Keyword: injection
Paper Title Other Keywords Page
MOPRO006 Preservation of Electron Polarization in the MEIC Collider Ring polarization, electron, collider, solenoid 74
 
  • F. Lin, Y.S. Derbenev, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
  • D.P. Barber
    DESY, Hamburg, Germany
 
  Funding: U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
A highly longitudinally-polarized (over 70%) electron beam is required by the nuclear physics programme of the Medium Energy Electron-Ion Collider (MEIC) at Jefferson Lab (JLab). To achieve this goal, a highly vertically-polarized electron beam is injected from the CEBAF. The polarization will be vertical in the arcs to avoid spin diffusion, and longitudinal at the collision points. The polarization rotation will be accomplished by using a total of four spin rotators, each of which consists of a set of solenoids and dipoles, placed at the ends of two arcs. The polarization configuration cancels the 1st order spin perturbation in the solenoids for the off-momentum particles and significantly reduces the synchrotron sideband resonances. In order to compensate the net Sokolov-Ternov depolarization effect, especially at higher energies, a continuous injection of a polarized electron beam from the CEBAF is being considered. We consider to perform a moderate spin matching in some key regions to extend the polarization lifetime so that the continuous injection can work more efficiently, while not imposing a burden on the optics design of the collider ring.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO018 Booster of Electrons and Positrons (BEP) Upgrade to 1 GeV dipole, positron, booster, vacuum 102
 
  • D.B. Shwartz, D.E. Berkaev, D.V. Bochek, I. Koop, I.E. Korenev, A.A. Krasnov, I.K. Sedlyarov, P.Yu. Shatunov, Y.M. Shatunov, I.M. Zemlyansky
    BINP SB RAS, Novosibirsk, Russia
 
  At present new electron and positron injection complex in BINP is comissioned and ready to feed VEPP-2000 collider with intensive beams with energy of 450 MeV. To obtain peak luminosity limited only by beam-beam effects in whole energy range of 160-1000 MeV and to perform high average luminosity with small dead time the top-up injection is needed. Booster BEP upgrade to 1 GeV includes modification of all magnetic elements, including warm dipoles magnetic field increase up to 2.6 T, vacuum chamber, RF-system, injection-extraction system. BEP comissioning is scheduled to the end of 2014.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO020 FLUKA Simulation of Particle Fluences to ALICE due to LHC Injection Kicker Failures simulation, kicker, high-voltage, detector 109
 
  • N.V. Shetty, C. Bracco, A. Di Mauro, A. Lechner, E. Leogrande, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The counter-rotating beams of the LHC are injected in insertion regions which also accommodate the ALICE and LHCb experiments. An assembly of beam absorbers ensures the protection of machine elements in case of injection kicker failures, which can affect either the injected or the stored beam. In the first years of LHC operation, secondary particle showers due to beam impact on the injection beam stopper caused damage to the MOS injectors of the ALICE silicon drift detector as well as high-voltage trips in other ALICE subdetectors. In this study, we present FLUKA simulations of particle fluences to the ALICE cavern for injection failures encountered during operation. Two different cases are reported, one where the miskicked beam is fully intercepted and one where the beam grazes the beam stopper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO025 Electron Beam Injection System for SuperKEKB Main Ring septum, betatron, synchrotron, emittance 122
 
  • T. Mori, N. Iida, M. Kikuchi, T. Mimashi, Y. Sakamoto, S. Takasaki, M. Tawada
    KEK, Ibaraki, Japan
 
  The SuperKEKB project is in progress toward the initial physics run in the year 2015. It assumes the nano-beam scheme, in which the emittance of the colliding beams is ε=4.6\mbox{nm}. The emittance of the injected beam is ε=1.46\mbox{nm}. To acheave such a low emittance, it is vitally important to preserve the emittance during the transport of the beam from the linac to the main ring. One of the most difficult sections is the injection system. It has been pointed out that the injected beam has possibility of leading to blowup in the ring, which is caused by a beam-beam interaction with the stored positron beam. To avoid the beam blowup, the synchrotron injection is adopted as a backup option. The orbit of the electron injection beam has been designed and the septum magnet prototype has been constructed. The optics study for electron injection and the current R&D status for the septum magnet will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO032 Upgrades to the LHC Injection and Beam Dumping Systems for the HL-LHC Project kicker, dumping, impedance, coupling 141
 
  • J.A. Uythoven, M.J. Barnes, B. Goddard, J. Hrivnak, A. Lechner, F.L. Maciariello, A. Mereghetti, A. Perillo Marcone, N.V. Shetty, G.E. Steele
    CERN, Geneva, Switzerland
 
  The HL-LHC project will push the performance of the LHC injection and beam dumping systems towards new limits. This paper describes the systems affected and presents the new beam parameters for these systems. It also describes the studies to be performed to determine which sub-components of these systems need to be upgraded to fulfill the new HL-LHC requirements. The results from the preliminary upgrade studies for the injection absorbers TDI are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO051 SOLEIL Operation and On-going Projects operation, storage-ring, vacuum, photon 200
 
  • L.S. Nadolski, C. Benabderrahmane, P. Betinelli-Deck, F. Bouvet, P. Brunelle, A. Buteau, L. Cassinari, M.-E. Couprie, X. Delétoille, C. Herbeaux, N. Hubert, M. Labat, J.-F. Lamarre, P. Lebasque, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, J.L. Marlats, A. Nadji, R. Nagaoka, P. Prigent, J.P. Ricaud, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  The 2.75 GeV synchrotron light source SOLEIL delivers photons to 27 beamlines; 2 new ones are under construction together with the FEMTOSLICING project of which commissioning started in January 2014. Five filling patterns are available for the users in Top-up injection mode. The storage ring is running with an upgraded optics less sensitive to insertion device (ID) configurations and giving both better beam lifetime and injection efficiency. The beam position stability remains excellent with a focus on electron vertical beam-size stability for the new very long beamlines. A gating system during Top-up injection improves significantly the quality of the spectrum on an infrared beamline. Several heavy actions of maintenance and upgrades on crucial subsystem equipment are underway. Others accelerator projects are going on such as the design and construction of new IDs, new Multipole Injection Kicker, radiation damage studies as well as R&D on solid-state amplifiers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO059 Fluka Calculations of Gamma Spectra at BESSY radiation, operation, synchrotron, vacuum 219
 
  • K. Ott, Y. Bergmann
    HZB, Berlin, Germany
 
  Funding: Funded by the Bundesministerium für Bildung und Forschung and by the Land Berlin
Since 22nd October 2012 BESSY is operated in top-up mode. Losses of electrons during injection cause an electromagnetic cascade, that consists of high energetic photons of the bremsstrahlung, and secondary electrons and positrons from the pair creations. The bremsstrahlung spectrum has a maximum at 1.022 MeV owing to pair creations. The spectrum has a high energetic tail, that reaches up to the electron energy of 1.7 GeV at BESSY. The low energy part of the electromagnetic cascade is produced by compton scattering or the photo - effect. Due to the opened beamshutters during top-up injections, the low energetic part of the bremsstrahlung spectrum can reach the experimental hall. We used the particle interaction and transport code FLUKA for the calculations of both the fluence and the dose distribution. We calculated the gamma spectra of the radiation through the shielding walls and through the front-ends. We discuss the question whether additional safety measures are necessary for top-up operation due to the low energy part of the spectrum. From our calculations we determined the correction factors for our ionisation chambers of the ambient dose measurement system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO082 Suppression of Stored Beam Oscillation at Injection by Fast Kicker in the SPring-8 Storage Ring kicker, timing, storage-ring, operation 280
 
