Keyword: target
Paper Title Other Keywords Page
MOYBA01 The Very High Intensity Future linac, ion, proton, heavy-ion 17
 
  • J. Wei
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
This paper surveys the key technologies and design challenges that form a basis for the next generation of very high intensity hadron accelerators, including projects operating, under construction, and under design for science and applications at MW beam power level.
 
slides icon Slides MOYBA01 [7.187 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOYBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOOCA03 Design of High-power Graphene Beam Window scattering, proton, emittance, Windows 45
 
  • H.J. Wang, H.T. Jing, H. Qu, J.Y. Tang
    IHEP, Beijing, People's Republic of China
 
  Beam window is a key device in high-intensity hadron beam applications, and it is usually used to separate air or other gas environments in the end of beam vacuum duct. Compared with the usually-used window materials such as Inconel alloy, Aluminum alloy and so on, the graphene has extremely high thermal conductivity, high strength and high transparency to high-energy ions. With the maturation of large-size graphene manufacturing technology, we have studied this new-type window for MW-class proton beam. The thermal analyses by the theoretical formula and simulations based on FEA are presented in this paper. Simultaneously, the scattering effect and the lifetime are also discussed. The preliminary results are promising. The same material can also be possibly applied to other devices such as charge-exchange stripping foils, beam monitors and so on.  
slides icon Slides MOOCA03 [1.467 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOOCA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO016 NANOPERM® Broad Band Magnetic Alloy Cores for Synchrotron RF Systems synchrotron, damping, acceleration, background 95
 
  • T. Trupp
    MAGNETEC GmbH, Langenselbold, Germany
 
  Recent developments in synchrotron acceleration systems show a demand for broadband MA (Magnetic Alloy) magnetic core loaded cavities with a high field gradient. For many facilities e.g. GSI, CoSY, J-Parc limited installation lengths requires high gradients in the region of 40kV/m. Both requirements rule out ferrite materials due to the lower maximum excitation levels and high Q-value. This request can solely be met by Finemet type cores like NANOPERM® produced by MAGNETEC. In this paper, the statistics of 22 huge cores made of NANOPERM® and measured high frequency properties are shown under free-space (FS) condition and compared with the theoretical expectation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO115 A Low Energy Electron-Scrapersystem for the S-DALINAC Injector electron, linac, acceleration, controls 366
 
  • L.E. Jürgensen, T. Bahlo, C. Burandt, F. Hug, T. Kürzeder, N. Pietralla, T. Schösser, C. Ungethüm
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by DFG through SFB 634
The S-DALINAC is the superconducting linear accelerator of the Institut für Kernphysik at Technische Universität Darmstadt. It delivers an electron beam with energies up to 130 MeV. In order to improve the energy spread and the energy stability of the beam for further acceleration a new scrapersystem has been developed and installed between the 10 MeV injector and the main linac. The system was designed to ensure an energy spread of dE < 10-03. After installation several tests have taken place, the results will be presented in this work.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME045 Overview on the Design of the Machine Protection System for ESS status, neutron, proton, beam-losses 472
 
  • A. Nordt
    ESS, Lund, Sweden
  • A. Apollonio, R. Schmidt
    CERN, Geneva, Switzerland
 
  Scope of the Machine Protection System (MPS) for the European Spallation Source (ESS) is to protect equipment located in the accelerator, target station, neutron instruments and conventional facilities, from damage induced by beam losses or malfunctioning equipment. The MPS design function is to inhibit beam production within a few microseconds for the fastest failures at a safety integrity level of SIL2 according to the IEC61508 standard. These requirements result from a hazard and risk analysis being performed for the all systems at ESS. In a next step the architecture and topology of the distributed machine interlock system has been developed and will be presented. At the same time as MPS seeks to protect equipment it must protect the beam by avoiding triggering false stops of beam production, leading to unnecessary downtime of the ESS facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME047 Comparison of the Results of a Hydrodynamic Tunneling Experiment with Iterative FLUKA and BIG2 Simulations simulation, proton, experiment, collider 479
 
  • F. Burkart, J. Blanco, D. Grenier, R. Schmidt, D. Wollmann
    CERN, Geneva, Switzerland
  • N.A. Tahir
    GSI, Darmstadt, Germany
 
  In 2012, a novel experiment has been performed at the CERN HiRadMat facility to study the impact of a 440 GeV proton beam generated by the Super Proton Synchrotron (SPS), on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed. Iterative FLUKA and BIG2 simulations with the parameters of the actual experiment have been performed. In this paper the results of these simulations will be discussed and compared to the experimental measurements. Furthermore, the implication on the machine protection design for high intensity hadron accelerators as the current LHC and the future High Luminosity LHC will be addressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI002 Design, Manufacture and Operation of the Beam Spoiler for Positron Target Protection positron, electron, alignment, linac 573
 
  • L. Zang, K. Kakihara, T. Kamitani, K. Mikawa, F. Miyahara, T. Suwada
    KEK, Ibaraki, Japan
 
  In order to produce positrons, intensive pulsed electron beam is used to strike on a tungsten target. The energy deposition is distributed non-uniformly over the target, leading to a mechanical stress. As a result of large thermal gradient, the target could be potentially damaged. To avoid the target destruction, the peak energy deposition density (PEDD) in the target should be well below the critical limit (35J/g) based on the SLAC operational experience. With an expected primary electron spot size on the target of the SuperKEKB positron source, the PEDD will exceeds the limit. We will introduce a beam spoiler to enlarge the spot size by multiple scattering in thin beam screen and aluminum plate. It reduces the PEDD down to half of the limit. This paper describes the design of the spoiler and the beam screen system used in the positron beam commissioning of the SuperKEKB positron source started in 2014.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI003 Positron Yield Optimization by Adjusting the Components Offset and Orientation positron, electron, injection, simulation 576
 
  • L. Zang, M. Akemoto, S. Fukuda, K. Furukawa, T. Higo, N. Iida, K. Kakihara, T. Kamitani, T. Miura, F. Miyahara, Y. Ogawa, H. Someya, T. Takatomi, K. Yokoyama
    KEK, Ibaraki, Japan
  • S. Ushimoto
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  In order to keep high luminosity beam collision condition at SuperKEKB, low emittance electron/positron injection and flexible pulse-to-pulse switching of these beam modes are essential requirements. While a primary electron beam strikes on a target to generate positrons, an injection electron beam passes through a small hole besides the target. Since the injection electron orbit should be on axis to avoid emittance growth, the target and the flux concentrator for positron focusing have a few millimeters offset from the axis. This offset positron generation gives significant degradation in the positron yield. In this paper, we will discuss positron yield improvement by proper orientation of the cut-in slit of the flux concentrator which yields un-symmetric field distribution and primary electron incident point. With particle tracking simulation taking three dimensional field distribution into account, an ideal positron trajectory giving optimum yield was found.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI004 SuperKEKB Positron Source Construction Status positron, electron, solenoid, operation 579
 
  • T. Kamitani, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, S. Fukuda, Y. Funakoshi, K. Furukawa, T. Higo, H. Honma, N. Iida, M. Ikeda, E. Kadokura, H. Kaji, K. Kakihara, H. Katagiri, M. Kikuchi, H. Koiso, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, Y. Ohnishi, S. Ohsawa, M. Sato, T. Shidara, A. Shirakawa, M. Suetake, H. Sugimoto, T. Suwada, T. Takatomi, T. Takenaka, M. Tanaka, M. Tawada, Y. Yano, K. Yokoyama, M. Yoshida, L. Zang, X. Zhou
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  The KEKB positron source is under the upgrade for SuperKEKB. The previous positron production target and capture section have been removed and the new system is constructed at a location forty meters upstream to have sufficient energy margin for beam injection to the newly introduced damping ring. A flux concentrator is introduced in the new capture section to make an adiabatic matching system. Large aperture (30mm in diameter) S-band accelerating structures are introduced in the capture section and in the subsequent accelerator module to enlarge the transverse phase space acceptance. The beam focusing system of quadrupoles is also upgraded for a comparable beam acceptance to that of the capture section. This paper reports on the status of the SuperKEKB positron source construction and the preliminary positron beam commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI007 Design and Simulation of a High Intensity Muon Beam Production for Neutrino Experiments. proton, solenoid, emittance, factory 589
 
  • H. K. Sayed, H.G. Kirk, R.B. Palmer, D. Stratakis
    BNL, Upton, Long Island, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  The production process of pions which then decay into muons, yields a muon beam with large transverse and longitudinal emittances. Such beam requires phase space manipulation to reduce the total 6D emittance before it could go through any acceleration stage. The design of the muon beam manipulation is based on Neutrino Factory front end design. In this study we report on a multi objective - multivariable global optimization of the front end using parallel genetic algorithm. The parallel optimization algorithm and the optimization strategy will be discussed and the optimized results will be presented as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI041 Electrons Injectors with Cathode Diameter of 6/15mm and New Cup Energy Input on the Wave E11 for Accelerators cathode, electron, Windows, gun 692
 
  • K.G. Simonov, E.A. Alkhimenko, T.A. Batkova, S.I. Grishin, A.V. Mamontov, G.I. Pravdikovskaya, E.A. Stroykov
    ISTOK, Moscow Region, Russia
  • A.I. Shapovalov
    MRTI RAS, Moscow, Russia
 
  RPC "Istok" has created a number of electron injectors with voltage of 20-60kV and cathode diameter of 6-15mm of diode and triode designs. Injectors use the impregnated cathodes; the injector design allows rapid replacement of cathode assemblies. Injectors have been widely used in linear electron accelerators in Russia and Ukraine, in particular, in the sterilization accelerator center of JSC "MRTI RAS", Moscow, in the accelerator of the Russian Eye and Plastic Surgery Centre, Ufa. Have been proposed new input energy windows on the E11 wave, providing significant levels of transmission of the pulse power at high average power levels. Have been created two types of windows at 10-cm range, in which the ceramic disk made of ecologically clean alumina ceramic with diameter of 103mm and thickness of 13mm is used. In the first type of windows the heat transfer is provided from the peripheral portion, and in the second type of window – both from peripheral and central portions of the ceramic disk. These windows are used in accelerator of FSUE "NIIEFA" (St.Petersburg), installed at Izhora mill for testing the welding seals of atomic reactors and in accelerator of JSC "MRTI RAS".  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI066 External Neutron Source for Research Reactor Based on Linear Accelerator and Beryllium Target neutron, electron, radiation, experiment 754
 
  • V.P. Struev, A.A. Bogdanov, A.G. Golovkina, Yu.V. Kiselev, I.V. Kudinovich, A.I. Laikin, S.M. Rubanov
    KSRC, St. Petersburg, Russia
  • A.G. Golovkina, I.V. Kudinovich
    St. Petersburg State University, St. Petersburg, Russia
 
  Nuclear research reactor “U-3” of Krylov State Research Center was operated as an experimental tool to study a radiation shield of small nuclear power plants, radiation resistance of its equipment including control system elements. Reactor thermal output power is 50 kW. Currently reactor modernization is being carried out, in the framework of which neutron lighting system that consists of a linear electron accelerator “UEL-10D” (10 MeV) and a beryllium target is implemented. At the present time the neutron yield from the target experiments are going on, some obtained experimental results are presented. Optimal target sizes with a view to neutron yield were defined.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI072 Simulation Study of Heavy Ion Beam Injection and Acceleration in the HESR for Internal Target Experiments with Cooling ion, experiment, acceleration, cavity 768
 
  • H. Stockhorst, B. Lorentz, R. Maier, D. Prasuhn, R. Stassen
    FZJ, Jülich, Germany
  • T. Katayama
    Nihon University, Narashino, Chiba, Japan
 
  Recently, the feature of ion beam injection, storage and acceleration assisted by a barrier bucket and cooling has been investigated in the High Energy Storage Ring HESR at the new facility FAIR which will be built at the GSI Darmstadt. A bare uranium beam is injected from the collector ring CR into the HESR at 740 MeV/u*. The simulation studies are now improved to include different injection schemes applying either the barrier cavity or the h = 1 cavity in the HESR. It is outlined how the new 2.5 MeV electron cooler at COSY Jülich or stochastic cooling can support the injection mechanism. The beam preparation for an internal target experiment with cooling is outlined. The acceleration of the ion beam is extended to 5 GeV/u under the mandatory condition of the available cavity voltages and the maximum magnetic field ramp rate in the HESR. The flexibility of the HESR ring lattice is utilized to avoid transition energy crossing during ramping up to 5 GeV/u and to adjust the rings’ frequency slip factor for optimal stochastic cooling. The cooling simulations include the beam-target interaction due to a hydrogen target.
* H. Stockhorst et al., MOPEA018, IPAC13
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI079 Status of SPES Facility for Acceleration of High Intensity Protons and Production of Exotic Beams cyclotron, proton, neutron, ISOL 791
 
  • M.M. Maggiore, A. Andrighetto, M. Calderolla, J. Esposito, P. Favaron, A. Lombardi, M. Manzolaro, A. Monetti, G.P. Prete, L. Sarchiapone, D. Zafiropoulos
    INFN/LNL, Legnaro (PD), Italy
 
  Since 2010 the SPES project has entered in the construction phase at Laboratori Nazionali di Legnaro (LNL) in Italy. The new high power cyclotron is being assembled and tested by BEST Theratronics company in Canada and the installation at LNL site is scheduled for fall 2014. Such machine is able to deliver two simultaneous proton beams in the energy range of 35-70 MeV and 250-500 uA of current and the facility has been designed in order to operate at the same time two different experimental areas. The three main uses of the high power beams are: production of radioactive beams by ISOL technique, production of radioisotopes for research purpose and high intensity neutron beams generation. The configuration of the facility and the further capabilities as multipurpose experimental laboratory will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI090 Beam Distribution Transformation with SFMs at 3MeV C-ADS Beamline linac, beam-transport, quadrupole, rfq 824
 
  • H. Geng, P. Cheng, C. Meng, S. Pei, B. Sun, H.J. Wang, B. Xu, F. Yan, Y.L. Zhao
    IHEP, Beijing, People's Republic of China
 
  The C-ADS project is building a test facility at the Institute of High Energy Physics. The design goal of the test facility is 10MeV beam energy with a continuous beam current of 10mA. To sustain the 100kW CW beam power at the beam dump, a beam distribution transform system is designed. The Step Field Magnets (SFMs) are used to transform the beam distribution from Gaussian to uniform. In this test stand, two sets of SFMs will be employed to manipulate the beam distribution. At the first commissioning stage, the bump dump line will be connected to the Medium Energy Beam Transport-1 (MEBT1) to test the beam manipulation scheme. The design and error analysis of this 3MeV beam dump line will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI095 Study of Beam Transport Lines for a Biomedical Research Facility at CERN based on LEIR quadrupole, extraction, ion, beam-transport 836
 
  • D. Abler
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • C. Carli, A. Garonna
    CERN, Geneva, Switzerland
  • K.J. Peach
    JAI, Oxford, United Kingdom
 
