
point -24.7 mm R56Slice emittance not effected at
operating pointAlso measured CSR energy
loss and emittance growth after

Measured 100 Elegant 80 $\sigma_{\rm s}$ (µm) 60 40 20 0 Measured 5 Elegant projected Elegant slice 4 $\gamma \varepsilon_{\chi}(\mu m)$ 3 2 0∟ -35 -30 -25 -20 -15 -10 -5 0 BC2 R56 (mm) Y. Ding, Z. Huang

BC1

Laser & Electron-Based Feedback Systems

Transverse Loops Stabilize:

- Laser spot on cathode
- Gun launch angle
- Injector trajectory
- X-band cavity position
- Linac trajectory (2)
- Undulator traj. (future)

Longitudinal Loops Stabilize:

- DL1 energy
- BC1 energy
- BC1 bunch length
- BC2 energy
- BC2 bunch length
- Final energy

Normalized Phase Space Centroid Jitter

3 October 2008 LINAC 08

Coherent Radiation Observations

OTR of uncompressed beam DS of DL1

Scan dispersive quad \rightarrow change $R_{51} \neq 0$ Washout of micro-bunching time structure Spectrum of OTR & COTR Gain factor for longitudinal space charge instability agrees with theory assuming 3 keV energy spread

Henrik Loos loos@slac.stanford.edu

3 October 2008 LINAC 08

17

COTR Transverse Distribution

Observations for highly compressed beams after BC1 & BC2	Fully transverse coherent micro-structure explains doughnut shape
Little resemblance of transverse distribution of COTR to electron beam	Light intensity increases up to 10 ⁵ Destructive interference creates hole in
Light intensity increases up to 10 ⁵	beam center

Ultra Short Low Charge Bunch Mode

Utilize high brightness injector beam at 20 pC for ultra short electron and x-ray beam

Initial experiment Small CSR increase to from 0.2 µm to 0.4 µm at max compression 1 µm bunch length supported by COTR enhancement of 10⁴ at max compression

Elegant Simulations Bunch length 0.8 µm (max compr.) – 1.4 µm (over compr.) Up to 4 kA peak current

FEL Simulations at 1.5 Å 3.6·10¹¹ photons 300 GW power during 2 fs x-ray pulse

Y. Ding, Z. Huang

3 October 2008

Henrik Loos loos@slac.stanford.edu

Emittance Near End of Linac Over Weekend

Electron Beam Reaches Brightness for 1.5 Å

Gain length and saturation power calculated from measured electron beam parameters

3 October 2008 LINAC 08

LCLS Installation and Commissioning Time-Line

LCLS Commissioning Team

R. Akre A. Brachmann F.J. Decker Y. Ding D. Dowell P. Emma J. Frisch S. Gilevich G.R. Hays Ph. Hering Z. Huang

R. Iverson C. Limborg-Deprey H. Loos A. Miahnahri S. Molloy H.-D. Nuhn D. Ratner J. Turner J. Welch W. White J. Wu