  • C. Mitsuda, K. Fukami, K. Kobayashi, M. Masaki, H. Ohkuma, S. Sasaki, K. Soutome
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Nakanishi
    SES, Hyogo-pref., Japan
 
  When the injection bump orbit is not closed perfectly at the beam injection, the horizontal stored beam oscillation is excited. In the SPring-8 storage ring, many efforts had been paid to reduce the beam oscillation by adjusting the temporal shape and timing of four bump magnets and by applying a counter kick to the residual oscillation, whose amplitude is as large as 0.4mm and the width is as narrow as 500ns. Now, the averaged oscillation amplitude has successfully been suppressed to the level of less than 0.1mm. To confirm the suppression effect, we observed the turn-by-turn photon beam profile at the diagnostics beamline with the insertion device. We confirmed that the light axis oscillation was significantly suppressed by a factor of 5 comparing by applying a counter kick. We also found that the oscillation shape and the oscillation amplitude, which were caused by the timing shift of firing bump magnets, are drastically changed by only timing shift of one magnet. We are considering the feedback scheme to keep the suppression effect at the initial level during the user-time.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO084 Recent Development and Operational Status of PF-Ring and PF-AR undulator, vacuum, photon, operation 286
 
  • T. Honda, M. Adachi, S. Asaoka, K. Haga, K. Harada, Y. Honda, M. Izawa, T. Kageyama, Y. Kamiya, Y. Kobayashi, K. Marutsuka, T. Miyajima, H. Miyauchi, S. Nagahashi, N. Nakamura, T. Nogami, T. Obina, M. Ono, T. Ozaki, H. Sagehashi, H. Sakai, S. Sakanaka, H. Sasaki, Y. Sato, M. Shimada, K. Shinoe, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, Y. Tanimoto, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Ma. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki, Japan
 
  Update of the first-generation undulators installed in 1980s is pushed forward at PF-Ring, a 2.5-GeV SR source of KEK, taking advantage of the expanded straight sections reconstructed in 2005. New undulators have been designed as elliptically polarizing undulators each has 6 magnetic arrays to obtain various polarization states, not only circular polarization but also linear (horizontal and vertical) polarization. Three undulators will be installed in FY2013 and FY2014 for BL02, BL13 and BL28. For BL02, the longest straight section of about 9 m, the new undulator will be installed in tandem with the existing planar undulator, in order to cover the wide photon energy range from 15 eV to 2 keV. At PF-AR, a 6.5-GeV SR source, a new direct beam transport (BT) line from the injector LINAC is under construction. Super KEKB which shares the injector LINAC with PF-Ring and PF-AR will be commissioned at the end of FY2014. The full-energy continuous injection of PF-AR will be available as a simultaneous injection with the 7-GeV HER, the 4-GeV LER and PF-Ring not so later than the commissioning of Super KEKB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO087 High Voltage Generators Upgrade of Siberia-2 Injection System kicker, operation, high-voltage, power-supply 292
 
  • S.I. Tomin, A. Belkov, V. Korchuganov, I. Kuzmin, K. Kuznetsov
    NRC, Moscow, Russia
 
  The injection system is one of the important systems which determine efficiency and reliability of the accelerator facility. The spark gap switches (SGS), which were used before at Siberia-2 in high voltage nanosecond pulse generators, are the critical components requiring permanent maintenance. SGS has a series of limitations such as a relatively large pulse jitter and a work at a high pressure nitrogen atmosphere. The new injection system uses new half-sine microsecond pulse generators which based on Pseudo-Spark Switches. Some technical aspects of the new injection system are considered and results of generators operation are shown in the article.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO090 Top-up Operation at ALBA Synchrotron Light Source operation, radiation, storage-ring, simulation 301
 
  • M. Pont, G. Benedetti, J. Moldes, R. Muñoz Horta, A. Olmos, F. Pérez
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA light source has been operating in decay mode since May 2012. Now it is ready for top-up operation, which should become the standard operation mode for users from mid 2014. In this paper we are going to summarise the different steps that have taken place before the start of top-up operation: radiation safety simulations and measurements, upgrade of hardware and software interlocks, control software and injection optimisation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO094 TPS Commissioning Exercise Performed on the TLS storage-ring, quadrupole, lattice, emittance 307
 
  • F.H. Tseng, H.-P. Chang, M.-S. Chiu, S.J. Huang
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) commissioning exercise by using the high-level accelerator physics application programs (HL-APAP) has been performed on the operational 1.5 GeV Taiwan Light Source (TLS) storage ring. It includes steering the injection beam in the first turn to achieve multi-turns and stored beam with the help of the RESOLVE analysis. The orbit correction programs using different algorithms such as SVD, Householder transformation, and local bumps were applied to reduce the closed orbit distortion of the stored beam and to adjust the beam orbit to pass through those field centers of quadrupoles indicated by the corresponding BPMs. The golden orbit defined by the measured data of BPMs corresponding to each quadrupole field center was based on the Beam Based Alignment (BBA). After approach the stored beam orbit to the golden orbit, we save all the BPMs data as the target orbit for machine operation. The lattice calibration is then performed by the LOCO. The detail of the commissioning exercise is described in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO110 Present Status of the Compact ERL at KEK recirculation, linac, laser, dipole 353
 
  • N. Nakamura, M. Adachi, S. Adachi, M. Akemoto, D.A. Arakawa, S. Asaoka, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sakanaka, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, O. Tanaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S. Matsuba, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
 
  The Compact Energy Recovery Linac (cERL) project is ongoing at KEK in order to demonstrate excellent ERL performance as a future light source. The cERL injector was already constructed with its diagnostic beamline and successfully commissioned from April to June in 2013. In the next step, the cERL recirculation loop with a main superconducting linac and merger and dump sections has been constructed and its commissioning is scheduled to start in December 2013. Significant progress is expected by the IPAC14 conference date. In this presentation, we will describe the present status of the cERL including future developments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME001 Commissioning of the Double Electrostatic Storage Ring DESIREE ion, experiment, storage-ring, pick-up 373
 
  • A. Källberg, M. Björkhage, M. Blom, E. Bäckström, H. Cederquist, O.M. Hole, M. Kaminska, P. Löfgren, S. Mannervik, R. Nascimento, P. Reinhed, H.T. Schmidt, A. Simonsson
    Stockholm University, Stockholm, Sweden
  • S. Rosén
    Stockholm University, Department of Physics, Stockholm, Sweden
 
  DESIREE, the double electrostatic storage rings in Stockholm, is now commissioned and used for experiments. The two 9 m circumference storage rings, which are constructed inside a double walled cryostat, are now cooled to 13 K and routinely used for storage of both negative and positive ions with lifetimes of several minutes. The main properties of DESIREE are presented as well as results from the commissioning and the first experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME068 SiC-JFET Switching Power Supply toward for Induction Ring Accelerators acceleration, ion, extraction, induction 523
 
  • K. Okamura, K. Takayama, M. Wake, T. Yoshimoto
    KEK, Ibaraki, Japan
  • R. Sasaki, K. Takaki
    Iwate university, Morioka, Iwate, Japan
  • K. Takayama, T. Yoshimoto
    TIT, Yokohama, Japan
  • F. Tamura
    Nagaoka University of Technology, Nagaoka, Niigata, Japan
 
