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Outline

B What & Why ? Concept & Motivations for the Model Driven Accelerator

B \What we need ? Requirements to Realize the Model Driven Accelerator

B \What we have done ? Developments along three major axes
- Realistic 3D Beam Dynamics Code
- Appropriate Optimization Tools (Applicable to real machines)
- Large Scale Parallel Computing

B \What we need to do ? Further Developments
-Alot ...

B Summary




Model Driven Accelerator: Concept & Motivations

B The Concept: Use a computer model to fully support real-time accelerator
operations.

B Present Situation: No accelerator in the world can fully rely on a
computer model for its operations.

B Possible Reasons: Discontinuity between the design and operations phases
- Design and simulations assume almost perfect conditions.
- Elements specs are usually different from their original design.
- Not enough diagnostics to characterize the machine.

B Consequences: Delay in commissioning and low machine availability.
- Simulations cannot reproduce the measured data.

- A lot of work to deliver the first beam during commissioning.

- A lot of time spent on beam tuning/retuning during operations.




Model Driven Accelerator: Concept & Motivations

B For Example: RIA / FRIB Cannot afford “manual” operations ...

- Primary beams: p to U, from 200 MeV/u to 600 MeV/u
- Secondary beams: all over the map ...

> Need a realistic computer model for the machine to support commissioning
and operations

B The Benefits:

- Fast tuning for the desired beam conditions.

- Fast retuning to restore the beam after a failure.
- Increase the availability of the machine.

- Reduce the operating budget.

B The Means:

- A realistic 3D model of the actual machine.
- Fast turn-around optimizations to support decision making.
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Realization of the Model Driven Accelerator: What we need ?

> Need a realistic 3D beam dynamics code with the appropriate set of
optimization tools and large scale parallel computing capability.

B Why a beam dynamics code ?
- More realistic: 3D fields including fringe fields and SC calculations
- More detailed: Beam halo, beam loss, ...
- Produce detector-like data: Profiles, distributions, ...

B Why more optimization tools ?

- Optimization tools are needed not only in the design phase but also to tailor
the model to the actual machine to be used for real-time operations.

B Why large scale computing ?

- Optimizations of large number of parameters with a large number of particles
for large number of iterations require large scale computing.

» The beam dynamics code TRACK is being developed at Argonne to meet
these requirements.
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1- A Realistic Beam Dynamics Code




The Beam Dynamics Code: TRACK

» TRACK Main Features

B A wide range of E-M elements with 3D fields

B End-to-end simulations from source to target

B Simultaneous tracking of Multiple charge states heavy ion beams

B Interaction of heavy ion beams with strippers

B Automatic transverse and longitudinal beam tuning

B Error simulations for all elements: Static and dynamic errors

B Realistic correction procedure: Transverse and Longitudinal

B Simulations with large number of particles for large number of seeds
B Beam loss analysis with exact location of particle loss

» Recent Updates

B Possibility of fitting experimental data: beam profiles, ...

B H- Stripping: Black body, Residual gas and Lorentz stripping

B The design and simulation of electron linacs

B Parallel version is fully developed with good scaling up to 32K processors
B Possibility of simulating the actual number of particles in a bunch




TRACK: Extensive List of Supported Elements

B Any type of RF resonator (3D fields)

M Static 10n optics devices (3D fields)

B Radio-Frequency Quadrupoles (RFQ)

B Drift Tube Linacs (DTL)

B Coupled Cavity Linacs (CCL)

B Solenoids with fringe fields (model and 3D fields)
B Bending magnets with fringe fields (model and 3D fields)
M Electrostatic and magnetic multipoles

B Multi- Harmonic Bunchers (MHB)

B Axial Symmetric electrostatic lenses

B Entrance and exit of HV decks

B Accelerating tubes with DC voltage

B Transverse beam steering elements

B Stripping foils or films for heavy-ion beams

B Horizontal and vertical jaw slits

» TRACK was heavily used in the design and simulations of the RIA/FRIB
and FNAL-PD linacs and recently in the simulation of the SNS linac.




TRACK Application: Design and Simulations of the FRIB Linac

Injector: Two options w/wo MHB Error simulations: Before and after Corrections
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TRACK Application: Design and Simulations of the FNAL-PD

Error simulations: 100 seeds, 1M particles each Beam Emittances: before and after RF errors
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TRACK Application: End-to-end Simulation of the SNS Linac

Linac simulations from MEBT to HEBT
Envelopes: rms, max Emittances: 4*rms

RFQ Simulations

Envelopes: rms, max Emittances: 4*rms
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TRACK Application: Design and Simulations of an electron linac

Layout of a linac for a future X-Ray FEL Oscillator

v
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1- RF cavity with thermionic cathode, 100 MHz, 1 MV; 2- chicane and
slits; 3- as an energy filter; 4- quadrupole triplet; 5- focusing solenoid;
6- monochromator of the beam energy, =600 MHz; 7- buncher, =300
MHz; 8- booster linac section, f=400 MHz; 9- RF cosine-chopper to form
rep. rate 1 MHz to 100 MHz; 10- bunch compressor — I; 11- SC linac
section, 460 MeV, f=1300 MHz; 12- bunch compressor — 11;

13- initial section of the SC linac, f=1300 MHz.