  Funding: This work was supported by EU FP7 PARTNER (215840) and ULICE (228436).
The Low Energy Ion Ring (LEIR) at CERN has been proposed to provide ion beams with magnetic rigidities up to 6.7 Tm for biomedical research, in parallel to its continued operation for LHC and SPS fixed target physics experiments. In the context of this project, two beamlines are proposed for transporting the extracted beam to future experimental end-stations: a vertical beamline for specific low-energy radiobiological research, and a horizontal beamline for radiobiology and medical physics experimentation. This study presents a first linear-optics design for the delivery of 1-5 mm FWHM pencil beams and 5 cm x 5 cm homogeneous broad beams to both endstations. High field uniformity is achieved by selection of the central part of a strongly defocused Gaussian beam, resulting in low beam utilisation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI099 Feasibility Studies for 100 GeV Beam Transfer Lines for a CERN Neutrino Facility dipole, quadrupole, optics, focusing 849
 
  • M. Kowalska, W. Bartmann, C. Bracco, B. Goddard, M. Nessi, R. Steerenberg, F.M. Velotti
    CERN, Geneva, Switzerland
 
  For a potential future CERN neutrino facility it is considered to extract a 100 GeV proton beam from the second long straight section in the SPS into the existing TT20 transfer line leading to the North Area. Two transfer line design options were developed simultaneously: early-branching from TT20 using existing, recuperated ‘experimental area’ DC dipoles and alternatively late-branching close to the target area, which requires superconducting magnets. This paper describes the feasibility of the two concepts in addition to the detailed study of the early-branching option. Optics and line geometry optimization are discussed and orbit correction is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI105 Heavy Ion Induced Desorption Measurements on Cryogenic Targets ion, cryogenics, vacuum, diagnostics 867
 
  • Ch. Maurer, D.H.H. Hoffmann
    TU Darmstadt, Darmstadt, Germany
  • L.H.J. Bozyk, H. Kollmus, Ch. Maurer, P.J. Spiller
    GSI, Darmstadt, Germany
 
  Funding: Bundesministerium für Bildung und Forschung FKZ 06DA7031
Heavy-ion impact induced gas desorption is the key process that drives beam intensity limiting dynamic vacuum losses. Minimizing this effect, by providing low desorption yield surfaces, is an important issue for maintaining a stable ultra high vacuum during operation with medium charge state heavy ions. For room temperature targets, investigation shows a scaling of the desorption yield with the beam's near-surface electronic energy loss, i.e. a decrease with increasing energy*,**. An optimized material for a room temperature ion-catcher has been found. But for the planned superconducting heavy-ion synchrotron SIS100 at the FAIR accelerator complex, the ion catcher system has to work in a cryogenic environment. Desorption measurements with the prototype cryocatcher for SIS100 showed an unexpected energy scaling***, which needs to be explained. Understanding this scaling might lead to a better suited choice of material, resulting in a lower desorption yield. An experimental setup for systematic examination of this scaling is presented. The cryogenic beam-induced desorption yield of several materials at different temperatures is examined.
* H. Kollmus et al., AIP Conf. Proc. 773, 207 (2005))
** E. Mahner et al., Phys. Rev. ST Accel. Beams 14, 050102 (2011)
*** L.H.J. Bozyk, H. Kollmus, P.J. Spiller, Proc. of IPAC 2012, p. 3239
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI109 High-Power Proton-Synchrotron Collimation Studies collimation, proton, synchrotron, quadrupole 879
 
  • A. Alekou, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • D. Spitzbart
    TU Vienna, Wien, Austria
 
  The High-Power Proton-Synchrotron (HP-PS) will be delivering a 2 MW proton beam to a fixed target in order to produce neutrinos within the LAGUNA-LBNO project. A mechanical collimation system is essential to prevent lost particles from hitting the super-feric dipoles of the HP-PS ring and to also limit the equipment irradiation close to the beam. This paper presents how the efficiency of the HP-PS collimator system is optimised with respect to the change of the collimators’ thickness, material and beam halo size.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI116 Beam Flattening System based on Non-linear Optics for High Power Spallation Neutron Target at J-PARC octupole, optics, neutron, proton 896
 
  • S.I. Meigo, A. Akutsu, K.I. Ikezaki, M. Ooi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • H. Fujimori
    KEK/JAEA, Ibaraki-Ken, Japan
 
  In the Japanese Spallation Neutron Source (JSNS) of J-PARC, a mercury is utilized as a target material. Since a serious pitting erosion was found at the target vessel at SNS in ORNL and JSNS, a reduction of a peak current density is required. In order to decrease the peak, we have developed the beam optics based on a non linear using an octupole magnets. In a design calculation, it is found that the peak current density of 30 % can be reduced by introducing the octupole magnets. A status of the design and the experimental results will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAA01 Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex booster, operation, antiproton, proton 904
 
  • I. Kourbanis
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi Research Alliance under contract to the U.S. Department of Energy.
After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.
 
slides icon Slides TUOAA01 [7.059 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAA02 Design of the LBNE Beamline proton, operation, shielding, extraction 907
 
  • V. Papadimitriou, R. Andrews, J. Hylen, T.R. Kobilarcik, A. Marchionni, C.D. Moore, P. Schlabach, S. Tariq
    Fermilab, Batavia, Illinois, USA
 
  Funding: DOE, contract No. DE-AC02-07CH11359
The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab’s Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW, however the facility is designed to be upgradeable for 2.3 MW operation. We discuss here the status of the design and the associated challenges.
 
slides icon Slides TUOAA02 [5.781 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO031 RHIC Performance during the 7.5 GeV Low Energy Run in FY 2014 luminosity, experiment, ion, injection 1087
 
  • C. Montag, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, X. Gu, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, S. Nemesure, J. Piacentino, P.H. Pile, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, J.E. Tuozzolo, M. Wilinski, K. Yip, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As the last missing step in phase 1 of the beam energy scan (BES-I), aimed at the search for the critical point in the QCD phase diagram, RHIC collided gold ions at a beam energy of 7.3 GeV/nucleon during the FY 2014 run. While this particular energy is close to the nominal RHIC injection energy of 9.8 GeV/nucleon, it is nevertheless challenging because it happens to be close to the AGS transition energy, which makes longitudinal beam dynamics during transfer from the AGS to RHIC difficult. We report on machine performance, obstacles and solutions during the FY 2014 low energy run.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO042 Ion Optics of the HESR Storage Ring at FAIR for Operation with Heavy Ions ion, heavy-ion, experiment, optics 1117
 
  • O.A. Kovalenko, A. Dolinskyy, T. Katayama, Yu.A. Litvinov, T. Stöhlker
    GSI, Darmstadt, Germany
  • B. Lorentz, R. Maier, D. Prasuhn, H. Stockhorst
    FZJ, Jülich, Germany
 
  The High Energy Storage Ring (HESR) of the FAIR project is primarily designed for internal target experiments with stored and cooled antiprotons, which is the main objective of the PANDA collaboration. However, the HESR storage ring also appears to have remarkable properties to carry out physics experiments with heavy ions. In this paper a new ion optical design allowing the heavy ion operation mode of the HESR is presented. The main goal was to provide an optics which meets the requirements of the future experiments with heavy ion beams. Closed orbit correction, dynamic aperture as well as other characteristics of beam dynamics of the ion optical setup are under analysis in this study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO067 Beam Transport Optimization Studies of the PSI MW-Class Proton Channel proton, simulation, optics, beam-losses 1189
 
  • D. Reggiani, D.C. Kiselev, T. Reiss, R. Sobbia, V. Talanov, M. Wohlmuther
    PSI, Villigen PSI, Switzerland
 
  The proton channel of the PSI high intensity proton accelerator (HIPA) transports the beam from the extraction point of the ring cyclotron through two meson production graphite targets up to the SINQ spallation source. After many years of continuous improvement, the HIPA accelerator complex has now reached the remarkable beam power of 1.4 MW. The next power upgrade is foreseen for the near future. In order to achieve this further step, an optimization of the beam optics in the proton channel is required with the goal of keeping the beam losses at a reasonable extent and, at the same time improve the beam distribution on the SINQ target.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO073 RFFAG Decay Ring for nuSTORM proton, injection, detector, factory 1208
 
  • J.-B. Lagrange, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Appleby, J.M. Garland, H.L. Owen, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  The nuSTORM facility aims to deliver neutrino beams produced from the decay of muons stored in a racetrack ring. Design of racetrack FFAG (Fixed Field Alternating Gradient) decay ring for nuSTORM project is presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO112 Transient Magnetodynamic Finite Element Analysis of the ISIS M25/2 10Hz Kicker Magnet simulation, flattop, kicker, proton 1313
 
  • T.B.J. Mouille
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  In 2007 a second target station (TS2) was added to the ISIS pulsed neutron source at RAL. Two slow kicker magnets are operated in order to direct a 10Hz proton beam toward TS2 through the TS2 Extract Proton Beam line (EPB2). When first manufactured and tested, the M25/2 exhibited an unforeseen magnetic and thermal behaviour. It was quickly identified that this was caused by the eddy currents induced in the laminated core and the mechanical structure of the magnet. Corrective actions were taken to counterbalance their effects but no further analysis was performed at the time. Recent developments in hardware and software make this analysis more feasible. In this paper we present the results of the transient magnetodynamic simulation that was set up in order to model these eddy currents and study their impact on the M25/2 field quality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME001 Heat Load, Stress and Reaction Force Studies of a Polarized Positron Production Target for the Future International Linear Collider positron, photon, vacuum, undulator 1331
 
  • F. Staufenbiel, S. Riemann
    DESY Zeuthen, Zeuthen, Germany
  • G.A. Moortgat-Pick, A. Ushakov
    University of Hamburg, Hamburg, Germany
 
  The International Linear Collider requires an intense polarized positron beam with yields of about 1014 positrons per second. A polarized positron beam can be produced with a helical undulator passed by the accelerated electron beam to create a high power polarized photon beam. The photon beam penetrates a thin titanium-alloy rotating target wheel of 1m diameter with 500 to 2000 rpm rotation speed and produces polarized positrons. The system should run for 1-2 years without failure. A break down can occur due to the huge heat load in a short time (<1ms). The target design must keep the resulting thermo-mechanical stress below the yield strength and the fatigue limit of the material. FEM ANSYS simulations are used to evaluate the thermo-mechanical stress as well as the vibrations at the bearings of the rotating system. Results are presented with the goal to optimize the target wheel design parameters for a long lifetime.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME002 An Optimization of Positron Injector of ILC positron, electron, booster, linac 1334
 
  • M. Kuriki, Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • T. Okugi, M. Satoh, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: This work is supported by Photon and Quantum Basic Research Coordinated Development Program of MEXT.
ILC (International Linear Collider) is a future project of high energy physics. In the current baseline design, positron generation by gamma rays from undulator radiation is assumed. However, this approach is totally new and it is very difficult to demonstrate the system prior to the construction because it requires more than 100 GeV beam as the driver. A conventional positron generation (e-driven) has been proposed as a technical backup option. In this method, the technology is well established, but the issue is to obtain an enough amount of positron with a manageable energy deposition on target. We present a result of a systematic study of capture efficiency defined by DR (Damping Ring) acceptance where the beam emittance is reduced by radiation damping. We performed a start-to-end simulation of the positron source of ILC and found that an enough amount of the positron per bunch is obtained with a manageable energy deposition on the production target.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME012 The US Muon Accelerator Program collider, factory, proton, linac 1367
 
  • M.A. Palmer
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by US DOE under contract DE-AC02-07CH11359.
A directed R&D program is presently underway in the U.S. to evaluate the designs and technologies required to provide muon-based high energy physics (HEP) accelerator capabilities. Such capabilities have the potential to provide unique physics reach for the HEP community. An overview of the status of the designs for the neutrino factory and muon collider applications is provided. Recent progress in the technology R&D program is summarized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME022 Design and Optimization of a Particle Selection System for Muon based Accelerators proton, solenoid, simulation, factory 1395
 
  • D. Stratakis, J.S. Berg
    BNL, Upton, Long Island, New York, USA
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In Muon Accelerators muons are produced by impacting high energy protons onto a target to produce pions. The pions decay to muons which are then accelerated. Through this process a significant background of protons and electrons are generated, which may result in heat deposition on superconducting materials and activation of the machine. In this paper we propose a two-step particle selection scheme: a chicane to remove the high momentum particles from the beam and a Beryllium block absorber that reduces momentum of all particles in the beam, resulting in the loss of low momentum protons. We review the design and numerically examine its impact on the performance of the muon front-end.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME023 Overview of a muon capture section for muon accelerators proton, cavity, solenoid, bunching 1398
 
  • D. Stratakis, J.S. Berg, H. K. Sayed
    BNL, Upton, Long Island, New York, USA
  • D.V. Neuffer, P. Snopok
    Fermilab, Batavia, Illinois, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We describe a muon capture section to manipulate the longitudinal and transverse phase-space so that to collect efficiently a muon beam produced from an intense proton source target. We show that this can be achieved by using a set of properly tuned rf cavities that captures the beam into string of bunches and aligns them into nearly equal central energies, and a solenoidal chicane that filters high momentum particles, followed by a proton absorber that reduces the energy of all particles. This work elucidates the key parameters that are needed for successful muon capture, such as the required rf frequencies, rf gradients and focusing field. We discuss the sensitivity in performance against the number of different rf frequencies and accelerating rf gradient.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME031 Radiation Pressure Acceleration and Transport Methods laser, plasma, simulation, acceleration 1422
 
  • P. Schmidt, O. Boine-Frankenheim
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim, O. Boine-Frankenheim, I. Hofmann
    GSI, Darmstadt, Germany
  • I. Hofmann
    HIJ, Jena, Germany
  • I. Hofmann
    IAP, Frankfurt am Main, Germany
 
  Funding: HGS-HIRe for FAIR, HIC for FAIR, Technische Universität Darmstadt, FB 18 TEMF
Several projects worldwide such as LIGHT at GSI focus on laser ion acceleration. With the development of new laser systems and advances in the target production a new acceleration mechanism has become of interest: The Radiation Pressure Acceleration (RPA). An ultra short high intense laser pulse hits a very thin foil target and the emerging plasma is ideally accelerated as one piece (light sail regime). The ions reach kinetic energies up to GeV and nearly solid body densities. In this work, the distribution and transport of a RPA plasma is studied. 1D and 2D PIC simulations (software: VSim) are carried out to obtain the phase space distribution of the plasma. The results are compared to fluid models (software: FiPy and USim). A reference model an RPA plasma is obtained which is then used for advanced transport studies. Transport mechanisms (active and passive) are studied, such asμlenses and foil stacks.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME033 Scaling of TNSA-accelerated Proton Beams with Laser Energy and Focal Spot Size laser, proton, acceleration, experiment 4093
 
  • L. Obst, S. Kraft, J. Metzkes, U. Schramm, K. Zeil
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
 