  Funding: Japan Science and Technology Agency Grant-In Aid for Scientific Research(s) (KAKENHI No. 24310077)
A new induction synchrotron system using an induction cell has been developed and constructed at KEK*. In that system, the switching power supply is one of the key devices that realize digital acceleration. The requirements of the switching power supply are high voltage (2 kV) and high repetition frequency (1 MHz). In the present system, we used series connected MOSFETs as the switching device. However, series connection gives large complexity and less reliability. Among various switching devices, a SiC-JFET should be a promising candidate because it has ultrafast switching speed and high voltage blocking capability. We have developed a new and original SiC-JFET switching device and a compact switching power supply employing this switching element**. Now it is integrated into the induction acceleration system for the KEK-DA. Furthermore we have started development of the next generation of SiC package, which has higher voltage capability (2.4 kV) and 2 in 1 module construction. At the conference, the first experimental demonstration of heavy ion acceleration utilizing the SiC-JFET and the design status of the new device package will be presented.
* T. Iwashita et al., Phys. Rev. ST-AB 14, 071302 (2011).
** K. Okamura et al., “A Compact Switching Power Supply Utilizing SiC-JFET for The Digital Accelerator ”, in Proc. of IPAC’12, pp 3677-3679.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME069 Upgrade of the Injection Kicker System for J-PARC Main Ring kicker, timing, feedback, operation 526
 
  • T. Sugimoto, K. Fan, K. Ishii, H. Matsumoto
    KEK, Ibaraki, Japan
 
  Four lumped inductance injection kicker magnets for the J-PARC main ring (MR) produce a kick of 0.1096 T·m with a 1% to 99% rise-time of about 400 nsec. A residual field of about 6% of the flat-top exists at the tail of the pulse due to an impedance mismatching. The residual field is required to be suppressed less than 1% to reduce injection losses. For a higher intensity beam operation, the kicker rise-time of less than 300nsec is required to inject longer beam bunches which reduces a space charge effect. During the long shutdown in FY2013, 140Ω resistor and 7nF capacitor were connected to the thyratron to improve the post-pulse shape. In addition, an optimization of a capacitance in the matching circuit was carried out to optimize the waveform. As the result, the rise-time of 195nsec and the residual tail field of 2% were achieved. However, another reflection peak of about 9% is appeared. We plan to compensate the effect of the new peak by using a new small kicker magnet. This paper discusses the detail of the circuit and the beam test results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME073 Status of Injection Complex VEPP-5: Machine Commissioning and First Experience of Positron Storage electron, positron, dumping, damping 538
 
  • A.A. Starostenko, F.A. Emanov, E.S. Kazantseva, P.V. Logatchov
    BINP SB RAS, Novosibirsk, Russia
 
  The Injection complex VEPP-5 consist of S-band linear accelerators (270 and 420 MeV), positron convertor (at 270 MeV) and damping ring. The injection complex is in commission. Positron rate production about 6·108 positrons/pulse and conversion yield 0.14/GeV was achieved. Storage ring positron beam current is 70mA was achieved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME074 High Voltage Performance of the Beam Screen of the LHC Injection Kicker Magnets kicker, vacuum, operation, impedance 541
 
  • M.J. Barnes, P. Adraktas, G. Bregliozzi, S. Calatroni, P. Costa Pinto, H.A. Day, L. Ducimetière, V. Gomes Namora, T. Kramer, V. Mertens, M. Taborelli
    CERN, Geneva, Switzerland
 
  The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wakefields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. The design of the beam screen has been upgraded to overcome limitations and permit LHC operation with increasingly higher bunch intensity and short bunch lengths: the new design also significantly reduces the electric field associated with the screen conductors, decreasing the probability of electrical breakdown. The high voltage conditioning process for the upgraded kicker magnets is presented and discussed. In addition a test setup has been utilized to study flashover, on the inner wall of the ceramic tube, as a function of both applied voltage and vacuum pressure: results from the test setup are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME075 Cooling of the LHC Injection Kicker Magnet Ferrite Yoke: Measurements and Future Proposals vacuum, kicker, simulation, operation 544
 
  • M.J. Barnes, S. Bouleghlimat, L. Ducimetière, M. Garlaschè, V. Gomes Namora, T. Kramer, R. Noulibos, Y. Sillanoli, Z.K. Sobiech, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  LHC operation with high intensity beam, stable for many hours, resulted in significant heating of the ferrite yoke of the LHC Injection Kicker Magnets. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. The beam screen, which screens the ferrite yoke from wakefields, has been upgraded to limit ferrite heating. In addition it is important to improve the cooling of the ferrite yoke: one method is to increase the internal emissivity of the cylindrical vacuum tank, in which the kicker magnet is installed. This paper describes a method developed for measuring the emissivity of the inside of the tanks, which has been benchmarked against measurements of the ferrite yoke temperature during heat treatment in an oven and transient thermal simulations. Conclusions are drawn regarding an ion bombardment technique evaluated for improving emissivity without degrading vacuum properties. In addition initial concepts for improved cooling are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME076 Upgrade of the SPS Injection Kicker System for LHC High Luminosity Operation with Heavy Ion Beam ion, kicker, impedance, septum 547
 
  • T. Kramer, J. Borburgh, L. Ducimetière, B. Goddard, L. Sermeus, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
 
  In the context of the LHC High Luminosity Upgrade project a performance upgrade for heavy ions is envisaged. One of the performance limitations is the rise time of the present SPS injection kicker system MKP. A reduction of the rise time for lead ions was studied in line with a modification of the whole injection system. This paper briefly describes the different rise time options studied for an initially proposed dedicated ion kicker system MKP-I, focuses however on a cost effective alternative using the presently installed 12 MKPS magnets connected to a new fast pulse forming line. As only 12 out of the 16 injection kicker magnets would be fast enough to be used in an upgraded system, additional deflection has to be provided by the septa. The beam optics for that variant is highlighted and first requirements for the septum elements are stipulated. The paper concludes with a failure analysis of the proposed scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME079 The DC and AC Withstands Test for TPS Booster Injection Kicker booster, kicker, extraction, vacuum 554
 
  • Y.-H. Liu, C.K. Chan, C.-S. Chen, H.H. Chen, J.-R. Chen, Y.T. Huang, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  TPS requires highly precise and stable pulsed magnets for top-up mode operation. One injection and two extraction in vacuum kicker magnets in the booster ring are designed and noticed to minimize driving voltage. The HV insulation for magnet itself and vacuum feedthrough need to be tested. A DC withstand voltage tester MUSASHI 3802 (Model: IP-701G) is used to test the DC breakdown voltage, which the maximum driving voltage is 37 kV. And the AC withstand voltage tester was also test the AC breakdown voltage. Thicker than 10 mm ceramic plate could effectively avoid the breakdown occurred with 37 kV DC charging. Thus HV withstand voltage will be higher in vacuum chamber and the insulation with HV will not be the problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME083 Fast Kicker Systems for ALS-U kicker, impedance, lattice, storage-ring 564
 
  • G.C. Pappas, S. De Santis, J.E. Galvin, L.R. Reginato, C. Steier, C. Sun, H. Tarawneh, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
Fast kicker systems are required for the proposed upgrade of ALS to a diffraction-limited light source (ALS-U). The main approach is to have multiple stripline kicker magnets driven by inductive adders. The design details of the kicker structures and the inductive adder options will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME084 Proposal for a Soft X-ray Diffraction Limited Upgrade of the ALS lattice, emittance, insertion, insertion-device 567
 
