A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  


Paper Title Other Keywords Page
MOP010 A Fast Chopper for the Fermilab High Intensity Neutrino Source (HINS) linac, vacuum, high-voltage, simulation 73
  • R.L. Madrak, D. Wildman
    Fermilab, Batavia
  • A.K.L. Dymokde-Bradshaw, J.D. Hares, P.A. Kellett
    Kentech Instruments Ltd., Wallingford, Oxfordshire

A fast chopper capable of kicking single 2.5 MeV H- bunches, spaced at 325 MHz, at rates greater than 50 MHz is needed for the Fermilab High Intensity Neutrino Source (HINS). Four 1.2 kV fast pulsers, designed and manufactured by Kentech Instruments Ltd., will drive a ~0.5m long meander made from a copper plated ceramic composite. Test results showing pulses from the prototype 1.2 kV pulser propagating down the meander will be presented.

MOP024 Low Energy Spread Beam Dynamics and RF Design of a Trapezoidal IH-RFQ rfq, cavity, bunching, ion 115
  • Y.R. Lu, J.E. Chen, J.X. Fang, S.L. Gao, Z.Y. Guo, K.X. Liu, Y.C. Nie, X.Q. Yan, K. Zhu
    PKU/IHIP, Beijing

Funding: Supported by NSFC (10775009)
The methodology for low energy spread RFQ beam dynamics design has been studied for 14C+ AMS application. This paper will present a low energy beam dynamics and rf design for a new trapezoidal IH-RFQ. It will accelerate 14C from 40 keV to 500 keV with the length of 1.1 m; operate at 104 MHz with the rf peak power less than 27 kW. The transmission efficiency is better than 95% and the energy spread is as low as 0.6%. The rf structure design and its rf efficiency have been studied by electromagnetic simulation. It shows such trapezoidal IH-RFQ has higher operating frequency than normal IH-RFQ, and it will have more longitudinal accelerating efficiency.

MOP090 Scattering Matrix Simulations of Fields and Dispersion Relations in Superconducting Cavities for XFEL and ILC scattering, coupling, cavity, simulation 287
  • R.M. Jones, I.R.R. Shinton
    UMAN, Manchester

The globalised scattering matrix (GSM) method provides an efficient means of obtaining the electromagnetic field in interconnected multi-cavity structures. In the proposed XFEL at DESY and the ILC facilities, energetic electron beams can readily excite higher order modes which if left unchecked can dilute the emittance of the beams. The GSM in conjunction with finite element modelling of the scattering matrices of the linac cavities is used to enable the characteristic eigenmodes to be rapidly obtained and the potential for trapped modes is investigated. This characteristic eigensystem allows the wakefield experienced by the beam to be analysed and the consequences on beam quality ascertained. The impact of fabrication errors on the transverse electromagnetic field and corresponding resonant frequencies of the modes is also explored in detailed simulations.

MOP102 Electron Beam Dynamics in the DARHT-II Linear Induction Accelerator electron, induction, dipole, focusing 311
  • C. Ekdahl, E.O. Abeyta, P. Aragon, R.D. Archuleta, G.V. Cook, D. Dalmas, K. Esquibel, R.J. Gallegos, R.W. Garnett, J.F. Harrison, E.B. Jacquez, J.B. Johnson, B.T. McCuistian, N. Montoya, S. Nath, K. Nielsen, D. Oro, L.J. Rowton, M. Sanchez, R.D. Scarpetti, M. Schauer, G.J. Seitz, H.V. Smith, R. Temple
    LANL, Los Alamos, New Mexico
  • H. Bender, W. Broste, C. Carlson, D. Frayer, D. Johnson, C.-Y. Tom, C.P. Trainham, J.T. Williams
    NSTec, Los Alamos, New Mexico
  • T.C. Genoni, T.P. Hughes, C.H. Thoma
    Voss Scientific, Albuquerque, New Mexico
  • B.A. Prichard, M.E. Schulze
    SAIC, Los Alamos, New Mexico