  By focusing an ultra-short high-intensity laser pulse on a solid target, pulses of protons and other positively charged ions with energies of several 10 MeV per nucleon are generated. The properties of these particle beams such as their energy and absolute number are highly dependent on experimental conditions like laser and target parameters. In order to achieve principal comparability between different experimental campaigns at the Draco laser system at the Helmholtz-Zentrum Dresden-Rossendorf, a reference setup for the laser ion acceleration experiment was established. A configuration is sought in which proton beams of reproducible characteristics are generated. To ensure a high stability of the proton spectra, the application of longer focal length parabolas (f ~ 1000 mm) will be tested for this setup, according preparatory studies being presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME034 Transport and Energy Selection of Laser Produced Beams for Medical Research and Multidisciplinary Applications laser, quadrupole, solenoid, focusing 1425
 
  • M.M. Maggiore
    INFN/LNL, Legnaro (PD), Italy
  • G.A.P. Cirrone, F. Romano, F. Schillaci, A. Tramontana
    INFN/LNS, Catania, Italy
  • V. Scuderi
    ELI-BEAMS, Prague, Czech Republic
 
  Ion beams produced by the interaction of high-power laser with thin targets are being characterized experimentally around the world in order to get a reasonable amount of particles with low divergence and narrow energy spread for medical and multidisciplinary applications. Several schemes about the energy selection and transport of laser accelerated beams have been considered and tested, however the energy spread of the selected particles remains rather high and the reproducibility has not been yet achieved. In the framework of the ELIMED network, we present a study of a possible layout to capture and transport in an efficient and reproducible way, the beams generated by the laser-target interaction. It consists of a combination of quadrupoles based on permanent magnets placed just downstream the target, coupled with a system composed by a series of 4 dipole magnets of inverted polarity, which provides the final energy selection of the previously focused beam. Such a system will be tested in 2014 at TARANIS facility to select proton beams in the energy range of 4-8 MeV; the main scheme can be scaled for the high energy beam that are expected at ELI-beamlines facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME052 Enhanced Laser Ion Acceleration based on Near-Critical Density Plasma Lens plasma, laser, acceleration, electron 1483
 
  • Y.X. Geng, J.E. Chen, L.R.F. Li, Y.H. Li, Q. Liao, C. Lin, L.H.Y. Lu, Y.R. Lu, H. Wang, X.Q. Yan, Z.X. Yuan, S. Zhao, W.B. Zhao, Y.Y. Zhao, K. Zhu, B.Y. Zou
    PKU, Beijing, People's Republic of China
 
  The laser prepulse has large effect on ion acceleration driven by high power laser pulse. Recently, simulations show that with proper prepulse parameters, a near critical density pre-plasma can be generated in the front target. When the main laser pulse propagating in this pre-plasma, it can experience transverse Self-focusing, longitudinal profile steepening and prepluse cleaning at the same time, meaning its quality is spontaneously improved by this “plasma lens”.The effects can greatly improve the energy coupling efficiency of laser pulse into accelerated ions. A 3mJ Ti-Sapphire laser system has been built at PKU in order to experimentally study the pre-pulse effect on a solid target. Fluid simulation show that, after hundreds of picoseconds radiated with this laser pulse, the pre-plasma in front of the target will expand to near critical density with tens of micron scale length, which is suitable as a plasma lens to improve the ion acceleration. A laser interferometer system is built to measure the scale length and density evolution of plasma and the optimum condition of the pre-plasma has been searched using both Aluminum target and home-made DLC target.
H.Y.Wang et al, Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens, PRL, 107,265002, 2011
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME061 Ultra-High Gradient Beam-Driven Channeling Acceleration in Hollow Crystalline Media acceleration, plasma, electron, scattering 1512
 
  • Y.-M. Shin, T. Xu
    Northern Illinois University, DeKalb, Illinois, USA
  • G. Flanagan
    Muons, Inc, Illinois, USA
  • E.R. Harms, J. Ruan, V.D. Shiltsev
    Fermilab, Batavia, Illinois, USA
 
  Since the recent discovery of the Higgs boson particle, there is an increasing demand in Energy Frontier to develop new technology for a TeV/m range of acceleration gradient. The density of charge carriers, ~ 1024 – 1029 m-3, of crystals is significantly higher than that of a plasma gas, and correspondingly in principle wakefield gradients of up to 0.1 - 10 TV/m are possible. Our simulations (VORPAL and CST-PIC) with Fermilab-ASTA* beam parameters showed that micro-bunched beam gains energy up to ~ 70 MeV along the 100 um long channel under the resonant coupling condition of the plasma wavelength, ~ 10 um. Also, with lowering a charge, electron bunches channeling through a high-density plasma medium have higher energy gain in a hollow channel than in a uniformly filled cylinder, which might be attribute to lower scattering ratios of the tunnel structure. The numerical analysis implied that synthetic crystalline plasma media (e.g. carbon nanotubes) have potential to mitigate constraint of bunch charges required for beam-driven acceleration in high density plasma media. The channeling acceleration** will be tested at the ASTA facility, once fully commissioned.
* ASTA: Advanced Superconducting Test Accelerator
** [1] T. Tajima and M. Cavenago, PRL 59, 13(1987)
[2] P. Chen and R. Noble, SLAC-PUB-7402(1998)
[3] V.Shiltsev, Physics Uspekhi 55, 965(2012)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI001 ESSnuSB: A New Facility Concept for the Production of Very Intense Neutrino Beams in Europe proton, linac, detector, simulation 1550
 
  • E. Bouquerel, E. Baussan, M. Dracos, F.R. Osswald, P. Poussot, N. Vassilopoulos
    IPHC, Strasbourg Cedex 2, France
 
  A new project for the production of a very intense neutrino beam has arisen to enable the discovery of leptonic CP violation and neutrino mass hierarchy. This facility will use the proton linac of the European Spallation Source (ESS) in Lund to deliver the neutrino super beam. The ESS linac is expected to be fully operational at 5 MW power by 2022, producing 2 GeV and 2.86 ms long proton pulses at a rate of 14 Hz. An upgrade of the power to 10 MW and a frequency of 28 Hz, in which half is for the neutron beam, is necessary for the production of the neutrino beam. The primary proton beam-line completing the linac will consist of switchyards and accumulator rings. The secondary beam-line producing neutrinos will consist of a four-horn/target station, decay tunnel and beam dump. A megaton scale water Cherenkov detector will be located at a baseline of about 500 km in one of the existing mines in Sweden and it will measure the neutrino oscillations. The elements of the primary and secondary beam-lines and all the possible scenarios impacting the design of the ESSnuSB facility as well as the safety issues due to the high irradiation produced are presented and discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI002 The EUROnu Study for Future High Power Neutrino Oscillation Facilities detector, factory, proton, linac 1553
 
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The EUROnu project was a 4 year FP7 design study to investigate and compare three possible options for future, high power neutrino oscillation facilities in Europe. These three facilities are a Neutrino Factory, a neutrino superbeam from CERN to the Frejus Laboratory and a so-called Beta Beam. The study was completed at the end of 2012 and has produced conceptual designs for the facilities and preliminary cost estimates. The designs were used to determine the physics performance. These have been used to compare the facilities. This paper will describe the designs, physics performance and costs and summarise the recommendations of the study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI005 nuSTORM Horn Optimization Study simulation, optics, proton, controls 1562
 
  • A. Liu, A.D. Bross, D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  The efficiency of using magnetic horns as a pion collection device has been recognized by several neutrino projects. In the study, we began with a “NuMI-like” horn, which was applied to collect the secondary pions from bombarding the target with 120 GeV/c protons in the nuSTORM proposal. The necessity of optimizing the horn for a non-conventional neutrino beamline like the nuSTORM pion beamline was then acknowledged. This paper presents a detailed description of the optimization objectives, the Multi-objective Genetic Algorithm developed for this specific purpose, and the results of the optimization. With the full G4beamline simulation results, the success of the optimization provides an increase of 16\% in the useful muons in the ring. This methodology can be applied to any neutrino beamline configuration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI006 Decay Ring Design Updates for nuSTORM lattice, injection, dipole, betatron 1565
 
  • A. Liu, A.D. Bross, D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  The nuSTORM FODO decay ring is designed to achieve both a large phase space acceptance of 2 mm and a large momentum acceptance of 3.8±10\% GeV/c. The goal is challenging, not only because the high dispersion needed at the Beam Combination Section (BCS) of the ring enlarges the beam size, but also because of the nonlinear beam dynamics. In this paper the preliminary design of the nuSTORM ring is presented, which includes the requirements, the ring parameters, and also the tracking results in the MADX PTC\TRACKING module.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI008 Target System Concept for a Muon Collider/Neutrino Factory proton, factory, collider, solenoid 1568
 
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • H.G. Kirk, H. K. Sayed, D. Stratakis
    BNL, Upton, Long Island, New York, USA
  • N. Souchlas, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  A concept is presented for a Target System in a staged scenario for a Neutrino Factory and eventual Muon Collider, with emphasis on initial operation with a 6.75 GeV proton beam of 1 MW power, and 50 Hz of pulses 3-ns long. A radiation cooled graphite target will be used in the initial configuration, with an option to replace this with a free-liquid-metal-jet target should 4-MW beam power become available at a later stage.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI039 Radiation Safety Considerations for Areal Electron Linac With Beam Diagnostic System radiation, electron, shielding, diagnostics 1647
 
  • V.G. Khachatryan, V.H. Petrosyan, A. Sargsyan
    CANDLE SRI, Yerevan, Armenia
 
  The AREAL linear accelerator will produce electron beam with 5 MeV energy and further upgrade up to 20 MeV. At the first stage of the operation the construction of the beam diagnostic section of complex shape and layout is planned thus making the radiation source definition difficult. FLUKA particle tracking simulation code was used to calculate produced radiation dose rates and define an appropriate radiation shielding.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI092 Improvement of the Position Monitor using White Light Interferometer for Measuring Precise Movement of Compact ERL Superconducting Cavities in Cryomodule cryomodule, cavity, linac, operation 1787
 
  • H. Sakai, K. Enami, T. Furuya, M. Satoh, K. Shinoe, K. Umemori
    KEK, Ibaraki, Japan
  • T. Aoto, K. Hayashi, K. Kanzaki
    Tokyo Seimitsu Co. Ltd, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • M. Sawamura
    JAEA, Ibaraki-ken, Japan
 
  Alignment of superconducting cavities is one of the important issues for linear collider and/or future light source like ERL and X-FEL. To measure the cavity displacement under cooling to liquid He temperature more precisely, we newly developed the position monitor by using white light interferometer. This monitor is based on the measurement of the interference of light between the measurement target and the reference point. It can measure the position from the outside of the cryomodule. We applied this monitor to the main linac cryomodule of Compact ERL (cERL) and successfully measured the displacement during 2K cooling with the resolution of 10um. However, some drift come from outer temperature and humidity were observed. In this paper, we describe the upgraded version of this monitor to suppress these drift for cERL beam operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI093 Determination of the Magnetic Axis of a CLIC Drive Beam Quadrupole with respect to External Alignment Targets using a Combination of WPS, CMM and Laser Tracker Measurements. alignment, laser, quadrupole, linear-collider 1790
 
  • M. Duquenne, M. Anastasopoulos, D. Caiazza, G. Deferne, J. Garcia Perez, H. Mainaud Durand, M. Modena, V. Rude, J. Sandomierski, M. Sosin
    CERN, Geneva, Switzerland
 
  CERN is currently studying the feasibility of building a high energy e+ e linear collider: the CLIC (Compact LInear Collider). One of the engineering challenges is the pre-alignment precision and accuracy requirement on the alignment of the linac components. For example, the magnetic axis of a Drive Beam Quadrupole will need to be aligned within 20 um rms with respect to a straight reference line of alignment. The fiducialisation process which is the determination of the magnetic axis with respect to external alignment targets, that is part of this error budget, will have to be performed at an accuracy never reached before. This paper presents the strategy proposed for the fiducialisation of the Drive Beam quadrupole, based on a combination of CMM measurements, WPS measurements and Laser tracker measurements. The results obtained on a dedicated test bench will be described as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI099 A Proton Therapy Test Facility: the Radiation Protection Design proton, radiation, neutron, shielding 1805
 
  • S. Sandri, L. Picardi, C. Poggi, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • G. Ottaviano
    ENEA-Bologna, Bologna, Italy
 
  A proton therapy test facility with a beam current lower than 10 nA in average, and an energy up to 85 MeV, has to be sited at the Frascati ENEA Research Center, in Italy. The accelerator is composed by a sequence of linear sections. From the radiation protection point of view the source of radiation for this facility is almost completely located at the final target. Physical and geometrical models of the device have been developed and implemented into a radiation transport computer code based on Monte Carlo method. The main scope is the assessment of the dose rates around the radiation source for supporting the safety analysis. For the assessment was used the FLUKA (FLUktuierende KAskade) computer code. A general purpose tool for the calculation of particle transport and interaction with matter, covering an extended range of applications including proton beam analysis. The models implemented into the code are described and the results are presented. The calculated dose rates are reported at different distances from the target. Considerations about personnel safety are issued and the shielding requirements are anticipated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI101 Measurement of Neutrons Generated by 345MeV/u U-238 Beam at RIKEN RIBF detector, neutron, simulation, photon 1811
 
  • N. Nakao
    Shimizu Corporation, Institute of Technology, Tokyo, Japan
  • K. Tanaka, Y. Uwamino
    RIKEN, Wako, Saitama, Japan
 
  Neutrons generated by a 345 MeV/u uranium beam bombardment on a 3-mm-thick Be target were measured outside the target chamber using activation detectors of bismuth, aluminum and carbon at 60, 70 and 90 degrees from the beam axis. After a few days irradiation, the activation detectors were removed, and the energy spectra of photons from radionuclides generated by reactions of 209Bi(n, xn)210-xBi(x=4~10), 12C(n, 2n)11C and 27Al(n, alpha)24Na were measured using a germanium detector. Photo peak counts of corresponding photon energies were analyzed with considering detector efficiencies and a beam intensity fluctuation during the irradiation. The production rates of the radionuclides were obtained for all reactions. Monte Carlo simulation using the PHITS code was also performed. Fluxes of neutrons at the activation detectors were tallied and the energy spectra were obtained. Production rates of the radionuclides were obtained by folding the thus obtained energy spectra with activation cross section data. Comparisons with the measurements showed agreements within about 60%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI102 Intervention Modelling at High-energy Particle Accelerators radiation, software, simulation, software-tool 1814
 
  • T. Fabry, M. Baudin, B. Feral, L. Vanherpe
    CERN, Geneva, Switzerland
  • L. Tabourot
    SYMME, Annecy-le-Vieux, France
 