  • C. Steier, A. Anders, D. Arbelaez, K.M. Baptiste, W. Barry, J.M. Byrd, K. Chow, S. De Santis, R.M. Duarte, R.W. Falcone, J.-Y. Jung, S.D. Kevan, S. Kwiatkowski, T.H. Luo, A. Madur, H. Nishimura, J.R. Osborn, G.C. Pappas, L.R. Reginato, D. Robin, F. Sannibale, D. Schlueter, C. Sun, C.A. Swenson, H. Tarawneh, W.L. Waldron, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Advanced Light Source (ALS) at Berkeley Lab has been updated many times and remains as one of the brightest sources for soft x-rays worldwide. However, recent developments in technology, accelerator physics and simulation techniques open the door to much larger future brightness improvements. Similar to proposals at several other 3rd generation sources, this could be achieved by reducing the horizontal emittance with a new ring based on a multi-bend achromat lattice, reusing the existing tunnel, as well as much of the infrastructure and beamlines. After studying candidate lattice designs, development efforts in the last year have concentrated on technology and physics challenges in four main areas: Injection, Vacuum Systems, Magnets and Insertion Devices, as well as main and harmonic RF systems.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI003 Positron Yield Optimization by Adjusting the Components Offset and Orientation positron, target, electron, simulation 576
 
  • L. Zang, M. Akemoto, S. Fukuda, K. Furukawa, T. Higo, N. Iida, K. Kakihara, T. Kamitani, T. Miura, F. Miyahara, Y. Ogawa, H. Someya, T. Takatomi, K. Yokoyama
    KEK, Ibaraki, Japan
  • S. Ushimoto
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  In order to keep high luminosity beam collision condition at SuperKEKB, low emittance electron/positron injection and flexible pulse-to-pulse switching of these beam modes are essential requirements. While a primary electron beam strikes on a target to generate positrons, an injection electron beam passes through a small hole besides the target. Since the injection electron orbit should be on axis to avoid emittance growth, the target and the flux concentrator for positron focusing have a few millimeters offset from the axis. This offset positron generation gives significant degradation in the positron yield. In this paper, we will discuss positron yield improvement by proper orientation of the cut-in slit of the flux concentrator which yields un-symmetric field distribution and primary electron incident point. With particle tracking simulation taking three dimensional field distribution into account, an ideal positron trajectory giving optimum yield was found.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI013 Development of a 14.5 – 18 GHz ECR Ion Source at University of Huelva ion, ECRIS, solenoid, ion-source 607
 
  • I. Martel, C. Bonțoiu, A.C.C. Villari
    University of Huelva, Huelva, Spain
  • A. Garbayo
    AVS, Elgoibar, Spain
  • A.C.C. Villari
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work partially supported by the Spanish Government (MINECO-CDTI) under program FEDER INTERCONNECTA.
A double-frequency ECR ion source has been modelled numerically for high-efficiency ion production from protons to uranium. The simulations were targeted at optimizing magnetic confinement of the hot electrons through an iterative design of three solenoids and a dodecapole. In addition a plasma production model has been implemented in order to study ion species yield from neutral gases and their drift towards the cold plasma regions. Eventually, ion extraction and beam capture in the space-charge regime have been performed. Mechanical design studies approached the plasma chamber cooling and magnet coils refrigeration.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI044 Feasibility Study of an Ultrafast Electron Diffraction System in NSRRC electron, gun, cathode, emittance 701
 
  • P. Wang, K.C. Leou
    NTHU, Hsinchu, Taiwan
  • N.Y. Huang, W.K. Lau, A.P. Lee
    NSRRC, Hsinchu, Taiwan
 
  It has been suggested that the MeV beam generated from a laser-driven photo-cathode rf gun can be used for ultrafast electron diffraction (UED)*. The feasibility of operating the NSRRC photo-cathode rf gun system for ultrashort bunch generation is being investigated. The results of space-charge tracking calculations show that a low emittance, few hundred femtoseconds MeV beam with reasonable bunch charge can be generated for single shot UED experiments. In this report, a preliminary design of this UED system will be discussed.
* X.J. Wang et al., in Proceedings of PAC'03, p.420.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI081 Beam Simulation for Improved Operation of Cyclotron NIRS-930 simulation, cyclotron, experiment, extraction 797
 
  • M. Nakao, S. Hojo, K. Katagiri, A. Noda, K. Noda, A. Sugiura
    NIRS, Chiba-shi, Japan
  • A. Goto
    Yamagata University, Yamagata, Japan
  • T. Honma, A.K. Komiyama, T. Okada, Y. Takahashi
    AEC, Chiba, Japan
  • V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
 
  Beam simulation using SNOP* code has been performed for the cyclotron NIRS-930 at NIRS in order to study beam dynamics in a cyclotron and to improve beam intensity. Each electric or magnetic field (main coil, trim coils, harmonic coils, magnetic channel, gradient corrector, grazer lens, dee electrode, inflector) were calculated by OPERA-3d, and simulated injection, acceleration, and extraction. The simulation of proton with 30 MeV extracting energy with harmonic 1 was already performed and well simulated RF phase and extraction efficiency**. Then we tried to apply SNOP to 18 MeV protons with harmonic 2. We first formed isochronous magnetic field with main and trim coils for simulating single particle. Next we optimized electric deflector and magnetic channel in order to maximize extracted particles simulating the bunch of particles. Beam loss of the simulation was compared to the experiment. And then we are optimizing position and rotation of inflector and position of puller to improve injection. We intend to apply optimized simulation parameter to actual cyclotron operation to improve beam intensity and quality.
* V.L. Smirnov, S.B. Vorozhtsov, Proc. of RUPAC2012 TUPPB008 325 (2012)
** V.L. Smirnov et al., Proc. of IPAC2012 292 (2012)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI083 Improvement of the Beam Transmission in the Central Region of Warsaw U200P Cyclotron cyclotron, ion, ion-source, ECR 803
 
  • O. Steczkiewicz, P. Gmaj
    HIL, Warsaw, Poland
  • V. Bekhterev, I.A. Ivanenko
    JINR, Dubna, Moscow Region, Russia
 
  To date, Warsaw U200P cyclotron exploited a mirror inflector to route heavy ions extracted from ECR ion source (10 GHz, 11 kV) to the central region of the cyclotron. However, in such configuration very low transmission was reachable after many optimizations. Additionally, the new ECR ion source (14, 5 GHz, 14-24 kV) was installed, which offers energies far exceeding capabilities of the currently operated inflector and central region. To overcome these obstacles, we have developed a spiral inflector and redesigned central region of the cyclotron. It was a very challenging task, bearing in mind limited volume of central region in our compact machine, to carve these elements suitably for decent versatility of ion beams offered by Warsaw cyclotron. This project was executed in the collaboration with FLNR in Dubna, Russia. The cyclotron equipped with the new central region works in the "constant orbit" regime. Hereby we present the results of both computational simulations and measurements of the beam transmission in upgraded central region.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI096 The New Transfer Line Collimation System for the LHC High Luminosity Era optics, collimation, luminosity, extraction 839
 
  • V. Kain, C. Bracco, B. Goddard, F.L. Maciariello, M. Meddahi, A. Mereghetti, G.E. Steele, F.M. Velotti
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  A set of passive absorbers is located at the end of each of the 3 km long injection lines to protect the LHC in case of failures during the extraction process from the LHC’s last pre-injector or the beam transfer itself. In case of an erroneous extraction, the absorbers have to attenuate the beam to a safe level and be robust enough themselves to survive the impact. These requirements are difficult to fulfil with the very bright and intense beams produced by the LHC injectors for the high luminosity era. This paper revisits the requirements for the SPS-to-LHC transfer line collimation system and the adapted strategy to fulfill these for the LHC high luminosity operation. A possible solution for the new transfer line collimation system is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI098 Design Studies of the Upgraded Collimation System in the SPS-to-LHC Transfer Lines collimation, luminosity, simulation, optics 845
 