Funding: Work supported by USDOE under contract DE-AC52-06NA25396
The DARHT-II linear induction accelerator (LIA) accelerates a 2 kA electron beam to more than 17 MeV. The beam pulse has a greater than 1.5-microsecond flattop region over which the electron kinetic energy is constant to within 1%. The beam dynamics are diagnosed with 21 beam-position monitors located throughout the injector, accelerator, and after the accelerator exit, where we also have beam imaging diagnostics. I will discuss the tuning of the injector and accelerator, and I will present data for the resulting beam dynamics. Beam motion at the accelerator exit is undesirable for its application as a bremsstrahlung source for multi-pulse radiography of explosively driven hydrodynamic experiments. I will discuss the tuning procedures and other methods we use to minimize beam motion, and to suppress the beam-breakup (BBU) and ion-hose instabilities*.

*"Long-pulse beam stability experiments on the DARHT-II linear induction accelerator", Carl Ekdahl, et al., IEEE Trans. Plasma. Sci. Vol. 34, 2006, pp. 460-466.

TUP057 Design and Fabrication of CLIC Test Structures damping, HOM, accelerating-gradient, wakefield 533
  • R. Zennaro, A. Grudiev, G. Riddone, A. Samoshkin, W. Wuensch
    CERN, Geneva
  • T. Higo
    KEK, Ibaraki
  • S.G. Tantawi, J.W. Wang
    SLAC, Menlo Park, California

Demonstration of a gradient of 100 MV/m at a breakdown rate of 10-7 is one of the key feasibility issues of the CLIC project. A high power rf test program both at X-band (SLAC and KEK) and 30 GHz (CERN) is under way to develop accelerating structures reaching this performance. The test program includes the comparison of structures with different rf parameters, with/without wakefield damping waveguides, and different fabrication technologies namely quadrant bars and stacked disks. The design and objectives of the various X-band and 30 GHz structures are presented and their fabrication methods and status is reviewed.

THP024 Initial Study on the Shape Optimisation of the CLIC Crab Cavity cavity, dipole, beam-loading, coupling 833
  • P.K. Ambattu, G. Burt, R.G. Carter, A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster
  • R.M. Jones
    UMAN, Manchester
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire

The CLIC linear collider will require a crab cavity to align bunches prior to collision. Consideration of the bunch structure leads us to favour the use of X-band copper cavities. Due to the large variation of train to train beam loading, it is necessary to minimise the consequences of beam loading. One solution is to use a travelling wave structure with a large group velocity allowing rapid propagation of amplitude errors from the system. Such a design makes this structure significantly different from previous travelling wave deflecting structures. This paper will look at the implications of this on other cavity parameters and the optimization of the cavity geometry.

THP040 A New TEM-Type Deflecting and Crabbing RF Structure cavity, simulation, vacuum, damping 873
  • J.R. Delayen, H. Wang
    JLAB, Newport News, Virginia

Funding: Supported by US DOE Contract No. DE-AC05-06-OR23177
A new type of rf structure for the deflection and crabbing of particle bunches is introduced. It is comprised of a number of parallel TEM-resonant lines operating in opposite phase from each other. One of its main advantages is its compactness compared to conventional crabbing cavities operating in the TM110 mode, thus allowing low frequency designs. The properties and characteristics of this type of structure are presented.

THP049 Optimization of Spiral-Loaded Cavities Using the 3D Code OPERA/SOPRANO cavity, resonance, simulation, insertion 900
  • M. Schuh
    CERN, Geneva
  • K.-U. Kühnel, C.P. Welsch
    MPI-K, Heidelberg
  • M. Schuh
    GSI, Darmstadt

Rebunching cavities are today routinely used for matching a beam of charged particles between different accelerator structures, and thus optimizing the overall transmission and beam quality. At low resonance frequencies, unnecessary large dimensions of these cavities can be avoided by using spiral-loaded cavities. The optimization of these structures is a complicated process in which a wide range of different parameters have to be modified essentially in parallel. In this contribution, we investigate in detail the characteristics of a model structure with the 3D code OPERA/SOPRANO. This includes the optimization of the structure in terms of the spiral geometry for a given resonance frequency, the investigation of power losses on the inner surfaces, and the possibility of cavity tuning by means of a tuning cylinder.