Beam Simulations

100 MHE 1.0 MV
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> See Paper TUP117, P. Ostroumov et al.
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2- Appropriate Optimization Tools




Optimization Tools: Different tools for different phases

An accelerator project may be sub-divided into three phases, namely the design,
commissioning and operations phases. The optimization needs are different for the
different phases.

Design: Optimize the design parameters for different design options to produce a
robust and cost-effective design = Fit for the best general beam properties

Commissioning: Tailor the computer model to the actual machine by reproducing the
experimental data at beam diagnostic points = Fit the data

Operations: Use the computer model to retune the machine or to rapidly restore the
beam after a failure with limited beam loss = Fit element settings for desired beam
conditions

The computer model needs to be tailored to the actual machine during
commissioning to be used for real-time operations.




Example of Optimization Tools Developed for TRACK

B Automatic transverse and longitudinal tuning of a multiple charge state
heavy 1on beam 1in a given linac section by varying focusing field strengths,
RF phases and amplitues: ~ 100 or more parameters.

B Automatic longitudinal fine tuning to reduce the longitudinal emittance of a
multiple charge state beam before a stripper to reduce beam loss in the
following section.

M Realistic corrective steering based on beam center measurements.

B Fit experimentally measured beam profiles to extract the beam parameters
(emittances and Twiss parameters) at a given point to use for further
simulations.

B Find element settings in an achromatic transport system to produce
symmetric beam dynamics.

» More optimization tools are under development ...




Automatic Transverse Tuning: Application to RIA/FRIB Linac

B Purpose: Tune the linac for a given beam and
produce smooth transverse beam dynamics.

B Method: Minimize the fluctuations in the RMS
beam sizes along the considered section.

i 0 2 i 0 2
B Fit Function: F=X?ms+ZiM+Y&S+ZM

X rms Yims

where Xroms and Yr?ns are the RMS beam sizes at
the entrance of the section or after the first focusing
period, the sum index i runs over the focusing
periods in a given section and €xms and &vims are
the allowed errors on the RMS beam sizes.

B Fit Parameters: Field strengths in focusing
elements

B This method is general and should produce good
results for both periodic or non periodic
accelerating structures.
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X- and Y-rms beam sizes before and after applying
the automatic transverse tuning procedure.

The beam is a two-charge state uranium beam

in the first section of the RIA/FRIB driver linac.

‘/A similar procedure was developed to produce
smooth longitudinal envelopes by fitting the RF
cavities field amplitudes and phases.

» Developed and used for design
optimization this procedure could very well
be applied to a real machine using beam
profile measurements to reduce beam
mismatch.
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Longitudinal fine tuning: Minimize Emittance at the Stripper

B Purpose: Tune a linac section to minimize the
logitudinal emittance of a multiple charge state
beam right before stripping.

B Method: Match the longitudinal beam centers and
Twiss parameters of the different charge state
beams:

Waqo = W o, AW4i — 0; Aghi = 0; i — 0; foi — min
B Fit Function:

_ (WqO -W 0)2 Aquz A¢1i2 Clqi2 )
F= g; +Zqi giw +Zqi gz¢ +Zqig_2+2qiﬂq'

where Wo is the desired beam energy and &y, is
the corresponding error.

Eaw > Eng0 €, are the allowed errors on the relative
energy, phase and ¢ shifts of the individual charge
state beams from the central beam.

B Fit Parameters: RF cavities field amplitudes and
phases.

» Measuring the energy and phase of
individual charge states, we should be able
to match their beam centers, ...
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Realistic Corrective Steering: Front-end of FNAL-PD

Virtual monitors and correctors are used & Beam centers and angles
Corr Corr Corr Corr Mf” Corr Corr before and after corrections
Correctors field strengths
Mon Mon | | - | | | | 160 ‘»EAD::;ES uéi%é
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The number and locations of monitors and
correctors are varied until a reasonable Sensitivity to monitors errors: 10, 30 and 100 p

correction scheme is obtained. : , ,

> Design: the procedure was used to g dmme 2T F ke T T e
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Operations of a Multi-Q Injector: Fit Data & Find Settings

TRACK fit of measured profiles to extract the Measured beam profiles at the end
initial beam parameters at the source. of LEBT: left: horizontal, right: vertical.
TRACK fit to find the quads setting to ok oSO R S S
recombine the two charge state Bi-209 beams at xem . vem
the end of the LEBT. Pepper-Pot images: Bi1-209 beams
left: 20+&21+
e oEmmmmmmatesscs o right: 20+: blue, 21+:red.
e e e e = S DO
mm TI1T1 _::..., TTITT _EE_“_ =g T aevevenas e aveovve s
i | EEF] AN et dddobl *N8800890 0
= _ Co 800009000 . S88sstv00.
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- » Such a perfect recombination was not

g — 1 O B possible without a realistic simulation.