  • A. Mereghetti, C. Bracco, F. Cerutti, B. Goddard, J. Hrivnak, V. Kain, F.L. Maciariello, M. Meddahi, G.E. Steele
    CERN, Geneva, Switzerland
  • R. Appleby
    UMAN, Manchester, United Kingdom
 
  In the framework of the LHC Injectors Upgrade (LIU) Project, the collimators in the SPS-to-LHC transfer lines are presently under re-design, in order to cope with the unprecedented beam intensities and emittances required by the High Luminosity LHC (HL-LHC). Factors ruling the design phase are the robustness of the jaws on one side and, on the other side, the proton absorption and the emittance blow-up, essential for an effective protection of the equipment in the LHC injection regions and the LHC machine. In view of the new design, based on the one of the currently installed TCDI collimators and past investigations, the FLUKA Monte Carlo code is used to address these two factors. The present studies are intended to give essential feedback to the identification of viable solutions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI100 Investigations of SPS Orbit Drifts extraction, septum, flattop, betatron 852
 
  • L.N. Drøsdal, C. Bracco, K. Cornelis, B. Goddard, V. Kain, M. Meddahi, J. Wenninger
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  The LHC is filled from the last pre-injector, the Super Proton Synchrotron (SPS), via two 3 km long transfer lines, TI 2 and TI 8. Over the LHC injection processes, a drift of the beam trajectories has been observed in TI 2 and TI 8, requiring regular correction of the trajectories, in order to ensure clean injection into the LHC. Investigations of the trajectory variations in the transfer lines showed that the main source of short term trajectory drifts are current variations of the SPS extraction septa (MSE). The stability of the power converters has been improved, but the variations are still present and further improvements are being investigated. The stability over a longer period of time cannot be explained by this source alone. The analysis of trajectory variations shows that there are also slow variations in the SPS closed orbit at extraction. A set of SPS orbit measurements has been saved and analysed. These observations will be used together with simulations and observed field errors to locate the second source of variations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI102 Upgrades of the CERN PS Booster Ejection Lines optics, emittance, quadrupole, dipole 858
 
  • W. Bartmann, J.L. Abelleira, K. Hanke, M. Kowalska
    CERN, Geneva, Switzerland
 
  The PS Booster extraction energy will be augmented from 1.4 to 2 GeV to reduce intensity limits due to space charge at the PS proton injection. For this upgrade the transfer line between PS Booster and PS will be modified for 2 GeV operation and pulse to pulse optics modulation for different beam types. Also the PS Booster measurement line will also be upgraded to 2 GeV and shall provide improved optics solutions for emittance measurements while reducing the loss levels recorded during operation. This paper describes the foreseen optics solutions for both transfer lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI104 Measurement of Beam Ioniziation Loss in SIS18 ion, simulation, vacuum, extraction 864
 
  • L.H.J. Bozyk, P.J. Spiller
    GSI, Darmstadt, Germany
 
  In the heavy ion synchrotron SIS18 at GSI an ion catcher system has been installed to provide low desorption surfaces for ionization beam loss to reduce dynamic vacuum effects. Medium charge state heavy ions can change their charge state in collission with residual gas molecules. Those ions are cought by the ion catcher system. The ion catcher blocks are mounted electrically insulated, such that it is possible, to directly measure the electrical current, induced by the incident ions. Changes in vacuum density during the acceleration cycle and also the energy dependent decrease of the cross sections for electron loss and electron capture can be measured by this system. Different ion catcher currents, measured during the operation with U28+, and their interpretation are presented. The measurement of ionization beam loss is a valuable tool to benchmark the dynamic vacuum simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI106 Simulation Study of Beam Halo Collimation in the Heavy-ion Synchrotron SIS 100 ion, collimation, simulation, heavy-ion 870
 
  • I.A. Prokhorov
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim, I. Strašík
    GSI, Darmstadt, Germany
 
  Funding: Work is supported by German Federal Ministry of Education and Research (BMBF) contract no. 05P12RDRBM
The FAIR synchrotron SIS-100 will be operated with high-intensity proton and heavy-ion beams. The collimation system should prevent beam loss induced degradation of the vacuum, activation of the accelerator structure and magnet quenches. A conventional two-stage betatron collimation system is considered for the operation with protons and fully-stripped ions. Particle tracking and ion-collimator interaction simulations of the collimation system were performed. The angular and momentum distributions of the scattered halo particles were described using analytical models and numerical tools like ATIMA and FLUKA. MADX was used for the multi-pass tracking simulations. The results obtained for the collimation cleaning efficiency as a function of the ion species and beam energy together with the detailed beam losses distributions along the ring circumference are presented. This work highlights the main aspects of the collimation of fully-stripped ion beams in the intermediate energy range using conventional two-stage systems.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI107 The Mitigation System of the Large Angle Foil Scattering Beam Loss caused by the Multi-turn Charge-exchange Injection simulation, scattering, insertion, operation 873
 
  • S. Kato
    Tohoku University, Graduate School of Science, Sendai, Japan
  • H. Harada, H. Hotchi, M. Kinsho, K. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  Funding: Research Fellow of Japan Society for the Promotion of Science
In the J-PARC RCS, the significant losses were observed at the branch of H0 dump line and the Beam Position Monitor which was put at the downstream of the H0 dump branch duct. These losses were caused by the large angle scattering of the injection and the circulating beam at the charge exchange foil. To realize high power operation, we have to mitigate these losses. So, we developed a new collimation system in the H0 branch duct and installed in October 2011. In order to optimize this system efficiently, we focused on the relative angle of collimator block from scattering particles. We developed the beam based angler regulation method by the simulation and achieved the sufficient mitigation of the loss at 181 MeV injection energy. Since the injection energy will be upgraded to 400 MeV in this year, we will start to estimate again the collimator performance by the upgraded simulation set. We present this system as one of the mitigation methods of the large angle foil scattering beam loss caused by the multi-turn charge-exchange injection.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI108 Transverse H Beam Halo Scraper System in the J-PARC L3BT radiation, proton, linac, operation 876
 
  • K. Okabe, M. Kinsho, K. Yamamoto, M. Yoshimoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  In the Japan Proton Accelerator Research Complex (J-PARC) 3-GeV rapid cycle synchrotron (RCS), transverse beam halo scraping for the injection beam is required to increase the output beam power. The transverse collimation system at the Linac-RCS beam transport line (L3BT) was utilized in a nominal beam operation because the area of the scraper section was contaminated when scrapers were working. In the summer-autumn period of 2013, we installed a new beam-halo scraper which had optimized scraper heads for mitigation of the radiation around the scraper system. In this poster, we report a preliminary result for a halo scraper at the L3BT.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI110 Final Layout and Expected Cleaning for the First Crystal-assisted Collimation Test at the LHC collimation, simulation, proton, ion 882
 
  • D. Mirarchi, S. Montesano, S. Redaelli, W. Scandale
    CERN, Geneva, Switzerland
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
  • A.M. Taratin
    JINR, Dubna, Moscow Region, Russia
 
  The installation in the CERN Large Hadron Collider (LHC) of two crystals in the horizontal and vertical planes was accomplished during the present LHC long shutdown (LS1) for crystal collimation studies. An appropriate layout was designed to demonstrate the principle feasibility of crystal collimation at the LHC. Extensive simulation campaigns were made to evaluate different crystal positions and parameters, in order to ensure that the main goals of these first feasibility tests in the LHC are within reach. In this paper, the final layout is presented. An overview of the considerations behind the design choices and the crystal parameters is given, and the expected performance of the system is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXA01 Commissioning the 400 MeV Linac at J-PARC and High Intensity Operation of the J-PARC RCS linac, dipole, emittance, operation 899
 