  Funding: This research project has been supported by a Marie Curie Fellowship of the European Community’s Seventh Framework Programme under contract number (PITN-GA-2010-264336-PURESAFE).
An important aspect in the design and operation of high-energy particle accelerators is the planning of maintenance interventions. In the planning of these interventions, optimizing the exposure of the maintenance workers to ionizing radiation is a core issue. In this context, we have addressed the need for an interactive visual software tool. The intervention planning has been modelled mathematically. A proof-of-concept software tool has been implemented using this model, providing interactive visualization of facilities and radiation levels, tools for trajectory planning and automatic calculation of the expected integrated equivalent radiation dose. We explore the use of the software using a large experimental hall at CERN as a case study. Interactive visualization of the facilities and radiation levels, tools for interactive trajectory planning as well as automatic calculation of the expected integrated equivalent dose contracted during an intervention are explored. The obtained results prove the relevance of the developed methodology and software tool and demonstrate, among others, a better exploitation of the simulation data, leading to a potential accuracy gain.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI103 Neutronics Analyses to Support Waste Management for SNS proton, neutron, operation, radiation 1817
 
  • I.I. Popova, F.X. Gallmeier
    ORNL, Oak Ridge, Tennessee, USA
  • M.J. Dayton, S.M. Trotter
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: Work supported by the Division of Materials Science, U.S. Department of Energy, under contract number DE-AC05-96OR22464 with UT-Battelle Corporation for ORNL
According to the Spallation Neutron Source (SNS) operations plan the facility components are replaced, when they reach their end-of-life due to radiation induced material damage or burn-up or because of mechanical failure or design improvements. During operation these components are exposed to a severe radiation environment and builds up significant activity during its service lifetime. These components must be safely removed, placed in a container for storage, and transported from the site. In order to classify components and suggest appropriate shipping container an accurate estimate of the radionuclide inventory is performed. On the base of calculated radionuclide inventory the spent component is classified and appropriate container for transport and storage is suggested. Container it is being modelled with the facility component, placed inside, in order to perform transport calculations to ensure that the container is compliant with the waste management regulations. Dose rate analyses are performed as well for the exposure prediction of personnel during components change out.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYA01 Challenges of Radioactive Beam Facilities – Comparing Solutions at SPIRAL2 and FAIR ion, linac, ISOL, heavy-ion 1852
 
  • R. Ferdinand
    GANIL, Caen, France
 
  The SPIRAL2 facility at GANIL will use a high-power p, d and heavy-ion driver to produce RIB though both ISOL and in-flight techniques. The SPIRAL2-injector beam is expected before the end of 2014. The construction of the FAIR facility has started at GSI and the outline of the accelerator complex is well defined. A clear strategy and construction schedule is defined in the framework of the international FAIR collaboration. This talk will give an overview of the accelerators at both facilities and compare the characteristics and benefits of these two approaches to meet their user needs.  
slides icon Slides WEYA01 [9.134 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEYA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZA02 A Staged Muon Accelerator Facility for Neutrino and Collider Physics collider, factory, proton, linac 1872
 
  • J.-P. Delahaye
    SLAC, Menlo Park, California, USA
  • C.M. Ankenbrandt, S. Brice, A.D. Bross, D.S. Denisov, E. Eichten, S.D. Holmes, R.J. Lipton, D.V. Neuffer, M.A. Palmer
    Fermilab, Batavia, Illinois, USA
  • S.A. Bogacz
    JLab, Newport News, Virginia, USA
  • P. Huber
    Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
  • D.M. Kaplan, P. Snopok
    Illinois Institute of Technology, Chicago, Illinois, USA
  • H.G. Kirk, R.B. Palmer
    BNL, Upton, Long Island, New York, USA
  • R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Dept. of Energy under contracts DE-AC02-07CH11359 and DE-AC02-76SF00515
Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.
 
slides icon Slides WEZA02 [27.263 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEZA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB01 Breaking the 70 MeV Proton Energy Threshold in Laser Proton Acceleration and Guiding Beams to Applications laser, proton, ion, acceleration 1886
 
  • M. Roth, S. Bedacht, S. Busold, O. Deppert, G. Schaumann, A. Tebartz, F. Wagner
    TU Darmstadt, Darmstadt, Germany
  • V. Bagnoud, A. Blazevic, D. Schumacher
    GSI, Darmstadt, Germany
  • C. Brabetz
    IAP, Frankfurt am Main, Germany
  • T.E. Cowan
    HZDR, Dresden, Germany
  • K. Falk, A. Favalli, J.C. Fernandez, C. Gautier, C.E. Hamilton, R.P. Johnson, K. Schoenberg, T. Shimada, G.A. Wurden
    LANL, Los Alamos, New Mexico, USA
  • M. Geißel, M. Schollmeier
    Sandia National Laboratories, Albuquerque, New Mexico, USA
  • D. Jung
    Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
  • F. Kroll
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
 
  This talk covers recent developments in laser plasma ion acceleration describing the technological challenges in breaking of energy threshold of 70 MeV. The presentation also highlights the recent experimental achievements towards laser ion acceleration and transport in the LIGHT collaboration.  
slides icon Slides WEXB01 [15.155 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEXB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB01 The Commissioning of the Laser Ion Source for RHIC-EBIS ion, laser, ion-source, injection 1890
 
  • T. Kanesue, J.G. Alessi, E.N. Beebe, M.R. Costanzo, L. DeSanto, R.F. Lambiase, D. Lehn, C.J. Liaw, V. LoDestro, M. Okamura, R.H. Olsen, A.I. Pikin, D. Raparia, A.N. Steszyn
    BNL, Upton, Long Island, New York, USA
  • S. Ikeda
    TIT, Yokohama, Japan
  • K. Kondo, M. Sekine
    RLNR, Tokyo, Japan
 
  Funding: Work supported by NASA and Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A new laser ion source (LIS) for low charge state ion production was installed on RHIC-EBIS. This is the first LIS to be combined with an Electron Beam Ion Source (EBIS) type heavy ion source. The LIS provides intense low charge state ions from any solid state material, with low emittance and narrow pulse length. These features make it suitable as an external source of 1+ ions that can be injected into the EBIS trap for charge breeding. In addition, a LIS is the only type ion source which can allow rapid switching among many ion species, even on pulse-by-pulse basis, by changing either laser path or target position, to strike the material of choice. The EBIS works as a charge breeder, with the extracted high charge state ions used in the following accelerators. The beams from LIS will be used for RHIC and NASA Space Radiation Laboratory (NSRL) at BNL. The rapid beam switching, which was not possible with existing ion sources, will expand the research field at NSRL as a galactic cosmic ray simulator. The results of commissioning will be shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOAB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIB04 Challenges of the XFEL Cryomodule Integration and Industry Transfer operation, cryomodule, cavity, alignment 1929
 
  • F. Chastel, P. Pluvy, H. Rocipon
    ALSYOM, Argebteuil, France
 
  The construction of the European XFEL Accelerator is based on in-kind contributions shared by several institutes throughout Europe and Russia. Within the French contribution, CEA is responsible for the assembly, in a dedicated facility located in Saclay, of the up to 100 cryomodules constituting the Linac. Since 2012, ALSYOM has been selected as the industrial partner for such assembly works. This presentation will detail the organization set up for this partnership and the related challenges of this transfer to Industry.  
slides icon Slides WEIB04 [1.962 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEIB04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO060 Status of the FAIR Accelerator Facility ion, antiproton, dipole, synchrotron 2084
 
  • O.K. Kester, W.A. Barth, A. Dolinskyy, F. Hagenbuck, K. Knie, H. Reich-Sprenger, H. Simon, P.J. Spiller, U. Weinrich, M. Winkler
    GSI, Darmstadt, Germany
  • R. Maier, D. Prasuhn
    FZJ, Jülich, Germany
 
  Funding: Supported by the BMBF and state of Hessen
The accelerators of the facility for Antiproton and Ion Research – FAIR are designed to deliver stable and rare isotope beams covering a huge range of intensities and beam energies. The ion and antiproton beams for the experiments will have highest beam quality for cutting edge physics to be conducted within the four research pillars CBM, NuSTAR, APPA and PANDA. The challenges of the accelerator facility to be established are related to the systems comprising magnets, cryo technology, rf-technology, vacuum etc. FAIR will employ heavy ion synchrotrons for highest intensities, antiproton and rare isotope production stations, high resolution separators and several storage rings where beam cooling can be applied. Intense work on test infrastructure for the huge number of superconducting magnets of the FAIR machines is ongoing at GSI and several partner labs. In addition, the GSI accelerator facility is being prepared to serve as injector for the FAIR accelerators. As the construction of the FAIR facility and procurement has started, an overview of the designs, procurements status and infrastructure preparation will be provided.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO072 The Design of the Fast Raster System for the European Spallation Source timing, power-supply, controls, linac 2118
 
  • H.D. Thomsen, S.P. Møller
    ISA, Aarhus, Denmark
 
  The ESS will nominally operate with an average (peak) proton current of 2.5 mA (62.5 mA) at 2.0 GeV. To reduce the beam peak current density at the spallation target, the ESS HEBT will apply a fast transverse raster system consisting of 8 dithering magnet dipoles. The raster system sweeps the linac beamlet on the target surface and gives a rectangular intensity outline within a macropulse of 2.86 ms. The magnets are driven by triangular current waveforms of up to 40 kHz. The preliminary magnet design and power supply topology will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO073 The ESS High Energy Beam Transport after the 2013 Design Update optics, dipole, linac, quadrupole 2121
 
  • H.D. Thomsen, S.P. Møller
    ISA, Aarhus, Denmark
 
  Following an optimization of the European Spallation Source (ESS) linac, a number of changes have been introduced in the High Energy Beam Transport (HEBT). In particular, about 120 m of beam transport has been allocated to enable an extension of the superconducting linac, thus providing some contingency against poor linac performance and potentially allowing a future beam power upgrade. The changes in layout and beam optics in all HEBT lines will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO074 Performance of the ESS High Energy Beam Transport under Non-nominal Conditions quadrupole, dipole, simulation, optics 2124
 
  • H.D. Thomsen, S.P. Møller
    ISA, Aarhus, Denmark
 
  With a nominal beam power of 5 MW, the demands for low relative beam losses in the ESS linac are unprecedented. In the HEBT, where the beam first reaches full power, this is especially relevant. The acceptance of the HEBT should thus encompass beams of non-nominal parameters and ideally be tolerant to partial hardware failure for at least a pulse train of 2.86 ms. In this paper, the sensitivity towards errors in beam parameters and optical elements will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO077 Thermal Neutron Beam Characterization at the HRPT Instrument at the Swiss Spallation Neutron Source neutron, simulation, shielding, proton 2134
 
  • V. Talanov, D. Cheptiakov, U. Filges, S.H. Forss, T. Panzner, V. Pomjakushin, E. Rantsiou, T. Reiss, M. Wohlmuther
    PSI, Villigen PSI, Switzerland
 
  The Swiss spallation neutron source (SINQ) at Paul Scherrer Institut (PSI) provides beams of thermal and cold neutrons to different neutron instruments. In a view of a potential SINQ upgrade, an experimental program characterizing the current performance of SINQ neutron beams was started in 2013. We present experimental results of the irradiation of imaging plates and gold foils at one of SINQ thermal neutron beam lines that hosts the high resolution powder diffractometer (HRPT) and compare the experimental results to the numerical MCNPX simulations of the neutron flux from the SINQ target-moderator system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO078 Background Calculations for the High Energy Beam Transport Region of the European Spallation Source neutron, photon, beam-losses, background 2137
 
  • R.J. Barlow, A.M. Toader
    University of Huddersfield, Huddersfield, United Kingdom
  • L. Tchelidze
    ESS, Lund, Sweden
  • H.D. Thomsen
    ISA, Aarhus, Denmark
 
  Expected backgrounds in the final accelerator-to-target region of the European Spallation Source, to be built in Lund, Sweden, have been calculated using the MCNPX program. We consider the effects of losses from the beam, both along the full length and localised at the bending magnets, and also backsplash from the target. The prompt background is calculated, and also the residual dose, as a function of time, arising from activation of the beam components. Activation of the air is also determined. The model includes the focussing and rasterising magnets, and shows the effects of the concrete walls of the tunnel. We give the implications for the design and operation of the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO079 Accelerator Systems Modifications for a Second Target Station at the Oak Ridge Spallation Neutron Source septum, kicker, quadrupole, linac 2140
 
  • M.A. Plum, J. Galambos, S.-H. Kim
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
A second target station is planned for the Oak Ridge Spallation Neutron Source. The ion source will be upgraded to increase the peak current from 38 to 49 mA, additional superconducting RF cavities will be added to the linac to increase the H− beam energy from 933 to 1300 MeV, and the accumulator ring will receive modifications to the injection and extraction systems to accommodate the higher beam energy. After pulse compression in the storage ring one sixth of the beam pulses (10 out of 60 Hz) will be diverted to the second target by kicker and septum magnets added to the existing Ring to Target Beam Transport (RTBT) line. No further modifications will be made to the RTBT so that when the kicker and septum magnets are turned off the original target 1 beam transport lattice will be unaffected. In this paper we will discuss these and other planned modifications and upgrades to the accelerator facility, and also the status of this project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO080 HIGH POWER MOLTEN TARGETS FOR RADIOACTIVE ION BEAM PRODUCTION: FROM PARTICLE PHYSICS TO MEDICAL APPLICATIONS ion, proton, extraction, neutron 2143
 
  • T. De Melo Mendonca
    CERN, Geneva, Switzerland
 
  Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. In order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline at IPUL, Latvia, by E. Noah and co-workers. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE using a 1.4-GeV proton beam. Primary focus is given to the dimensioning of the diffusion chamber. The molten LBE concept inspired a new alternative route to produce 1013 18Ne/s for the Beta Beams project, where a molten salt loop would be irradiated with 7 mA, 160-MeV proton beam. The concept has been validated by testing a molten fluoride salt static unit at CERN-ISOLDE using a 1.4-GeV proton beam. The investigation of the release and production of neon isotopes allowed the first measurement of the diffusion coefficient of this element in molten fluoride salts.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO088 Design of Beam Transport Lines for Radioisotope Production Systems in NIRS Cyclotron Facility beam-transport, cyclotron, proton, emittance 2162
 
  • K. Katagiri, S. Hojo, M. Nakao, A. Noda, K. Noda, A. Sugiura, K. Suzuki
    NIRS, Chiba-shi, Japan
 
  A new beam transport and a irradiation system were designed for radionuclides production with heat damageable targets. The incident beam is swept along a circle on the irradiation target with fast steering magnets. The width and the sweeping radius of the incident beams were optimized to achieve high production efficiency and avoid the heat damages. Based on those optimized parameters, beam optics of the new beam transport lines was optimized. To obtain initial conditions for the optical calculations, the beam emittance and the Twiss parameters were measured at the upper stream of the new beam transport lines. In this paper, we present the results of the calculations and the optimized beam transport lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO095 Development of Beam Line for Medical Application at ITEP-TWAC Complex proton, ion, synchrotron, extraction 2183
 