THP058 Accelerating Structure for C-Band Electron Linear Accelerator Optimization electron, coupling, vacuum, cavity 921
  • S.V. Kutsaev, A. Anisimov, N.P. Sobenin
    MEPhI, Moscow
  • M.A. Ferderer, A.A. Krasnov, A.A. Zavadtsev
    ScanTech, Atlanta, Georgia

The results of analysis and comparison of different linear accelerator designs for 10 MeV facility powered by 4.5 MW klystron on 5712 MHz operation frequencies presented. Several concepts of accelerator including standing wave and traveling wave ones with either rf or magnetic focusing were considered. Cells geometry and beam dynamics parameters in these types of accelerators featuring high capture factor were obtained using numeric simulation methods. The computer simulation code for traveling wave linac optimization based on beam dynamics with space charge consideration was developed. Accelerating structures and input coupler for traveling wave linac along with standing wave one were designed. The task of energy variation was solved.

THP059 The Cut Disk Structure Parameters for Medium Proton Energy Range coupling, septum, proton, linac 924
  • V.V. Paramonov
    RAS/INR, Moscow

For intense proton beam acceleration the structure aperture diameter should be ~30 mm. With such aperture room temperature coupled cell accelerating structures have the maximal effective shunt impedance Ze at operating frequency ~650 MHz. For this frequency well known Side Coupled Stricture (SCS), Disk and Washer Structure (DAW), Annular Coupled Structure (ACS) have large transversal dimension, leading to essential technological problems. The Cut Disk Structure (CDS) has been proposed to join high Ze and coupling coefficient kc values, but preferably for high energy linacs. In this report parameters of the four windows CDS option are considered at operating frequency ~700 MHz for proton energy range from 80 MeV to 200 MeV. The cells diameter ~30 cm and kc ~0.12 result naturally, but Ze value is of (0.7-0.9) from Ze value for SCS (kc=0.03). Small cells diameter opens possibility of CDS applications for twice lower frequency and structure parameters at operating frequency ~ 350 MHz are estimated too. Cooling conditions for heavy duty cycle operation are considered.


slides icon


THP062 Design of an X-Band Accelerating Structure for the CLIC Main Linac damping, linac, HOM, accelerating-gradient 933
  • A. Grudiev, W. Wuensch
    CERN, Geneva

The rf design of an accelerating structure for the CLIC main linac is presented. The structure is designed to provide 100 MV/m averaged accelerating gradient at 12 GHz with an rf-to-beam efficiency as high as 27.7%. The design takes into account both aperture and HOM damping requirements coming from beam dynamics as well as the limitations related to rf breakdown and pulsed surface heating.

THP064 Development Status of the Pi-Mode Accelerating Structure (PIMS) for Linac4 cavity, coupling, linac, vacuum 939
  • M. Vretenar, P. Bourquin, R. De Morais Amaral, G. Favre, F. Gerigk, J.-M. Lacroix, T. Tardy, R. Wegner
    CERN, Geneva

The high-energy section of Linac4, between 100 and 160 MeV, will be made of a sequence of 12 seven-cell accelerating cavities of the Pi-Mode Structure (PIMS) type, resonating at 352 MHz. Compared to other structures used in this energy range, cavities operating in pi-mode with a low number of cells have the advantage of simplified construction and tuning, compensating for the fact that the shunt impedance is about 10% lower because of the lower frequency. Field stability in steady state and in presence of transients is assured by the low number of cells and by the relatively high coupling factor of 5%. Standardising the linac rf ystem to a single frequency is considered as an additional economical and operational advantage. The mechanical design of the PIMS will be very similar to that of the 352 MHz normal conducting 5-cell LEP accelerating cavities, which have been successfully operated at CERN for 15 years. After reviewing the basic design principles, the paper will focus on the tuning strategy, on the field stability calculations and on the mechanical design. It will also report the results of measurement on a cold model and the design of a full-scale prototype.