  • H. Hotchi
    JAEA/J-PARC, Tokai-mura, Japan
 
  J-PARC is currently upgrading their linac from 181MeV to 400 MEV with a new ACS section (annular coupled structure). This includes a triple frequency jump, and there should be some interesting results to report. As the result of the injector linac upgrade at J-PARC, the Rapid Cycle Synchrotron (RCS) will achieve a record-high intensity as a proton accelerator. This talk describes the recent performance of the RCS together with its beam-dynamical issues.  
slides icon Slides TUXA01 [3.611 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUXA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB01 Concept of a Hybrid (Normal and Superconducting) Bending Magnet Based on Iron Magnetization for 80-100 km Lepton / Hadron Colliders hadron, collider, dipole, lepton 980
 
  • A. Milanese, L. Rossi
    CERN, Geneva, Switzerland
  • H. Piekarz
    Fermilab, Batavia, Illinois, USA
 
  This paper presents a conceptual design of bending magnets to be used first in a full energy booster for a lepton machine (TLEP) and later in a low energy ring for a hadron machine (VHE-LHC). TLEP and VHE-LHC would be respectively e-ebar and p-p colliders, at the energy frontier in each category, to be installed in a 80-100 km circumference tunnel. The main requirements in terms of operating field range and field quality are discussed. Two dimensional simulations then show how an iron-dominated magnet could fulfil the specifications. The design is a "transmission-line" magnet, where the excitation current is provided by a single turn. When operating with leptons, a resistive conductor can be used. To then increase the strength needed to handle hadrons, the use of superconducting technology is needed. Recent results on similar prototypes built for different machines are recalled to point to the developments needed to assess the viability of this design.  
slides icon Slides TUOCB01 [4.225 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOCB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO001 Alternative High Luminosity LHC Matching Section Layout optics, quadrupole, luminosity, cavity 990
 
  • B. Dalena, A. Chancé
    CEA/IRFU, Gif-sur-Yvette, France
  • R. De Maria
    CERN, Geneva, Switzerland
  • J. Payet
    CEA/DSM/IRFU, France
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 project HiLumi LHC, GA no. 284404, co-funded by the DoE, USA and KEK, Japan.
In the framework of the HL-LHC Upgrade project possible variants for the layout of the LHC matching section located in the high luminosity insertions are investigated. This layout is optimized to reduce the demand on the voltage of the crab cavities, it also improves the optics squeeze-ability, both in ATS[1] and non-ATS mode. Moreover the injection and transitions to collision optics are also discussed. [1] S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO008 Specification of Field Quality of the Interaction Region Magnets of the High Luminosity LHC Based on Dynamic Aperture lattice, quadrupole, optics, dipole 1013
 
  • Y. Nosochkov, Y. Cai, M.-H. Wang
    SLAC, Menlo Park, California, USA
  • R. De Maria, S.D. Fartoukh, M. Giovannozzi, E. McIntosh
    CERN, Geneva, Switzerland
 
  Funding: Work partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404, and by the US LARP through US Department of Energy.
The high luminosity LHC upgrade (HL-LHC) requires new magnets in the low-beta interaction regions with a larger aperture than in the existing LHC. These include the Nb3Sn superconducting (SC) inner triplet quadrupoles, Nb-Ti SC separation dipoles D1 and D2, and SC matching quadrupoles Q4 and Q5. The large aperture is necessary for accommodating the increased beam size caused by significantly higher beta functions in these magnets in the collision optics. The high beta functions also enhance the effects of field errors in these magnets leading to a smaller dynamic aperture (DA). It is, therefore, critical to determine the field quality specifications for these magnets which 1) satisfy an acceptable DA, and 2) are realistically achievable. The estimates of expected field quality obtained from magnetic field calculations and measurements were used as a starting point. Then, based on the DA study, the field errors were optimized in order to reach an acceptable DA. The DA calculations were performed using SixTrack. Details of the optimization process and summary of the field quality specifications for collision and injection energies are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO010 Origins of Transverse Emittance Blow-up during the LHC Energy Ramp emittance, luminosity, simulation, brightness 1021
 
  • M. Kuhn, G. Arduini, V. Kain, A. Langner, Y. Papaphilippou, M. Schaumann, R. Tomás
    CERN, Geneva, Switzerland
 
  During LHC Run 1 about 30 % of the potential peak performance was lost due to transverse emittance blow-up through the LHC cycle. Measurements indicated that the majority of the blow-up occurred during the energy ramp. Until the end of LHC Run 1 this emittance blow-up could not be eliminated. In this paper the measurements and observations of emittance growth through the ramp are summarized. Simulation results for growth due to Intra Beam Scattering will be shown and compared to measurements. A summary of investigations of other possible sources will be given and backed up with simulations where possible. Requirements for commissioning the LHC with beam in 2015 after Long Shutdown 1 to understand and control emittance blow-up will be listed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO011 New Tools for K-modulation in the LHC quadrupole, collider, optics, controls 1024
 
  • M. Kuhn, B. Dehning, V. Kain, R. Tomás, G. Trad
    CERN, Geneva, Switzerland
 
  For many applications, the precise knowledge of the beta function at a given location is essential. Several measurement techniques for optics functions are used in the LHC to provide the most suitable method for a given scenario. A new tool to run k-modulation measurements and analysis is being developed with the aim to be fully automatic and online. It will take constraints of various systems such as tune measurement precision, powering limits of the LHC superconducting circuits and limits of their quench protection systems into account. It will also provide the possibility to sinusoidally modulate the currents of the investigated quadrupoles with a predefined frequency and amplitude to increase the measurement precision further. This paper will review the advantages and limitations of k-modulation measurements in the LHC with and without sinusoidal current modulation. The used algorithms and tools will be presented and estimates on the obtainable beta function measurement precision will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO014 Semi-empirical Model for Optimising Future Heavy Ion Luminosity of the LHC luminosity, kicker, heavy-ion, simulation 1033
 
  • M. Schaumann
    CERN, Geneva, Switzerland
 
  The wide spectrum of intensities and emittances imprinted on the LHC Pb bunches during the accumulation of bunch trains in the injector chain result in a significant spread in the single bunch luminosities and lifetimes in collision. Based on the data collected in the 2011 Pb-Pb run, an empirical model is derived to predict the single-bunch peak luminosity depending on the bunch's position within the beam. In combination with this model, simulations of representative bunches are used to estimate the luminosity evolution for the complete ensemble of bunches. Several options are being considered to improve the injector performance and to increase the number of bunches in the LHC, leading to several potential injection scenarios, resulting in different peak and integrated luminosities. The most important options for after the long shutdown 1 and 2 are evaluated and compared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO020 Integration of a Neutral Absorber for the LHC Point 8 luminosity, optics, dipole, operation 1052
 
  • A. Santamaría García, R. Alemany-Fernández, H. Burkhardt, F. Cerutti, L.S. Esposito, N.V. Shetty
    CERN, Geneva, Switzerland
 