  • M.M. Kats
    ITEP, Moscow, Russia
 
  Possibilities of beam lines improvement for medical application at ITEP Accelerator Complex were observed. Existing beam lines were constructed for transport fast extracted proton beam with energy <230MeV from synchrotron U10 to three treatment rooms with fixed horizontal direction of targets irradiation. Scattering and collimation were used to distribute irradiation dose to the target volume. New beam lines are developed for transport of slow extracted proton (E<230MeV) or carbon (E<400MeV/n) beams from synchrotron UK to the same three treatment rooms and to experimental building. They will be equipped with scanning magnets. The fixed horizontal directions will be used in two rooms for treatment of special localizations in eye or head. To treat any targets from different directions compact “planar system” is developed covering irradiation directions of ±45 degrees to horizontal plane. Planar system can be used in two rooms. Main features of proposed beam lines are compared with existing and planned centers of therapy by proton and ion beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO098 Producing Two-photon Planar Sources at an Electron Accelerator electron, photon, radiation, simulation 2192
 
  • V.L. Uvarov, N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, Yu.V. Rogov, V.A. Shevchenko, A.Eh. Tenishev
    NSC/KIPT, Kharkov, Ukraine
 
  Gamma-sources with two-energy spectrum are used in industrial and medical diagnostics for quantitative introscopy (tomography). Commonly, such sources are obtained by a reactor technology (153Gd) or using an ultrastable X-ray tube with properly shaped spectrum of radiation. We suggested utilize the 179Ta isotope (Ex~ 55 keV, T1/2= 665 day) in combination with 57Co (Eγ=122 keV, T1/2=273 day). A soft technology for producing planar sealed 179Ta/57Co sources at an electron accelerator by X-ray irradiation of a target from natural tantalum and nickel was developed. The isotope yield and absorbed power of radiation in the target device vs electron beam energy were calculated using a modified transport code PENELOPE-2008. The results of experiment conducted to determine the yields of the target isotopes and by-products are in good agreement with the simulation data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO099 A Study of the Production of Neutrons for Boron Neutron Capture Therapy using a Proton Accelerator neutron, proton, cyclotron, ion 2195
 
  • T.R. Edgecock
    University of Huddersfield, Huddersfield, United Kingdom
  • J.R.J. Bennett
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S. Green
    University Birmingham, Birmingham, United Kingdom
  • B. Phoenix, M.C. Scott
    Birmingham University, Birmingham, United Kingdom
 
  Boron Neutron Capture Therapy (BNCT) is a binary cancer therapy particularly well-suited to treating aggressive tumours that exhibit a high degree of infiltration of the surrounding healthy tissue. Such tumours, for example of the brain and lung, provide some of the most challenging problems in oncology. The first element of the therapy is boron-10 which is preferentially introduced into the cancerous cells using a carrier compound. Boron-10 has a very high capture cross-section with the other element of the therapy, thermal neutrons, resulting in the production of a lithium nucleus and an alpha particle which destroy the cell they are created in. However, a large flux of neutrons is required and until recently the only source used was a nuclear reactor. In Birmingham, studies of an existing BNCT facility using a 2.8 MeV proton beam and a solid lithium target have found a way to increase the beam power to a sufficient level to allow clinical trials, while maintaining the target solid. In this paper, we will introduce BNCT, describe the work in Birmingham and compare with other accelerator-driven BNCT projects around the World.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO101 A Compact Superconducting 330 MeV Proton Gantry for Radiotherapy and Computed Tomography proton, dipole, superconducting-magnet, magnet-design 2202
 
  • D.J. Holder
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.F. Green, H.L. Owen
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported by STFC Cockcroft Institute Grant No. ST/G008248/1
The primary advantage of proton beam therapy as a cancer treatment is its ability to maximize the radiation dose delivered to the target volume and minimize the dose to surrounding healthy tissue, due to the inherently narrow Bragg peak at the end of the proton range. This can be further enhanced by imaging the target volume and surrounding tissues using proton Computed Tomography (pCT), which directly measures the energy loss from individual protons to infer the tissue density. Proton energies up to 330 MeV are required for pCT. We describe a superconducting gantry design which can deliver protons for both therapy and pCT with a similar size to existing treatment gantries. The use of ten identical combined-function superconducting dipole magnets minimizes the weight and technical development required. Based on experience with superconducting magnets for carbon gantries it should be possible to change the magnetic field sufficiently quickly to perform spot-scanning over successive layers without inducing quenching. It is envisaged that a combination of cryogenic cooling and cryogen-free cooling will be used to achieve the required operating temperature for the magnet windings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO104 Backscattering X-ray System by using 950 keV X-band Linac X-ray Source photon, detector, linac, simulation 2209
 
  • C. Liu
    The University of Tokyo, Tokyo, Japan
  • T. Fujiwara, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • J. Kusano
    Accuthera Inc., Kawasaki, Kanagawa, Japan
 
  Recently several tunnel collapses have happened in the world. To prevent this kind of accidents, the non-destructive inspection for tunnel is seriously needed. Backscattering X-ray system which makes one-side operation possible is a very important way to solve this problem. But the backscattering X-ray systems using X-ray tubes could only get the superficial information of the concrete target*. Now we are using our 950 keV X-ray source to construct the backscattering X-ray system to detect the deeper part of the concrete target.
*D. Shedlok, T. Edwards, C.Toh, “X-ray Backscatter Imaging for Aerospace Applications”, Review of Progress in Quantitative Nondestructive Evaluation, Volume 30 AIP Conf. Proc. 1335, 509-516, (2011).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO109 Experimental Determination of Heavy Nuclei Fission Cross-sections under Relativistic Deuterons Irradiation on the Accelerator Complex “Nuclotron” for Purposes of Transmutation and Energy Amplification neutron, detector, simulation, experiment 2221
 
  • V.V. Bukhal, A.A. Patapenka, A.A. Safronava
    JIPNR-Sosny NASB, Minsk, Belarus
  • M. Artiushenko
    NSC/KIPT, Kharkov, Ukraine
  • K.V. Husak
    The Joint Institute of Power and Nuclear Reserach - "SOSNY" NASB, Minsk, Belarus
  • S.I. Tyutyunnikov
    JINR, Dubna, Moscow Region, Russia
 
  Experimental studies of neutron spectra of three different subcritical assemblies driven by an accelerator (Accelerator Driven Systems – ADS) for investigation of the possibility of transmutation and energy amplification have been carried out. The assemblies were constructed in the framework of the international project “Energy and Transmutation of Radioactive Wastes” and experiments with them are running in the Veksler and Baldin Laboratory of High Energy Physics of the Joint Institute for Nuclear Research (Dubna, Russia) at the accelerator complex “Nuclotron”. In this paper the results of measurements of 239Pu(n, f), 235U(n, f), 238U(n, f) and 238U(n,γ) reactions cross-sections and reactions rates using solid state nuclear track detectors and activation gamma-spectroscopy are presented. A comparison of the experimental results with FLUKA calculations is given. The obtained experimental values characterize the neutron spectra in the experimental points and allow the efficiency of the ADS technology for the systems with similar parameters to be evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO110 Power Plant Based on Subcritical Reactor and Proton LINAC neutron, proton, booster, coupling 2224
 
  • A.G. Golovkina, I.V. Kudinovich, D.A. Ovsyannikov
    St. Petersburg State University, St. Petersburg, Russia
  • A.A. Bogdanov
    KSRC, St. Petersburg, Russia
 
  Nuclear power plant based on accelerator driven subcritical reactor (ADSR) is considered. Such systems demonstrate higher safety because the fission proceeds in subcritical core and necessary neutron flux is reached with external neutrons generated in target of heavy nuclides. In order to efficiently use ADSR for energy production, it’s needed the total power, generated in the reactor, to be greater than power inputs for charged particles acceleration. The plant driven by middle-energy accelerator, which is cheaper than high-energy accelerators, proposed for these purposes, is considered. So it’s necessary to find other ways to amplify reactor power outputs. Thus, the technical solution to increase power gain of small-sized power plant with a linear proton accelerator (energy 300-400 MeV, average current 5 mA) is proposed. Thermal power up to 300 MW was reached.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO111 Fusion Based Neutron Sources for Security Applications: Neutron Techniques neutron, photon, scattering, resonance 2227
 
  • S.C.P. Albright, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
 
  The current reliance on X-Rays and intelligence for national security is insufficient to combat the current risks of smuggling and terrorism seen on an international level. There are a range of neutron based security techniques which have the potential to dramatically improve national security. Neutron techniques can be broadly grouped into neutron in/neutron out and neutron in/photon out techniques. The use of accelerator based fusion devices will potentially enable to wide spread application of neutron security techniques due to the potential for much safer operation than that offered by fission or sealed tube sources. In this paper we discuss some of the neutron security techniques available and the advantages they present.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO112 Fusion Based Neutron Sources for Security Applications: Energy Optimisation neutron, proton, simulation, shielding 2230
 
  • S.C.P. Albright, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
 
  There is a growing interest in the use of neutrons for national security. The majority of work on security focuses on the use of either sealed tube DT fusors or fission sources, e.g. Cf-252. Fusion reactions enable the energy of the neutron beam to be chosen to suit the application, rather than the application being chosen based on the available neutron beam energy. In this paper we discuss simulations of fusion reactions demonstrating the broad range of energies available and methods for adapting the neutron beam energy produced by target/projectile combinations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO117 The Accumulator of the ESSnuSB for Neutrino Production linac, injection, proton, lattice 2245
 
  • E.H.M. Wildner, J. Jonnerby, J.-P. Koutchouk, M. Martini, H.O. Schönauer
    CERN, Geneva, Switzerland
  • E. Bouquerel, M. Dracos, N. Vassilopoulos
    IPHC, Strasbourg Cedex 2, France
  • T.J.C. Ekelöf, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • M. Eshraqi, M. Lindroos, D.P. McGinnis
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a research centre based on the world’s most powerful neutron source currently under construction in Lund, Sweden, using 2.0 GeV, 2.86 ms long proton pulses at 14 Hz for the spallation facility (5MW on target). The possibility to pulse the linac at 28 Hz to deliver, in parallel with the spallation neutron production, a very intense, cost effective, high performance neutrino beam. The high current in the horns of the target system for the neutrino production requires proton pulses far shorter than the linac pulse. Therefore an accumulator ring is required after the linac to produce the shorter pulses. Charge exchange injection of an H beam from the linac would be used. The Linac would deliver 1.1 1015 protons per pulse. Due to space charge limits, several rings or one ring re-filled several times during the neutrino cycle are necessary. A cost effective design of an accumulator that can handle this large number of ions will be shown, taking into account the structure of the linac pulse and the requirements of the target system. Beam dynamics issues, the injection system, the extraction and the distribution on the targets are addressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME015 High-gradient Test Results from a CLIC Prototype Accelerating Structure: TD26CC damping, linac, accelerating-gradient, vacuum 2285
 
  • W. Wuensch, A. Degiovanni, S. Döbert, W. Farabolini, A. Grudiev, J.W. Kovermann, E. Montesinos, G. Riddone, I. Syratchev, R. Wegner
    CERN, Geneva, Switzerland
  • A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The CLIC study has progressively tested prototype accelerating structures which incorporate an ever increasing number of features which are needed for a final version installed in a linear collider. The most recent high power test made in the CERN X-band test stand, Xbox-1, is a of a CERN-built prototype which includes damping features but also compact input and output power couplers, which maximize the overall length to active gradient ratio of the structure. The structure’s high-gradient performance, 100 MV/m and low breakdown rate, matches previously tested structures validating both CERN fabrication and the compact coupler design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME024 Power Coupler Manufacturing and Quality Control at CPI linac, controls, cavity, SRF 2308
 
  • S.J. Einarson, T.A. Treado
    CPI, Beverley, Massachusetts, USA
 
  CPI has been designing and manufacturing fundamental power couplers for superconducting accelerators for over a dozen years. We have manufactured approximately 200 power couplers of 16 different designs. Power coupler frequencies have ranged from 175 MHz to 3.9 GHz and power levels have ranged from 5 kW to 500 kW average power. We have developed and qualified several key manufacturing processes including a high-RRR copper plating process and a titanium nitride coating process. In addition, we have established uniform quality control and inspection processes which ensure that the power couplers will meet the requirements for the intended use in superconducting accelerators. These processes have been developed, improved and/or qualified in collaboration with colleagues at superconducting accelerator facilities throughout the world. This paper will provide an overview of these critical manufacturing and quality control processes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME078 Experimental Test of the Prototype LLRF Systems for PAL-XFEL LLRF, klystron, feedback, impedance 2462
 
  • J. Hu, H. Heo, J.H. Hong, W.H. Hwang, H.-S. Kang, H.-S. Lee, C.-K. Min
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Two prototype LLRF systems were developed in collaboration with Pohang Accelerator Laboratory(PAL) and domestic companies. They are focused on the control of single klystron system to obtain mainly analogue performance. The low power test of the developed LLRF showed good performance previously. We experimentally tested LLRF in the klystron systems to see performance in the high power situation. They showed performance around the prototype specification for short time and relatively long time. During test some bugs are discovered and fixed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME083 VELA: A New Accelerator Technology Development Platform for Industry electron, FEL, cavity, experiment 2471
 
  • P.A. McIntosh, D. Angal-Kalinin, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, B.D. Fell, A.R. Goulden, C. Hill, F. Jackson, S.P. Jamison, J.K. Jones, L.B. Jones, A. Kalinin, L. Ma, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, T.C.Q. Noakes, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, R.J. Smith, S.L. Smith, T.T. Thakker, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • N. Bliss, G. Cox, G.P. Diakun, A. Gleeson, T.J. Jones, K. Robertson, M.D. Roper, E. Snedden
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • S.T. Boogert
    Royal Holloway, University of London, Surrey, United Kingdom
  • N.J. Boulding
    FMB Oxford, Oxford, United Kingdom
  • A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • E.J. Morton
    CXR Ltd, Guildford, United Kingdom
 
  The Versatile Electron Linear Accelerator (VELA) facility will provide enabling infrastructures targeted at the development and testing of novel and compact accelerator technologies, specifically through partnership with industry and aimed at addressing applications in medicine, health, security, energy and industrial processing. The facility has now been commissioned at Daresbury Laboratory and the facility is now being actively utilised by industrial groups who are able to take advantage of the variable electron beam parameters available on VELA to either demonstrate new techniques and/or processes or otherwise develop new technologies for future commercial realisation. Examples of which to be presented include; demonstration of a new cargo scanning process, characterisation of novel, high performance beam position monitors, as well as other technology development applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI035 Stiffening Structure of the HWR at RISP cavity, simulation, controls, operation 2552
 
  • G.-T. Park, H.J. Cha, H. Kim, H.J. Kim, W.K. Kim
    IBS, Daejeon, Republic of Korea
 
  The HWR being developed in RISP, Korea is in its final stage of the design. We consider the effects of the stiffeners in the presence of the helium vessel on the various detunings such as cool down, helium pressure fluctuation, Lorentz pressure. The interaction of the stiffened cavity with the helium jacket is studied via the coupled simulation by ANSYS and the optimal specification of the stiffeners are determined. In addition, the expected frequency shift is predicted to establish the target frequency bfor the manufacturing. The effect of the vibrational motion is also studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI040 On the Optimal Design of Elliptical Superconducting Cavities cavity, coupling, simulation, diagnostics 2565
 
