A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  


Paper Title Other Keywords Page
MOP024 Low Energy Spread Beam Dynamics and RF Design of a Trapezoidal IH-RFQ rfq, cavity, impedance, ion 115
  • Y.R. Lu, J.E. Chen, J.X. Fang, S.L. Gao, Z.Y. Guo, K.X. Liu, Y.C. Nie, X.Q. Yan, K. Zhu
    PKU/IHIP, Beijing

Funding: Supported by NSFC (10775009)
The methodology for low energy spread RFQ beam dynamics design has been studied for 14C+ AMS application. This paper will present a low energy beam dynamics and rf design for a new trapezoidal IH-RFQ. It will accelerate 14C from 40 keV to 500 keV with the length of 1.1 m; operate at 104 MHz with the rf peak power less than 27 kW. The transmission efficiency is better than 95% and the energy spread is as low as 0.6%. The rf structure design and its rf efficiency have been studied by electromagnetic simulation. It shows such trapezoidal IH-RFQ has higher operating frequency than normal IH-RFQ, and it will have more longitudinal accelerating efficiency.

MOP031 Estimates of Energy Fluence at the Focal Plane in Beams Undergoing Neutralized Drift Compression solenoid, target, induction, emittance 133
  • J.J. Barnard
    LLNL, Livermore, California
  • J.E. Coleman, D. Ogata, P.A. Seidl
    LBNL, Berkeley, California
  • D.R. Welch
    Voss Scientific, Albuquerque, New Mexico

Funding: Work performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at LLNL, and University of California contract DE-AC03-76SF00098 at LBNL.
We estimate the energy fluence (energy per unit area) at the focal plane of a beam undergoing neutralized drift compression and neutralized solenoidal final focus, as is being carried out in the Neutralized Drift Compression Experiment (NDCX) at LBNL. In these experiments, in order to reach high beam intensity, the beam is compressed longitudinally by ramping the beam velocity (i.e. introducing a velocity tilt) over the course of the pulse, and the beam is transversely focused in a high field solenoid just before the target. To remove the effects of space charge, the beam drifts in a plasma. The tilt introduces chromatic aberrations, with different slices of the original beam having different radii at the focal plane. The fluence can be calculated by summing the contribution from the various slices. We develop analytic formulae for the energy fluence for beams that have current profiles that are initially either constant or parabolic in time. We compare with envelope and particle-in-cell calculations. The expressions derived are useful for predicting how the fluence scales with accelerator and beam parameters.

TU204 Design and Performance of L-Band and S-Band Multi-Beam Klystrons cathode, cavity, klystron, gun 369
  • Y.H. Chin
    KEK, Ibaraki

In the last couple of years, great achievements have been realized through world-wide developments of multi-beam klystrons (MBK) in the L-band and S-band. These MBKs are developed by industries such as Toshiba, Thales and CPI for the European X-FEL project or at the Naval Research Lab or by the Chinese Academy of Sciences for high-power, low-voltage radar systems. Some of them are already in operation at full specifications and are commercially available. The MBKs are superior to conventional single-beam klystrons through their ability to increase the output power dramatically while the operating voltage can be kept at a similar level. This talk will review the performances of these multi-beam klystrons, their design features, and future development plans.


slides icon


TUP014 Present Status of the BEPCII Linac linac, injection, positron, electron 419
  • G. Pei
    IHEP Beijing, Beijing

After the major upgrade in 2005, the BEPC injector linac has been commissioning and working smoothly for more than two years. A 2.1 GeV, 66 mA positron beam at the linac end has been obtained, and the highest injection rate into the ring of 80 mA/min. at 50 pps is reached, much higher than the design goal of 50 mA/min. The machine is working stable, the mal function was about 2% in the past two years, including the system test and the commissioning.

TUP019 Injector of Intense Electron Beam electron, simulation, cavity, emittance 431
  • V.V. Mytrochenko, M.I. Ayzatskiy
    NSC/KIPT, Kharkov

The results of beam dynamic simulation in an S-band injector that can be used for creation of the powerful electron linac are presented in the report. The injector consists of a diode electron gun with beam current of up to 2 A at energy of electrons of 25 keV, the klystron type prebuncher and the three cavity buncher. In the buncher, due to the special choice of eigen frequencies of resonators, maximal amplitude of the field on the axis of resonators exponentially increase from the first (downstream of the beam) resonator to the last resonator. It allows effective bunching the intensive electron beam and accelerating it to relativistic velocities. For providing of low transversal beam emittance the injector is placed in the external magnetic field. The injector provides more than 1 A of beam current at particle energies of about 1 MeV. Attention is paid to research of transients and stability of injector work.

TUP047 Manipulating the Two-Stream Instability for Efficient Terahertz Generation electron, radiation, coupling, simulation 504
  • K. Bishofberger, B.E. Carlsten, R. Faehl
    LANL, Los Alamos, New Mexico

Particle beams have exhibited a two-stream instability for many decades; this undesirable trait has been well-understood for many years. We propose creating a scheme that uses a beam of electrons with two distinct energies that will develop the two-stream instability as a bunching mechanism. By controlling the beam parameters and seeding them with a low-level rf signal, a gain as high as 2.5 dB per centimeter is predicted. We show the theory behind this concept and recent progress in a developing experiment.

TUP107 Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors diagnostics, luminosity, wakefield, emittance 655
  • P. Piot
    Fermilab, Batavia
  • A. Bracke, T.J. Maxwell, D. Mihalcea, M.M. Rihaoui
    Northern Illinois University, DeKalb, Illinois
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • J.G. Power
    ANL, Argonne

Funding: Work supported by US. Department of Energy, under Contract No. DE-FG02-06ER41435 with Northern Illinois University.
We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC electron injectors and bunch compressors. Techniques to measure first order moment and recover the first order longitudinal transfer map of the injector intricate bunching scheme are presented. Coherent transition radiation diagnotics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model. We finally introduce a new diagnostics capable of measuring time-transverse correlation along a single bunch. Such a diagnostics should be valuable for controlling emittance dilution via transverse wakefield and for properly setting the crab cavities needed for maximizing luminosity for non-zero crossing angle at the interaction point.