» See Paper TUP118, P. Ostroumov et al.




3- Large Scale Parallel Computing




The Parallel Beam Dynamics Code: P-TRACK

Parallel Algorithm Parallel Models for Poisson’s Equation
Main Sequence New sequence
em— i m— 1D Model 2D Model

| Charge deposition on SC grid ‘
[ Partial SC on each processor |————————={ Sum-up partial SC’s for full SC |
[ Distribute full SC data to N local SC grids ]
Y y
| Parallel Poisson Solver |
' 7
| Solution (Potential) on local SC grids | z

Full Potential data on each processor }4—{ Collect local Potential data to global grid ]

— | \‘ 3D Model

_ Next Tracking step Cylindrical
B No load balance issues once the particles are
equitably shared among processors
B Very good scaling expected for very large number
of particles. v
B Full external field table and SC grid on every )}X
processor: possible memory limitation on some 0

systems.
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Scaling of P-TRACK with large number of processors

B TRACK scaling with number of processors on different platforms.
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B TRACK weak and strong scaling on the Blue-Gene machine at Argonne

CPU | Time/cell | Particle # | Parallel
(s) Efficiency

256 | 384 55M 100%

512 | 384 110M 100%

1024 | 388.7 220M 98.8%

2048 | 400.6 440M 95.8%

4096 | 385 880M 99%

Strong scaling for 110 M particles

CPU [ Time/cell | Ideal Time | Parallel
(s) (s) Efficiency
512 | 384 384 100%
1024 | 225 192 85.3%
2048 | 107 96 89.7%
4096 | 63 48 76.1%




One to One RFQ Simulation: ~ 1 B particles

B Simulated the actual number of particles in 45 mA proton beam at 325 MHz accelerated in a
RFQ from 50 keV to 2.5 MeV = 865 M particles on 32768 processors.

B Benefits of simulating a large number of particles: actual number if possible
- Suppress noise from the PIC method: enough particles/cell
- More detailed simulation: better characterization of the beam halo

10 10 10
g M g | 10M 8
6 6 6
~ 4F ~ 4F ~ 4F
S 2f S 2f S 2}
2 0F 2 of 2 0F
e e e
-6 -6 | -6 |
8 F 8| 8|
0 g 1 g 1
-100 0 100 -100 0 100 -100 0 100
A¢ (deg)
3D beam: 100M
Phase space plots
for 865 M protons
after 30 cells in the
RFQ.
(X, x7) ¥, ¥") (AQ, AW/W)




Large Scale Error Simulations: 10 M particles / seed

B Simulated machine errors with 10M particles per seed in the FNAL-PD linac:
- ~ 2000 elements, 1.7 km long
- misalignment errors and (1%, 1 deg) RF errors
- includes H- stripping: Black body, residual gas and Lorentz stripping.
B Benefits of simulating a large number of particles/seed:
- Study beam loss to the lowest possible level.

Envelopes RMS emittances Beam loss
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Future Developments

B So far, the developed optimization tools were used only offline with the serial
version of TRACK -2 Very time consuming.

B To be used online for real-time machine operations we should be able to
perform large scale optimizations on large number of processors.

B The parallel version of TRACK is now ready, parallel optimizations are
under development: New algorithms are being investigated.

B Develop more tools for the commissioning phase to tailor the computer
model to the actual machine by fitting the measured data.

B Develop interfaces between the beam diagnostic devices and the beam
dynamics code - Calibrate and analyze the data to input to the code.

B Numerical experiments may be used to test the tools before implementation
into the real machine = Produce detector-like data from the code.

B Application to existing facilities ...




Summary

B Developing a realistic computer model to support real-time accelerator
operations should significantly improve its availability and reduce its
operating cost.

B The realization of this concept of model driven accelerator requires a realistic
3D beam dynamics code with the appropriate set of optimization tools and
large scale parallel computing capabilities.

B The beam dynamics code TRACK is being developed at Argonne to meet
these requirements.

B Different optimization tools are needed for the different phases of an
accelerator project, namely the design, commissioning and operations.

B For a new machine we should take advantage of the commissioning phase to
bridge the gap between the original design and the actual machine by
tailoring the computer model to the machine.

B More developments are needed to realize the model driven accelerator.




Suggestions to the lon Linac Community

B Comparing data to simulations should be a routine = Push harder to
understand the differences ...

B Start thinking of developing realistic computer models for your high intensity
linacs = Reduce beam loss and improve the machine availability

B Future projects:
- Use more diagnostics or at least don’t cut to fit the budget ...

- Try to avoid long structures where you can’t insert diagnostic devices
- Include a large scale computing facility to your project

B More diagnostic development 1s needed:
- Transverse: Peak & Tail, 2D Profiles, Correlated 4D, ...
- Longitudinal: Better precision: Bunch length detectors, TOF systems...

- May be invent a device that can do 6D at one shot ? Ha, Ha, Ha, ...