  • G. Costanza
    Lund University, Lund, Sweden
 
  In this paper a linear regression analysis is used to analyze the behavior of the inner cell of an elliptical cavity. The aim is to understand how the RF parameters are correlated to each other and how they are affected by the change of the geometric parameters. This is done by fitting the RF data to a linear model. The data is obtained by simulating a set of different inner cells automatically by the use of a script. The results are useful in several ways: first of all the analysis sheds light on the behavior of elliptical cavities, in particular on its limitations. The analysis is carried out in the framework of optimal design so it is useful for the cavity designer since it allows to choose the geometry at an early stage of the design. It is also possible to make predictions on the performance of the cavity which are in very good agreement with the simulations. Such predictions facilitate the design of the accelerator when choosing the type and number of cavities and when writing the specifications for the cavities to be used in the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI043 Implementation of Carbon Thin Film Coatings in the Super Proton Synchrotron (SPS) for Electron Cloud Mitigation dipole, electron, quadrupole, cathode 2574
 
  • P. Costa Pinto, T.C. Basso, A. Bellunato, P. Edwards, M. Mensi, A. Sublet, M. Taborelli
    CERN, Geneva, Switzerland
 
  Low Secondary Electron Yield (SEY) carbon thin films get rid of electron multipacting in accelerator beam pipes. Two magnetic cells of the SPS were coated with such material and installed. In total more than forty vacuum vessels and magnet interconnections were treated. The feasibility of the coating process was validated. The performance of the carbon thin film will be tested with LHC nominal beams after the end of the long shutdown 1. Particular attention will be drawn to the long term behaviour. This paper presents the sputtering techniques used to coat the different components; their characterization (SEY measurements on coupons, RF multipacting tests and pump down curves); and the technology to etch the carbon film in case of a faulty coating. The strategy to coat the entire SPS will also be exposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI094 Conceptual Design Study of the High Luminosity LHC Recombination Dipole dipole, luminosity, operation, insertion 2712
 
  • G.L. Sabbi, X. Wang
    LBNL, Berkeley, California, USA
  • G. Arduini, M. Giovannozzi, E. Todesco
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the U.S. DOE LHC Accelerator Research Program. The HiLumi LHC Design Study is partly funded by the European Commission within the Framework Programme 7.
The interaction region design of the High-Luminosity LHC requires replacing the recombination dipole magnets (D2) with new ones. The preliminary specifications include an aperture of 105 mm, with 186 mm separation between the twin-aperture axes, and an operating field in the range of 3.5 to 4.5 T. The main design challenge is to decouple the magnetic field in the two apertures and ensure good field quality. In this paper, we present a new approach to address these issues, and provide expected harmonics for geometric, saturation and persistent current effects. The feasibility of an operating field at the high end of the range considered is also discussed, to minimize the D2 magnet length and facilitate the space allocation for other components.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI096 Mu2e Magnetic Measurements solenoid, detector, electron, experiment 2719
 
  • M. Buehler, M.A. Tartaglia, J.C. Tompkins
    Fermilab, Batavia, Illinois, USA
  • C.R. Orozco
    University of Illinois at Urbana-Champaign, Illinois, USA
 
  The Mu2e experiment at Fermilab is designed to explore charged lepton flavor violation by searching for muon-to-electron conversion. The magnetic field generated by a system of solenoids is crucial for Mu2e and requires accurate characterization to detect any flaws and to produce a detailed field map. Stringent physics goals are driving magnetic field specifications for the Mu2e solenoids. A field mapper is being designed, which will produce detailed magnetic field maps. The uniform field region of the spectrometer volume requires the highest level of precision (1 Gauss per 1 Tesla). During commissioning, multiple magnetic field maps will be generated to verify proper alignment of all magnet coils, and to create the final magnetic field map. In order to design and build a precise field mapping system consisting of Hall and NRM probes, tolerances and precision for such a system need to be evaluated. In this paper we present a design for the Mu2e field mapping hardware, and discuss results from OPERA-3D simulations to specify parameters for Hall and NMR probes. We also present a fitting procedure for the analytical treatment of our expected magnetic measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI099 Testing of a Single 11 T Nb3Sn Dipole Coil Using a Dipole Mirror Structure dipole, quadrupole, pick-up, instrumentation 2728
 
  • A.V. Zlobin, N. Andreev, E.Z. Barzi, G. Chlachidze, V.V. Kashikhin, A. Nobrega, I. Novitski, D. Turrioni
    Fermilab, Batavia, Illinois, USA
  • M. Karppinen, D. Smekens
    CERN, Geneva, Switzerland
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and European Commission under FP7 project HiLumi LHC, GA no.284404
FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI109 The ESS Cryogenic System cryogenics, cryomodule, linac, neutron 2756
 
  • P. Arnold, J. Fydrych, W. Hees, J.M. Jurns, X. Wang, J.G. Weisend
    ESS, Lund, Sweden
 
  Cryogenic cooling is vital for large sections at ESS. The ESS cryogenic system comprises three separate helium refrigeration/liquefaction plants and an extensive cryodistribution system. Mainly there is a 2.0 GeV proton linac using superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used for the cold hydrogen moderator surrounding the target. There is also a cryogenic installation associated with the site acceptance testing of the ESS cryomodules. ESS furthermore uses both liquid helium and liquid nitrogen in a number of the neutron instruments. The test stand cryoplant will as well provide liquid helium for neutron instrument sample environments and comprise a helium purification unit. Together with the gas management, helium recovery and a considerable cold and warm storage system, cryogenics form a substantial part of ESS. This paper describes the current conceptual design of the ESS cryogenic system including the expected heat loads and operating modes for the linac cryoplant. Challenges associated with the required high efficiency, reliability and turn-down capability will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAB02 Options for UK Technetium-99m Production using Accelerators cyclotron, neutron, linac, proton 2815
 
  • H.L. Owen
    UMAN, Manchester, United Kingdom
  • J.R. Ballinger
    KCL, London, United Kingdom
  • J. Buscombe
    Addenbrooke's Hospital, Cambridge, United Kingdom
  • R.J. Clarke
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • E. Denton
    Norfolk and Norwich University Hospital, Norwich, United Kingdom
  • B. Ellis
    Central Manchester University Hospital, Manchester, United Kingdom
  • G.D. Flux
    Royal Marsden NHS Foundation Trust, London, United Kingdom
  • L. Fraser
    PHE, London, United Kingdom
  • B.J. Neilly
    University of Glasgow, Glasgow, United Kingdom
  • A. Paterson
    The Society of Radiographers, London, United Kingdom
  • A. Perkins
    University of Nottingham, Nottingham, United Kingdom
  • A.F. Scarsbrook
    Leeds Teaching Hospitals NHS Trust, St James's University Hospital, Leeds, United Kingdom
 
  Recent and ongoing shortages in reactor-based supplies of Molybdenum-99 for hospital production of the important medical radioisotope Technetium-99m have prompted the re-examination of the alternative production methods using conventional and laser-based particle accelerators. At present the UK has no domestic Technetium-99m production and relies exclusively on Technetium-99m generators manufactured overseas; the National Health Service, with professional partners, is therefore examining the options for domestic production to increase security of supply. In this paper we review the accelerator-based methods from a UK perspective, and outline the most promising methods for short- and medium-term supply, which include low-energy cyclotron and photonuclear reaction routes using enriched Molybdenum-100 targets.  
slides icon Slides THOAB02 [38.942 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAB03 A High Resolution Spatial-temporal Imaging Diagnostic for High Energy Density Physics Experiments electron, scattering, proton, diagnostics 2819
 
  • W. Gai
    ANL, Argonne, Illinois, USA
  • S. Cao, H.S. Xu, W.-L. Zhan, Z.M. Zhang, Y.T. Zhao
    IMP, Lanzhou, People's Republic of China
  • J.Q. Qiu
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • C.-X. Tang
    TUB, Beijing, People's Republic of China
 
  We present a scheme that uses a high energy electron beam as a probe for time resolved (~ pico – nano seconds) imaging measurements of high energy density processes in materials with spatial resolution of < 1 μm. The device uses an electron bunch train with a flexible time structure penetrating a time varying high density target. By imaging the scattered electron beam, the detailed target profile and its density evolution can be accurately determined. In this paper, we discuss the viability of the concept and show that for densities in the range up to 400 gram/cm3, an electron beam consisting of a train of ~800 MeV bunchlets, each a few ps long and with charges ~nC is suitable. Successful demonstration of this concept will have a major impact for both future fusion science and HEDP physics research.  
slides icon Slides THOAB03 [2.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBB03 Novel Device for In-situ Thick Coatings of Long, Small Diameter Accelerator Vacuum Tubes cathode, vacuum, electron, plasma 2834
 
  • A. Hershcovitch, M. Blaskiewicz, J.M. Brennan, W. Fischer, C.J. Liaw, W. Meng, R.J. Todd
    BNL, Upton, Long Island, New York, USA
  • A.X. Custer, A.A. Dingus, M.Y. Erickson, N.Z. Jamshidi, R.R. Laping, H.J. Poole
    PVI, Oxnard, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To alleviate the problems of unacceptable ohmic heating and of electron clouds, a 50 cm long cathode magnetron mole was fabricated and successfully operated to copper coat an assembly containing a full-size stainless steel cold bore RHIC magnet tubing connected to two types of RHIC bellows, to which two additional RHIC tubing pipes were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with rather challenging target to substrate distance of less than 1.5 cm. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water are fed through a motorized spool driven umbilical cabling system, which is enclosed in a flexible braided metal sleeve. Optimized process to ensure excellent adhesion was developed. Coating adhesion of 10 μm Cu surpassed all industrial tests; exceeded maximum capability of a 12 kg pull test fixture. Details of experimental setup for coating two types of bellows and a full-scale magnet tube sandwiched between them will be presented.
 
slides icon Slides THOBB03 [2.033 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOBB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO006 Configuration Management in the Series Production of the XFEL Accelerator Modules cryomodule, controls, status, cavity 2863
 
  • L. Hagge, S. Barbanotti, S. Eucker, A. Frank, K. Jensch, J. Kreutzkamp, D. Käfer, A. Matheisen
    DESY, Hamburg, Germany
  • S. Berry, O. Napoly
    CEA/DSM/IRFU, France
  • C. Cloué, C. Madec, T. Trublet
    CEA/IRFU, Gif-sur-Yvette, France
 
  The series production of the superconducting accelerator modules for the European XFEL requires a production rate of one module per week. For this, assembly procedures have to be well-defined and repeatable, and the punctual supply of parts from the contributing institutes has to be assured. Configuration management (CM) has been introduced for clarification of responsibilities and establishing procedures. CM provides unique identification of parts, part status and location tracking, versioning of documentation, and procedures for change control, auditing and handling non-conformities. The configuration database, which is based on DESY’s Engineering Data Management System, contains the entire information which is necessary for assembling the accelerator modules. The content ranges from work instructions how to build a cryomodule up to individual records of all produced parts. Workflow and reports help tracking production progress and establishing production quality. The presentation gives an overview of the CM solution which is in place for the assembly of the XFEL accelerator modules, and reports experience and lessons learned from series production of the first modules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO065 De-coherence Study of Betatron Oscillation for the Beam Shape Manipulation synchrotron, betatron, lattice, radiation 3026
 
  • Y. Shoji
    LASTI, Hyogo, Japan
 
  In electron storage ring a temporal perturbation to the beam makes spatial structure in a bunch, which emit short X-ray or coherent THz radiation. For this technique of bunch shape manipulation, it is important to reduce unwanted de-coherence of betatron motion, which would break the intended spatial structure. At NewSUBARU, 1.5 GeV storage ring, we kicked the beam using a vertical fast kicker and investigated the de-coherence of betetron oscillation using mainly a dual-sweep streak camera. The largest is the Landau damping by a well-known chromatic tune spread, although the phase spread comes back to zero at after a synchrotron oscillation period. On the other hand, there exists several non-linear effects, which makes accumulation of the oscillation phase spread. These are, horizontal betatron amplitude dependent vertical tune shift, synchrotron oscillation amplitude dependent synchrotron tune shift, non-linear chromaticity, synchrotron oscillation chromaticity (non-symmetry of rf bucket), longitudinal radiation excitation process, and others. The tuning knobs we had was some sets of non-linear magnets up to octupole and the rf voltage.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME023 CPHS Linac Status at Tsinghua University rfq, linac, neutron, operation 3268
 
  • Q.Z. Xing, C. Cheng, L. Du, T. Du, X. Guan, C. Jiang, X.W. Wang, H.Y. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • W.Q. Guan, Y. He, J. Li
    NUCTECH, Beijing, People's Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (Major Research Plan Grant No. 91126003 and 11175096).
We present, in this paper, the operation status of the 3 MeV high current proton Linac for the Compact Pulsed Hadron Source (CPHS) at Tsinghua University. Proton beam with the peak current of 30 mA, pulse length of 100 μs and repetition rate of 50 Hz has been delivered to the Beryllium target to produce the neutron since July 2013. The pulse length will be further increased to 500 μs. The proton beam energy is expected to be enhanced to the designed value of 13 MeV after the Drift Tube Linac is ready in 2015.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME043 The ESS Linac linac, rfq, proton, quadrupole 3320
 
  • M. Eshraqi, H. Danared, R. De Prisco, M. Lindroos, D.P. McGinnis, R. Miyamoto, M. Muñoz, A. Ponton, E. Sargsyan
    ESS, Lund, Sweden
  • I. Bustinduy
    ESS Bilbao, Bilbao, Spain
  • L. Celona
    INFN/LNS, Catania, Italy
  • M. Comunian, F. Grespan
    INFN/LNL, Legnaro (PD), Italy
  • S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
 
  The European Spallation Source, ESS, uses a linear accelerator to bombard the tungsten target with the high intensity protons beam for producing intense beams of neutrons. The nominal average beam power of the linac is 5~MW with a peak beam power at target of 125~MW. During last year the ESS linac was costed, and to meet the budget a few modifications were introduced to the linac design. One of the major changes is the reduction of final energy from 2.5~GeV to 2.0~GeV and therefore beam current was increased accordingly to compensate for the lower final energy. As a result the linac is designed to meet the cost objective by taking a higher risk. This paper focuses on the driving forces behind the new design, engineering and beam dynamics requirements of the design and finally on the beam dynamics performance of the linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME060 Malfunction, Cause and Recurrence Prevention Measures of J-PARC Slow Extraction extraction, power-supply, quadrupole, controls 3370
 
  • M. Tomizawa, T. Kimura, H. Nakagawa, K. Okamura
    KEK, Ibaraki, Japan
 
  The radiation leakage accident occurred at the J-PARC hadron experimental hall in May 2013 was triggered by a target damage due to an unanticipated short beam pulse from J-PARC main ring. An extremely short beam pulse was produced by a rapid current increase of the quadrupole (EQ) power supply system for a spill feedback. A simulation with the slow extraction process could explain such a short beam pulse generation. The cause of the malfunction has been identified by an intensive investigation of the EQ power supply system performed after the accident. We will show measures to prevent recurrence.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME061 Present Status of J-PARC - after the Shutdown due to the Radioactive Material Leak Accident- linac, operation, power-supply, injection 3373
 