  The LHCb detector will be upgraded during the second long shutdown (LS2) of the LHC machine, in order to increase its statistical precision significantly. The upgraded LHCb foresees a peak luminosity of L = 1-2 . 1033 cm-2 s−1, with a pileup of 5. This represents ten times more luminosity and five times more pile up than in the present LHC. With these conditions, the pp-collisions and beam losses will produce a non-negligeable beam-induced energy deposition in the interaction region. More precisely, studies have shown that the energy deposition will especially increase on the D2 recombination dipole, which could bring them close to their safety thresholds. To avoid this, the placement of a minimal neutral absorber has been proposed. This absorber will have the same role as the TAN in the high luminosity Interaction Regions (IR) 1 and 5. This study shows the possible dimensions and location of this absorber, and how it would reduce both the peak power density and total heat load.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO024 Benchmarking Studies of Intra Beam Scattering for HL-LHC lattice, optics, luminosity, scattering 1064
 
  • D. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404
The effects of Intra Beam Scattering (IBS) in the High Luminosity upgrade of the LHC (HL-LHC) will be stronger compared to effects in the present LHC because of the high intensity of the proton bunches and the new proposed optics. We present benchmarking studies carried out for the present LHC at injection and collision energies as well as HL-LHC at collision energy with the Achromatic Telescopic Squeezing optics. The results of IBS growth-rate calculations using the full Bjorken-Mtingwa formulae* are compared with simplified formulae**, Bane’s high energy approximation***, and the completely integrated modified Piwinski approximation****. The results of calculations based on these methods carried out in Mathematica are compared with results from the codes MAD-X and ZAP.
* J. Broken and S. Mtingwa, Part. Accel. 13, 115 (1983)
** K. Kubo et al, PRST-AB, 8, 081001 (2005)
*** K. Bane, EPAC2002
**** S. Mtingwa and A. Tollestrup, Fermilab-Pub-89/224, 1987.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO031 RHIC Performance during the 7.5 GeV Low Energy Run in FY 2014 luminosity, experiment, ion, target 1087
 
  • C. Montag, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, X. Gu, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, S. Nemesure, J. Piacentino, P.H. Pile, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, J.E. Tuozzolo, M. Wilinski, K. Yip, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As the last missing step in phase 1 of the beam energy scan (BES-I), aimed at the search for the critical point in the QCD phase diagram, RHIC collided gold ions at a beam energy of 7.3 GeV/nucleon during the FY 2014 run. While this particular energy is close to the nominal RHIC injection energy of 9.8 GeV/nucleon, it is nevertheless challenging because it happens to be close to the AGS transition energy, which makes longitudinal beam dynamics during transfer from the AGS to RHIC difficult. We report on machine performance, obstacles and solutions during the FY 2014 low energy run.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO036 Start-to-end Optic of the FSF Multi-turn ERL Project emittance, linac, undulator, simulation 1099
 
  • T. Atkinson, A.V. Bondarenko, A.N. Matveenko, Y. Petenev
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association VH NG 636 and HRJRG-214
Advanced magnetic optic designs are required to meet the heavy demands of future light sources: diffraction limited emittance, femto-second pulses and low energy spread. This paper highlights the magnetic optic that is presently being investigated in the ERL-simulation group at HZB. The injector optic is based on subtle emittance compensation techniques of space charge dominated beams. The high energy arcs are designed to suppress emittance growth due to CSR through horizontal phase advance manipulation, ISR effects by keeping the radiation integrals small and reduce the degradation due to chromatic aberrations. Optimised Start-to-End beam dynamic simulations are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO041 Status of Ion-optical Design of the Collector Ring optics, antiproton, quadrupole, kicker 1114
 
  • O.E. Gorda, A. Dolinskyy, S.A. Litvinov
    GSI, Darmstadt, Germany
  • D.E. Berkaev, I. Koop, P.Yu. Shatunov, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
 
  The Collector Ring at FAIR will be used for fast cooling of hot antiproton or ion beams. The ring layout as well as the injection and extraction scheme have been modified during the latest design stage. In this paper, we report on the present status of the ion-optical properties of the machine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO045 Simulation Studies on Beam Injection into a Figure-8 Type Storage Ring simulation, kicker, storage-ring, experiment 1126
 
  • M. Droba, A. Ates, O. Meusel, H. Niebuhr, D. Noll, U. Ratzinger, J.F. Wagner
    IAP, Frankfurt am Main, Germany
 
  The proposed figure-8 storage ring at Frankfurt University [1, 2] is based on longitudinal guiding magnetic fields and will have special features with respect to the beam dynamics. A crucial part of the ring is the injection section, where the low energy beams have to cross an area of steeply rising field – up to B = 6 T into the main ring field. An optimized magnetic channel is designed to bring the injected beam close enough to the magnetic ring flux. An ExB kicker is needed to move the injected beam from the injection channel to the main magnetic field flux allowing multi turn injection. Simulation studies concentrate on this part and will be presented, results will be discussed. A comparison with simulations for prepared scaled down experiments with existing room temperature toroids will be done.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO052 Study a ‘Sum’ Linear Coupling Resonance for J-PARC Main Ring: Observations and Simulations resonance, operation, coupling, emittance 1147
 
  • A.Y. Molodozhentsev, S. Igarashi
    KEK, Ibaraki, Japan
  • Y. Sato, J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  J-PARC Main Ring should deliver a high-power proton beam to neutrino experiments with limited particle losses. To meet this requirement low-order machine resonances have to be compensated. The linear coupling resonance Qx+Qy=43 has been identified as the potential source for significant particle losses at the collimator. The resonance compensation scheme has been studied experimentally by using a low intensity beam. To understand this process the simulations have been performed by using the PTC-ORBIT code. The Main Ring model has been developed to reproduce the machine operation including the initial stage of the acceleration. The 6D beam model has been defined to represent the ‘pencil’ beam used for this study. In frame of this report the single and multi particle dynamics will be discussed to understand the results of measurements, performed during RUN44 (November 2012). The results of the long-term tracking for this case will be presented. The obtained results can be used to benchmark the computer modeling the ‘sum’ linear coupling resonance with the experimental results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO053 Design and Optimization of Racetrack Microtron for Laser Compton Scattered Gamma-ray Sources electron, linac, simulation, dipole 1150
 
  • R. Hajima
    JAEA/ERL, Ibaraki, Japan
  • M. Ferdows
    JAEA, Ibaraki-ken, Japan
 
  Funding: This work is supported by Funds for Integrated Promotion of Social System Reform and Research and Development.
Racetrack microtron (RTM) is a compact accelerator to obtain electron beams with an energy above 100 MeV. Conventional RTM's have been designed to accelerate a train of electron bunch from a thermionic electron gun, where the bunch charge is typically 10 pC. In the industrial application of laser Compton scattered gamma-ray sources, RTM with 200-300 MeV electron energy will be a suitable device to produce 2-3 MeV gamma-ray beams. Single electron bunch from a photocathode RF gun is accelerated and a high-charge small-emittance beam is preferable in such RTM. In this paper, we adopt a simulation code, GPT, for design and optimization of RTM in view of high-charge and small-emittance beam generation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO060 First Turn-by-turn Measurements for Beam Dynamics Studies at ALBA kicker, optics, electron, sextupole 1171
 
  • Z. Martí, G. Benedetti, M. Carlà, A. Olmos
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  This paper summarizes the tasks carried out to develop a turn-by-turn (TBT) measurement system at ALBA. These tasks mainly include testing the MAF firmware for the libera BPMs and implementing the necessary analytical tools to infer the beam dynamics parameters. TBT measurements using an injection kicker are presented. Linear and non-linear beam dynamics results are compared with LOCO. Results are still preliminary since a good agreement with the linear model has not been achieved yet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO073 RFFAG Decay Ring for nuSTORM proton, detector, factory, target 1208
 