THP065 Shunt Impedance Studies in the ISIS Linac linac, DTL, simulation, cavity 942
  • D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon

The ISIS linac consists of four DTL tanks that accelerate a 50 pps, 20 mA H- beam up to 70 MeV before injecting it into an 800 MeV synchrotron. Over the last decades, the linac has proved to be a strong and reliable injector for ISIS, which is a significant achievement considering that two of the tanks are more than 50 years old. At the time the machine was designed, the limited computing power available and the absence of 3D electromagnetic (EM) simulation codes, made the creation of a linac optimized for power efficiency almost impossible, so from this point of view, the ISIS linac is quite simple by today's standards. In this paper, we make a shunt impedance comparison study using the power consumption data collected from ISIS and the results obtained when simulating each of the four DTL tanks with 2D and 3D EM codes. The comparison will allow us to check the accuracy of our simulation codes and models and to assess their relative performance. It is particularly important to benchmark these codes against real data, in preparation for their use in the design of a proposed new linac, which will replace the currently aging ISIS injector.

THP075 X-Band Traveling Wave RF Deflector Structures kicker, emittance, factory, electron 966
  • J.W. Wang, S.G. Tantawi
    SLAC, Menlo Park, California

Funding: Work supported by U.S. Department of Energy, contract DE-AC02-76SF00515 (SLAC)
Design studies on the X-Band transverse rf deflectors operating at HEM11 mode have been made for two different applications. One is for beam measurements of time-sliced emittance and slice energy spread for the upgraded LCLS project, its optimization in rf efficiency and system design are carefully considered. Another is to design an ultra-fast rf kicker in order to pick up single bunches from the bunch-train of the B-factory storage ring. The challenges are to obtain very short structure filling time with high rf group velocity and good rf efficiency with reasonable transverse shunt impedance. Its rf system will be discussed.

THP090 Marx Bank Technology for Accelerators and Colliders high-voltage, controls, collider, diagnostics 1002
  • J.A. Casey, F.O. Arntz, R. Ciprian, M.P.J. Gaudreau, M.K. Kempkes, I. Roth
    Diversified Technologies, Inc., Bedford, Massachusetts

Funding: U.S. Department of Energy SBIR Program
Diversified Technologies, Inc. (DTI) has developed high power, solid-state Marx Bank designs for a range of accelerator and collider designs. We estimate the Marx topology can deliver equivalent performance to conventional designs, while reducing acquisition costs by 25-50%. In this paper DTI will describe the application of Marx based technology to two different designs: a long-pulse ILC focused design (140 kV, 160 A, 1.5 ms), and a short-pulse design (500 kV, 265 A, 3 us). These designs span the known requirements for future accelerator modulators. For the ILC design, the primary challenge is minimizing the overall size and cost of the storage capacitors in the modulator. For the short-pulse design, the primary challenge is high speed operation, to limit the energy lost in the pulse rise-time while providing a very tight (± 3%) voltage flattop. Each design demands unique choices in components and controls, including the use of electrolytic capacitors in the ILC Marx design. This paper will review recent progress in the development and testing of both of these prototype Marx designs, being built under two separate DOE Phase II SBIR grants.

THP098 RF Vector Control for Efficient Fan-Out Power Distribution cavity, controls, linac, coupling 1018
  • Y.W. Kang
    ORNL, Oak Ridge, Tennessee

Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
An algorithm for direct high power rf vector control of fan-out rf distribution using reactive circuit elements is presented. In this approach, rf control is performed for the entire fan-out system with many cavities as one system to maximize the rf power efficiency. Control parameters for a set of required rf voltage vectors in the accelerating cavities are determined and maintained for the whole system. Maximizing rf power efficiency with fan-out power distribution can be valuable for large scale SRF accelerators since construction and operation costs can be saved significantly. If a fan-out system employs a fixed power splitter with high power vector modulators in cavity inputs, the optimum power efficiency especially for a SRF system can not be provided since certain rf power headroom is needed for the vector control at each cavity. In the new fan-out vector control approach, a set of required cavity rf voltages is delivered by adjusting the phase delays between the cavities and the reactive loadings at the cavity inputs. The phase shifts and the reactive loadings are realized with high power rf phase shifters.