  • T. Koseki
    KEK, Ibaraki, Japan
  • K. Hasegawa
    JAEA/J-PARC, Tokai-mura, Japan
 
  In J-PARC, a radioactive material leak accident occurred at the Hadron Experimental Facility on May 23, 2013. The accident was triggered by a malfunction of the slow extraction system of the Main Ring synchrotron. After seven-month long shutdown due to the accident, beam operation of the linac was restarted in December 2013. In this paper, the most recent status of the beam operation is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME067 Air Stripper for Intense Heavy Ion Beams ion, cyclotron, heavy-ion, acceleration 3388
 
  • H. Imao
    RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, Japan
  • M. Fujimaki, N. Fukunishi, H. Hasebe, O. Kamigaito, M. Kase, H. Kuboki, H. Okuno, Y. Yano
    RIKEN Nishina Center, Wako, Japan
 
  Intensity upgrade of very heavy ions such as uranium or xenon beams is one of the main concerns at the RIKEN Radioactive Isotope Beam Factory (RIBF). The lifetime problem of carbon-foil strippers due to the high energy loss of beams was a principal bottleneck for the intensity upgrade. We have already developed and successfully operated a re-circulating He-gas stripper for 10-MeV/u uranium beams as an alternative to carbon foils. Recently, the 2nd gas stripper with air dedicated for 50-MeV/u 124Xe beams was developed. The differential pumping techniques similar to that used in the He gas stripper was applied. We confined a very thick gas target, up to 20~mg/cm2 of air, in a 0.5-m target chamber. One good feature of using air is that it can be inexhaustible for our use. The stripper was stably operated in user runs performed in June 2013. The service rate reached 91\%. The maximum beam intensity reached 38~pnA and the average intensity provided to users becomes approximately four times higher than it was in 2012. The down-time free gas strippers greatly contributed to these improvements. We also discuss the applicability of the air stripper to 50-MeV/u 238U beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME076 Oscillating Wire as a “Resonant Target” for Beam Transversal Gradient Investigation laser, photon, experiment, scattering 3412
 
  • S.G. Arutunian, A.V. Margaryan
    ANSL, Yerevan, Armenia
 
  Measurements of reflected/generated on oscillating wire secondary particles/photons in synchronism with oscillating wire frequency are proposed to done. The differential signal on wire maximal deviations at oscillation process can provide a fast signal proportional to beam profile gradient. Idea of usage of such “Resonant Target” for beam transversal gradient investigation was tested with lightening the oscillating wire by a laser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME102 Beam-based Tests of Intercepting Transverse Profile Diagnostics for FAIR extraction, ion, proton, detector 3480
 
  • P. Forck, C.A. Andre, C. Dorn, R. Haseitl, S. Lederer, A. Lieberwirth, S. Löchner, A. Reiter, M. Schwickert, T. Sieber, B. Walasek-Höhne, M. Witthaus
    GSI, Darmstadt, Germany
  • W. Ensinger, S. Lederer, A. Lieberwirth
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Partly funded by German Ministry of Science (BMBF), contract number 05P12RDRBJ.
The FAIR facility will serve as a versatile accelerator for ions of energies between 100 MeV/u and 29 GeV/u with an intensity variation over more than 6 orders of magnitude. In the transport lines the transverse profile determination will be based mainly on intersecting methods: Scintillations screens, SEM-Grids, Multi-Wire-Proportional Chambers and possibly Optical Transition Radiation screens. The devices are tested at the existing SIS18 at GSI where ions are ex-tracted either in a fast mode (about 1 mus) or resonant mode within about typically 0.3 s. The imaging properties of scintillation screens of different materials (ceramics, phosphor screens and single crystals) with ion beams with energies above 300 MeV/u were investigated. Over intensities 105 to 109 particles per pulse the light yield for the screens is linear with respect to the ion intensity. Moreover, the radiation resistance of the screens was tested. The applicability of optical transition radiation for beams of velocities below 90%c was investigated systematically with heavy ions. The experimental results are compared to wire-based methods obtained with SEM-Grids and MWPCs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME115 EUV Radiation Generated by a 5.7 MeV Electron Beam in Multilayer Periodical Structure radiation, electron, experiment, photon 3503
 
  • S.R. Uglov, A. Potylitsyn, L.G. Sukhikh, A.V. Vukolov
    TPU, Tomsk, Russia
  • G. Kube
    DESY, Hamburg, Germany
 
  Funding: This work was partly supported by the by the Ministry of Education Science of the Russian Federation, contract 2.1799.2011.
Recent experience from linac based FELs like LCLS or FLASH shows that transverse beam imaging based on optical transition radiation (OTR) might fail due to coherence effects in the OTR emission process. In order to overcome the problem it was proposed to use transition radiation (TR) in the EUV region*. For a reliable beam diagnostics however, an increase of the light output in the EUV region is required. One possibility to increase the radiation yield in the geometry of interest (target tilt angles 22.5 or 45 degrees) is to exchange the conventional monolayer target by a multilayer structure which acts as a multilayer X-ray mirror for EUV radiation. In this case, two radiation components are expected to contribute to the measured signal, diffracted transition radiation (DTR) and parametric radiation (PR)**. In this report we present results of an experimental investigation of EUV TR generated by a 5.7 MeV electron beam at monolayer and multilayer targets. The angular characteristics of the radiation was investigated and compared with theoretical models.
* L.G. Sukhikh, S. Bajt, G. Kube et al., in Proc. IPAC'12, MOPPR019, New Orleans, Louisiana, USA, p.819 (2012)
** N.Nasonov, V.Kaplin, S.Uglov, e al., Phys. Rev. E 68 (2003) 036504
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME119 Transverse emittance measurement at REGAE emittance, electron, diagnostics, simulation 3515
 
  • S. Bayesteh
    Uni HH, Hamburg, Germany
  • H. Delsim-Hashemi, K. Flöttmann
    DESY, Hamburg, Germany
 
  A new linac, named REGAE (Relativistic Electron Gun for Atomic Exploration) has been built at DESY and operates as an electron source for ultra-fast electron diffraction. An RF photocathode gun provides electron bunches of high coherence, sub-pC charge and energies of 2-5 MeV. In order to film time-resolved structural changes of excited specimens, bunch lengths of several femtoseconds need to be created. Taking into account these critical parameters, beam diagnostics at REGAE is very challenging. The existing diagnostics consists of energy, energy spread, beam profile, beam charge and emittance measurements. For transversal diagnostics, specific approaches have to be considered to overcome complications associated with the low charge and to carry out the beam diagnostics in single shot. In this paper, the contribution of the transversal diagnostics to the measurement of the transverse emittance is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME142 Design of the Beam Profile Monitors for THz Source Based FEL controls, FEL, linac, LabView 3584
 
  • J. Liu, P. Lu, B.G. Sun, K. Tang, J.G. Wang, J. Xu, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Design of the Beam Profile Monitors for THz Source Based FEL* J. Liu, P. Lu, B. G. Sun#, Y. J. Pei, Y. L. Yang, Z.R. Zhou, J. G. Wang, K. Tang, J. Xu NSRL, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China Abstract To meet requirements of high performance THz-FEL, a compact FEL facility was proposed. In order to characterize the beam, some beam profile monitors were designed. There are four flags for beam profiles in Linac,one pop-in monitor for high precision beam profile inside a small-gap undulator, and two screens to measure the beam energy spread and emittance of Linac. On one hand, we need to use software to control the position of these profile monitors, on the other hand, we need screens to display the results. This paper describes how to design and control these monitors, as well as how to measure the beam parameter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME142  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME156 Convergent Cherenkov Radiation from Dielectric Targets radiation, optics, vacuum, FEL 3626
 
  • S.N. Galyamin, E.S. Belonogaya, A.V. Tyukhtin, V.V. Vorobev
    Saint-Petersburg State University, Saint-Petersburg, Russia
  • E.S. Belonogaya
    LETI, Saint-Petersburg, Russia
 
  Funding: Work was supported by the Grant of the President of Russian Federation (No. 273.2013.2).
Cherenkov radiation is a convenient tool for charged particle detection and bunch diagnostics. However, due to the complexity of real radiator geometry, different approximate techniques are elaborated for investigation of excited radiation*. Here we develop recently reported** approximate method for calculating Cherenkov radiation of a charge flying near a dielectric target having two main boundaries (the first interacts with a charge field and the second mainly refracts a generated radiation). We focus on cases where the radiation outside the target is convergent and use two methods for field investigation: ray optical technique and aperture integration technique. First, we deal with the case of a conical target with a vacuum channel. Under certain conditions, this radiation is concentrated near the line being the symmetry axis of the target. Second, we find the specific shape of the target that concentrates radiation in a small vicinity of given point (focus). Such targets can be used for improvement of detectors and bunch diagnostics systems based on Cherenkov effect.
*A.P. Potylitsyn et al., Diffraction Radiation from Relativistic Particles, STMP 239 (Springer, 2010).
**E.S. Belonogaya, A.V. Tyukhtin, S.N. Galyamin, Phys. Rev. E, 87, 043201 (2013).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME156  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME158 Coherent Diffraction and Cherenkov Radiation from Short Electron Bunches in Fibers radiation, electron, experiment, polarization 3632
 
  • G.A. Naumenko, V.V. Bleko, A. Potylitsyn, V.V. Soboleva
    TPU, Tomsk, Russia
 
  Funding: This work is particularly supported by grant of Russian MES Program "Nauka" number 2456
The ability to use a radiation of relativistic electrons in optical fibers for beam diagnostics was proposed by X. Artu recently *. In the cited work the properties of different types of radiation, such as diffraction and Cherenkov radiation in the visible region, induced in fibers by relativistic electron were considered. In our report we present the results of experimental investigation of such a phenomenon for millimeter wavelength radiation. The origin and properties of radiation in fibers were investigated for different geometries of fiber position in respect to the electron beam. The spectral characteristics and dependence on the orientation angle of fibers relative to the electron beam were investigated. One of the useful properties of fibers is the fiber flexibility. The characteristics of radiation accepted by flexible fiber with diameter D=11 mm and length L=600 mm were investigated as a function of curvature radius of the fiber R. The experimental results show the allowable transport factor of radiation for the condition L>R>>D. We believe that fibers for mm and submm range can be used for beam diagnostics also.
* X Artru and C. Ray, Nucl. Inst. Meth. B 309 (2013)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME158  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME159 Double Diffraction Radiation Target Interferometry for Micro-train Beam Diagnostics radiation, electron, diagnostics, detector 3635
 
  • D.A. Shkitov, A. Potylitsyn
    TPU, Tomsk, Russia
  • A.S. Aryshev, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by grant of Russian Ministry of Education and Science program “Nauka” number 2.1799.2011.
Recently our group starts to investigate a feasibility of double diffraction radiation (DR) target interferometry for non-invasive micro-train beam diagnostics at KEK: LUCX facility. Double DR target consists of two metal plates and one of them can be moved relative to another along the beam trajectory. Micro-train beam is a sequence of short electron bunches with sub-ps spacing. As it was shown* double DR target can be used for such a beam diagnostics measuring DR yield versus plates displacement. The obtained tuning curve (interferogram) allows to determine a number of bunches within the micro-train and spacing between them. In order to design a reliable device for this aim we have to take into account different double DR target interferometer plate’s adjustment inaccuracies. These inaccuracies can be as follows: inaccuracies in the mutual adjustment of plates tilt angles to the beam trajectory, outer plate edge shift along the beam trajectory and other. The influence of the bunch form-factor shape is also considered. We investigated double DR target preparation accuracy requirements in order to minimize measurements uncertainties and increase interferometer resolution.
* Skitov D.A. et. al., J. Phys.: Conf. Ser. 517, 012024 (2014).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME159  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME163 Beam Size and Emittance Reconstruction in the RMTL of Future Linear Colliders emittance, diagnostics, optics, coupling 3647
 
  • A. Faus-Golfe, J. Resta-López
    IFIC, Valencia, Spain
 
  Funding: Work supported by FPA2010-21456-C02-01
Precise and fast beam size measurement and emittance reconstruction in the different subsystems and transfer lines of the Future Linear Colliders (ILC and CLIC) will be essential for beam tuning in order to achieve the required luminosity. In this paper we investigate the feasibility of using a multi-Optical Transition Radiation (m-OTR) system for fast transverse beam size measurement, emittance reconstruction and coupling correction in the Ring to Main Linac (RTML) of the FLCs. Diagnostic sections of the RTML have been matched to the optimum optical conditions for emittance reconstruction. The necessary requirements for the OTR monitors to be placed in the RTML are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME163  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME168 Proton Beam Imaging Options for the ESS Target proton, radiation, optics, neutron 3659
 
  • C.A. Thomas, T.J. Grandsaert, M. Göhran, R. Linander, T.J. Shea
    ESS, Lund, Sweden
 
  Conceptual design of an imaging system for the ESS proton beam current density on target is presented. The window separating the linac HV from the 1bar He-filled target station will be used as a source for imaging by means of either OTR or luminescence. The system presents many challenges to be addressed. The window and the primary optics will be exposed to extremely high radiation doses, providing heat cycles and mechanical stresses near the engineering limits, but also may change the surface properties of the window and the optics. The window lifetime expected to be less than 1 year will have to be replace bi-annually, imposing remote handling design for the window but also for part of the optics. In addition, the imaging system should be able to form an image from low to high current beam operations, in order to retrieve beam profile distribution and power density distribution of both static and raster beam, imposing a large numerical aperture (NA), but also to transport the image at more than 15m distance where radiation level is compatible with camera and pc stable operation and human access during commissioning and neutron production.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME168  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME175 A Beam Gas Vertex Detector for Beam Size Measurement in the LHC detector, injection, simulation, luminosity 3680
 
  • P. Hopchev, V. Baglin, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, C. Gaspar, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, N.J. Jurado, V. Kain, M. Kuhn, B. Luthi, P. Magagnin, R. Matev, N. Neufeld, J. Panman, M.N. Rihl, V. Salustino Guimaraes, B. Salvant, R. Veness, E. van Herwijnen
    CERN, Geneva, Switzerland
  • A. Bay, F. Blanc, S. Gianì, G.J. Haefeli, T. Nakada, B. Rakotomiaramanana, O. Schneider, M. Tobin, Q.D. Veyrat, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, W. Karpinski, T. Kirn, S. Schael, G. Schwering, M. Wlochal, A. von Dratzig
    RWTH, Aachen, Germany
  • R. Matev
    Sofia University St. Kliment Ohridski, Faculty of Physics, Sofia, Bulgaria
 
  The Beam Gas Vertex (BGV) detector is foreseen as a possible non-invasive beam size measurement instrument for the LHC and its luminosity upgrade. This technique is based on the reconstruction of beam gas interaction vertices, where the charged particles produced in inelastic beam gas interactions are measured with high-precision tracking detectors. The design studies and expected performance of the currently developed BGV prototype will be presented with an overview given of the associated vacuum, detector, and readout systems. A brief description will be given of the BGV Monte Carlo simulation application, which is based on the LHCb computing framework (Gaudi) and allows simulation studies to be performed and online event reconstruction algorithms to be developed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME175  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME178 Status of the CLIC/CTF Beam Instrumentation R&D diagnostics, beam-diagnostic, radiation, controls 3690
 
  • M. Wendt, A. Benot-Morell, B.P. Bielawski, L.M. Bobb, E. Bravin, T. Lefèvre, F. Locci, S. Magnoni, S. Mazzoni, R. Pan, J.R. Towler, E.N. del Busto
    CERN, Geneva, Switzerland
  • T. Aumeyr, S.T. Boogert, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • W.A. Gillespie, D.A. Walsh
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • S.P. Jamison
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Lyapin, J. Snuverink
    JAI, Egham, Surrey, United Kingdom
  • J.M. Nappa, S. Vilalte
    IN2P3-LAPP, Annecy-le-Vieux, France
 
  The Compact Linear Collider (CLIC) is an e+/e collider based on the two-beam acceleration principle, proposed to support precision high-energy physics experiments in the energy range 0.5-3 TeV. To achieve a high luminosity of up to 6e34cm-2s−1, the transport and preservation of a low emittance beam is mandatory. A large number and great variety of beam diagnostics instruments is foreseen to verify and guarantee the required beam quality. We present the status of the beam diagnostics developments and experimental results accomplished at the CLIC Test Facility (CTF), including new ideas for simplification and cost reduction of the CLIC beam instrumentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME178  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME189 Simulation Studies of Diffraction Radiation radiation, electron, simulation, damping 3722
 
  • T. Aumeyr, R. Ainsworth, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • M.G. Billing
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • L.M. Bobb, B. Bolzon, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
 
  Transition Radiation (TR) and Diffraction Radiation (DR) are produced when a relativistic charged particle moves through a medium or in the vicinity of a medium respectively. The target atoms are polarised by the electric field of the charged particle, which then oscillate thus emitting radiation with a very broad spectrum. The spatial-spectral properties of TR/DR are sensitive to various electron beam parameters. Several projects aim to measure the transverse (vertical) beam size using TR or DR. This paper reports on recent studies using Zemax, presenting studies on finite beam sizes and the orientation of the beam ellipse.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME189  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME192 Assembly and Installation of Beam Instrumentation for the ASTA Front-end Diagnostic Table diagnostics, laser, gun, electron 3732
 
  • D.J. Crawford, R. Andrews, B.J. Fellenz, D. Franck, T.W. Hamerla, J. Ruan, D. Snee
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Early stages of commissioning the Advanced Superconducting Test Accelerator (ASTA) at Fermilab have begun. The Front-end consists of a 1.5 cell normal conducting RF gun resonating at 1.3 GHz with a gradient of up to 40 MV/m, a cesium telluride cathode for photoelectron production, a pulsed 264 nm ultra-violet (UV) laser delivery system, and a Diagnostic Table upon which instrumentation is mounted for measuring the characteristics of the photoelectron beam. We report on the design, construction, and early experience with the Diagnostic Table.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME192  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME201 Survey Network of NESTOR Facility survey, alignment, storage-ring, network 3754
 
  • O. Bezditko, V.E. Ivashchenko, I.M. Karnaukhov, A. Mytsykov, O.V. Ryezayev, A.Y. Zelinsky
    NSC/KIPT, Kharkov, Ukraine
 
  For successful operation of X-ray source NESTOR it is necessary that all the focusing elements should be installed in design position according to the designed lattice, which should provide a low emittance value and small beam size at the interaction point . Accuracies of NESTOR electromagnetic elements installation are 100 mkm in the transverse coordinate, 200 mkm in the longitudinal coordinate and 200 mrad for all three rotation freedom. To achieve these objectives coordinate net, which allows us to align the elements, was designed and developed in the hall of the NESTOR storage ring. The whole process is controlled by means of optical instruments and theodolite 3T2KP with angular accuracy of 2" and laser meter system LMS - 100, which measure the distance with micron accuracy. The final errors budget consists of the accuracy of the measuring instruments, the quality of elements manufacture and assembling. A well-planned methodology allows to realize the design parameters of the X-ray generator "NESTOR " and was proved by experiments of the facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME201  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI020 Availability Studies for Linac4 and Machine Protection Requirements for Linac4 Commissioning linac, operation, hardware, ion 3807
 
  • A. Apollonio, S. Gabourin, C. Martin, B. Mikulec, B. Puccio, J.L. Sanchez Alvarez, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
 
  Linac4 is one of the key elements in the upgrade program of the LHC injector complex at CERN, assuring beams with higher bunch intensities and smaller emittance for the LHC and many other physics experiments on the CERN site. Due to the demand of continuous operation, the expected availability of Linac4 needs to be carefully studied already during its design phase. In this paper an overview of the relevant systems impacting on Linac4 machine availability is given: the various system failure modes are outlined as well as their impact on the total yearly machine downtime. Machine Protection Systems (MPS) play a significant role in reducing the risk associated to each failure mode and are therefore important for reaching the target availability. The Linac4 MPS requirements, with particular focus on the different commissioning phases, are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI024 Finding Your Happy-User-Index operation, proton, feedback, electron 3816
 
  • A. Lüdeke
    PSI, Villigen PSI, Switzerland
 
  Reliability is defined as the ability of a system or component to perform its required functions under stated conditions for a specified period of time. If we are talking about accelerator reliability then we have to know what the required functions are. Many accelerator facilities restrict their analysis to the beam availability: how reliable is beam provided to the users? We will show that this metrics is often not fully adequate. Specific metrics can be much more useful to allow you to optimize your facility to the needs of your users. The three accelerator user facilities at PSI will serve as examples for these happy-user-indexes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI060 Conceptual Design of an Electromagnetic Driven Undulator Based Positron Target System for ILC gun, positron, vacuum, photon 3908
 
  • W. Gai, W. Liu
    ANL, Argonne, Illinois, USA
 
  There have been intense activities on development of the fast spinning Ti wheel positron target for ILC in the last few years. As in many high power target design, it requires solutions for many technical challenges, such as vacuum, thermal stress and radiation damage control, just to name a few. Due to the unique beam timing structure, in this paper, we present a target system based on a electromagnetic mechanical system that drives a bullet type Ti slug (~ 1.4x1.4x10 cm, weigh ~ 50 g) as the target system. The mechanism is similar to a reloadable EM rail gun driven projectiles. The system can be compact, vacuum isolated, and ease of cooling. Conceptual design layout and parameter estimations are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI081 A Transverse Electron Target for Heavy Ion Storage Rings ion, electron, quadrupole, ion-source 3958
 
  • S. Geyer, O.K. Kester, O. Meusel
    IAP, Frankfurt am Main, Germany
  • O.K. Kester
    GSI, Darmstadt, Germany
 
  A transverse electron target already constructed is under investigation for the application in storage rings at the FAIR facility. Using a sheet beam of free electrons in a crossed beam geometry promises a high energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width of 5 mm in the interaction region with electron densities of up to 109 electrons/cm3. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV and a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions. Also the ion optical behaviour of the target was investigated numerically. The target is integrated in a test bench to study the performance of the electron gun and the electron beam optics. The installed volume ion source delivers light ions and molecules for characterization of the target performance by measuring charge changing processes. Subsequently the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements. An overview of the project status will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI082 Power Upgrade Studies for the ISIS-TS1 Spallation Target neutron, proton, embedded, shielding 3961
 
  • C. Bungau, A. Bungau, R. Cywinski, T.R. Edgecock
    University of Huddersfield, Huddersfield, United Kingdom
 
  ISIS is one of the world's most powerful spallation neutron sources for the study of material structures and dynamics. Currently ISIS has two spallation targets, TS1 operating at proton beam powers of up to 200kW, and TS2 operating to 45kW. This paper focuses upon an upgrade study of TS1 with the goal of increasing the ultimate operating power to 1 MW and beyond. During this study we have taken into consideration the necessity of maintaining the spallation neutron pulse width at current values. The increased heat deposition was monitored and the target plates dimensions were modified to take this into account.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI083 Target Design for the ISODAR Neutrino Experiment neutron, proton, shielding, cyclotron 3964
 
  • A. Bungau, R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • J.R. Alonso, L.M. Bartoszek, J.M. Conrad, M. Moulai
    MIT, Cambridge, Massachusetts, USA
  • M. Shaevitz
    Columbia University, New York, USA
 
  This paper focuses on the design of a high-intensity antineutrino source from the production and subsequent decay of Li8. The Geant4 code is used to calculate the anti-neutrino flux that can be obtained along with the production of undesirable contaminants. We present in this paper the optimised design for the target, moderators, reflector and shielding. Engineering issues associated with this design are also discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI085 Target Station Design for the Mu2e Experiment solenoid, proton, radiation, remote-handling 3970
 
  • V.S. Pronskikh, G. Ambrosio, M.R. Campbell, R.N. Coleman, G. Ginther, V.V. Kashikhin, K.J. Krempetz, M.J. Lamm, A. Lee, A.F. Leveling, N.V. Mokhov, V.P. Nagaslaev, A.M. Stefanik, S.I. Striganov, S.J. Werkema
    Fermilab, Batavia, Illinois, USA
  • L.M. Bartoszek
    Bartoszek Engineering, Aurora, Illinois, USA
  • C.J. Densham, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • K.R. Lynch, J.L. Popp
    CUNY, Bayside, New York, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The Mu2e experiment at Fermilab is devoted to search for the conversion of a negative muon into an electron in the field of a nucleus without emission of neutrinos. One of the main parts of the Mu2e experimental setup is its Target Station in which negative pions are generated in interactions of the 8-GeV primary proton beam with a tungsten target. A large-aperture 5-T superconducting production solenoid (PS) enhances pion collection, and an S-shaped transport solenoid (TS) delivers muons and pions to the Mu2e detector. The heat and radiation shield (HRS) protects the PS and the first TS coils. A beam dump absorbs the spent beam. In order for the PS superconducting magnet to operate reliably the sophisticated HRS was designed and optimized for performance and cost. The beam dump was designed to absorb the spent beam and maintaining its temperature and air activation in the hall at the allowable level. Comprehensive MARS15 simulations have been carried out to optimize all the parts while maximizing muon yield. Results of simulations of critical radiation quantities and their implications on the overall Target Station design and integration will be reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI087 Magnet Design for the Target System of a Muon Collider/Neutrino Factory factory, collider, proton, solenoid 3976
 
  • R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
 
  The Target System and Pion Decay Channel for a Muon Collider/Neutrino Factory utilizes a string of solenoid magnet to capture and transport the low-energy pions whose decay provides the desired muon beams. The magnetic field strength at the target is 15-20 T, "tapering" down to 1.5-3 T in the Decay Channel. The superconducting coils which produce these fields must have substantial inner radius to accommodate internal shielding against radiation damage by secondary particles. A significant fraction of the primary beam energy is transported into the Decay Channel via protons, and the Decay Channel includes a magnetic chicane to provide a beam dump for these. The design of the various coils in this scenario is reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI088 Energy Deposition in the Target System of a Muon Collider/Neutrino Factory proton, factory, collider, shielding 3979
 
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • N. Souchlas, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Most of the energy of the primary proton beam of Muon Collider/Neutrino Factory would be deposited in the superconducting coils that provide a solenoid-magnet transport channel for secondary particles, unless those coils are protected by massive internal shielding. Studies are reported of energy deposition in such shielding, with the goal of permitting 10 years operational life at 4-MW beam power. The graphite target should be able to withstand the "thermal shock" induced by the pulsed beam; further study is needed to confirm this.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI089 Carbon Target Optimization for a Muon Collier/neutrino Factory With a 6.75 GeV Proton Driver proton, factory, collider, solenoid 3982
 
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
 
  The first phase of a Muon Collider/Neutrino Factory program may use a 6.75-GeV proton driver with beam power of only 1 MW. At this lower power it is favorable to use a graphite target (replaced quarterly) with beam and target tilted slightly to the axis of the 15-20 T pion-capture solenoid around the target. The low-energy proton beam is significantly deflected by the magnetic field, requiring careful optimization, reported here, of the beam/target configuration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI106 Specialized Technical Services at ESS cryomodule, cryogenics, vacuum, neutron 4028
 
  • J.G. Weisend, P. Arnold, J. Fydrych, W. Hees, G. Hulla, F. Jensen, J.M. Jurns, P. Ladd, G. Lanfranco, H. Spoelstra, X. Wang
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS), a world class lab for neutron science currently under construction in Lund, Sweden requires a number of technical services that extend across the various project areas (accelerator, target and neutron science). These services include: cryogenics, vacuum and technical electrical and cooling systems. This effort constitutes more than 70 million Euros of construction cost. Rather than have separate support groups in each of the project areas, ESS has created a Specialized Technical Services group within the Accelerator Division to provide these services. This approach permits standardization, development of synergies and improved communication. The STS group also provides cryomodule testing and accelerator infrastructure and installation to the accelerator project. This paper describes the scope of work, current design status and future plans for Specialized Technical services at ESS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI115 Measuring and Aligning Accelerator Components to the Nanometre Scale alignment, network, quadrupole, collider 4049
 
  • N. Catalán Lasheras, H. Mainaud Durand, M. Modena
    CERN, Geneva, Switzerland
 
  First tests have shown that the precision and accuracy required for linear colliders and other future accelerators of 10 micrometers cannot be reached with a process based on independent fiducializations of single components. Indeed, the systematic and random errors at each step add up during the process with the final accuracy of each component center well above the target. A new EC-funded training network named PACMAN (a study on Particle Accelerator Components Metrology and Alignment to the Nanometer scale) will propose and develop an alternative solution integrating all the alignment steps and a large number of technologies at the same time and location, in order to gain the required precision and accuracy. The network composed of seven industrial partners and nine universities and research centers will be based at CERN where ten doctoral students will explore the technology limitations of metrology. They will develop new techniques to measure magnetic and microwave fields, optical and non-contact sensors and survey methods as well as high accuracy mechanics, nano-positioning and vibration sensors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXCB01 Overview of Worldwide Accelerators and Technologies for ADS proton, rfq, cavity, ECR 4069
 
  • W.M. Pan
    IHEP, Beijing, People's Republic of China
 
  There are many interesting proposals and programs for accelerator driven subcritical facilities for waste transmutation(ADS) in the world, which is to speed up from the basic study to the real facility, and the significant progress in the development of accelerator technologies, in particular, superconducting RF linacs for ADS, but the key technologies in high power proton accelerator are still severe challenges which call for the closer international cooperation. This talk provides a broad overview of worldwide ADS accelerators.  
slides icon Slides FRXCB01 [10.151 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-FRXCB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)