  • J.-B. Lagrange, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Appleby, J.M. Garland, H.L. Owen, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  The nuSTORM facility aims to deliver neutrino beams produced from the decay of muons stored in a racetrack ring. Design of racetrack FFAG (Fixed Field Alternating Gradient) decay ring for nuSTORM project is presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO077 AGS Snake Stories solenoid, kicker, extraction, resonance 1220
 
  • F. Méot, Y. Dutheil, R.C. Gupta, H. Huang, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
This contribution re-visits fields, particle motion, and spin precession in the AGS helical polarization snakes. The work was undertaken in preparation of orbit and spin modeling for future polarized proton and helion runs at RHIC. The investigations include re-computation of 3-D OPERA field maps of the helical snakes and particle and spin tracking. There is a series of sub-products of this study, amongst others, the appropriate settings of the AGS cold snake when changing its strength, cold snake settings for polarized helion programs, non-linear coupling in the AGS, the transport of the stable polarization axis from the AGS to RHIC injection kickers, and in addition, a series of high accuracy 3-D field maps have been produced, in view of long-term tracking in the AGS for beam and polarization transmission studies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO080 Experience with a NdFeB based 1 Tm Dipole permanent-magnet, synchrotron, radiation, dipole 1226
 
  • F. Bødker, L.O. Baandrup, A. Baurichter, N. Hauge, K.F. Laurberg, B.R. Nielsen, G. Nielsen
    Danfysik A/S, Taastrup, Denmark
  • O. Balling
    Aarhus University, Aarhus, Denmark
  • F.B. Bendixen, P. Kjeldsteen, P. Valler
    Sintex A/S, Hobro, Denmark
  • N. Hertel, S.P. Møller, J.S. Nielsen, H.D. Thomsen
    ISA, Aarhus, Denmark
 
  Funding: *Work supported by The Danish National Advanced Technology Foundation
A 30° Green Magnet based on permanent NdFeB magnets has been developed and installed in the injection line at the ASTRID2 synchrotron light source. The cost efficient design is optimized for a 1 T field at a length of 1 m using shaped iron poles to surpass the required field homogeneity. The inherent temperature dependence of NdFeB has been passively compensated to below 30 ppm/°C. A study of potential demagnetization effects has been performed by irradiation of NdFeB samples placed directly in a 100 MeV e-beam. A high permanent magnet work point was found to result in enhanced robustness, and the risk of demagnetization was found to be negligible for typical synchrotron applications. The magnet has successfully been in operation at ASTRID2 since autumn 2013.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO096 Field Measurement of the Quadrupole Magnet for CSNS/RCS quadrupole, multipole, extraction, dipole 1265
 
  • L. Li, C.D. Deng, W. Kang, S. Li, D. Tang, H.J. Wang, B. Yin, Z. Zhang, J.X. Zhou
    IHEP, Beijing, People's Republic of China
 
  The quadrupole magnets are being manufactured and measured for China Spoliation Neutron Source Rapid Cycling Synchrotron (CSNS/RCS) since 2012. In order to evaluate the magnet qualities, a dedicated magnetic measurement system has been developed. The main quadrupole magnets have been excited with DC current biased 25Hz repetition rate. The measurement of magnetic field was mainly based on integral field and harmonics measurements at both static and dynamic conditions. This paper describes the magnet design, the field measurement system and presents the results of the quadrupole magnet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO097 Magnets and Magnetic Field Measurements of Hefei Light Source II dipole, quadrupole, storage-ring, sextupole 1268
 
  • Q. Luo, N. Chen, G. Feng, N. Hu, K. Tang, Y.L. Yang, J.J. Zheng
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by Natural Science Foundation of China 11005106, 11105141, and 11375178.
The paper introduces magnets and magnetic field measurements of Hefei Light Source II. In the year 2012-2014, NSRL of USTC upgraded the HLS to HLS II. The HLS II, which was built to improve the performance of the light source, in particular to get higher brilliance of synchrotron radiation and increase the number of straight section insertion devices, is now at commissioning stage. Main purpose of this stage is to achieve full energy with high current, fine emittance and enough life time based on adjustment of magnet current, RF voltage and so on. Most of the magnets were replaced during this project. A new magnetic field measurement platform was built and used for the sampling test on new magnets. Test results showed that the discreteness and uniformity of integrated magnetic field of magnets all meet the requirements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO107 Prediction of the Field Distribution in CERN-PS Magnets simulation, resonance, synchrotron, vacuum 1298
 
  • D. Schoerling
    CERN, Geneva, Switzerland
 
  The CERN Proton Synchrotron (PS) has a circumference of 628 m and operates at an energy of up to 26 GeV. It uses one hundred combined function magnets, with pole shapes designed to create a dipolar and a quadrupolar field component. Each magnet is equipped with a main current circuit and five auxiliary current-circuits, which allows controlling the linear and non-linear magnetic fields. These magnets were installed in the 1950s, and part of the compensating circuits have been added or modified since then, resulting in the fact that detailed measurements of the field distribution in each individual magnet as a function of the six currents are not available. This study is performed to estimate, through deterministic and stochastic calculations, the expected mean value and standard deviation of the field harmonics of the installed magnets as input for beam dynamics simulations. The relevant results can be used to design correction schemes to minimise beam losses in the PS and to enable the acceleration of higher brightness beams required to reach the foreseen Large Hadron Collider (LHC) luminosity targets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME027 Analysis of the Electron Cloud Observations with 25 ns Bunch Spacing at the LHC dipole, emittance, quadrupole, experiment 1410
 
  • G. Iadarola
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
  • G. Arduini, V. Baglin, D. Banfi, H. Bartosik, S.D. Claudet, C.O. Domínguez, J. F. Esteban Müller, G. Iadarola, T. Pieloni, G. Rumolo, E.N. Shaposhnikova, L.J. Tavian, C. Zannini, F. Zimmermann
    CERN, Geneva, Switzerland
 
  Electron Cloud (EC) effects have been identified as a major performance limitation for the Large Hadron Collider (LHC) when operating with the nominal bunch spacing of 25 ns. During the LHC Run 1 (2010 - 2013) the luminosity production mainly used beams with 50 ns spacing, while 25 ns beams were only employed for short periods in 2011 and 2012 for test purposes. On these occasions, observables such as pressure rise, heat load in the cold sections as well as clear signatures on bunch-by-bunch emittance blow up, particle loss and energy loss indicated the presence of an EC in a large portion of the LHC. The analysis of the recorded data, together with EC build up simulations, has led to a significant improvement of our understanding of the EC effect in the different components of the LHC. Studies were carried out both at injection energy (450 GeV) and at top energy (4 TeV) aiming at determining the energy dependence of the EC formation and its impact on the quality of the proton beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME051 Self-Injection by Trapping of Plasma Electrons Oscillating in Rising Density Gradient at Vacuum-Plasma Interface plasma, laser, electron, wakefield 1479
 
  • A. A. Sahai, T.C. Katsouleas
    Duke ECE, Durham, North Carolina, USA
  • P. Muggli
    MPI-P, München, Germany
 
  Funding: DE-SC0010012, NSF-PHY-0936278
We model the trapping of plasma electrons within the density structures excited by a propagating energy source in a rising plasma density gradient. Rising density gradient leads to spatially contiguous coupled up-chirped plasmons (d{ω2pe(x)}/{dx}>0). Therefore phase mixing between plasmons can lead to trapping until the plasmon field is high enough such that e- trajectories returning towards a longer wavelength see a trapping potential. Rising plasma density gradients are ubiquitous for confining the plasma within sources at the vacuum-plasma interfaces. Therefore trapping of plasma-e- in a rising ramp is important for acceleration diagnostics and to understand the energy dissipation from the excited plasmon train [1]. Down-ramp in density [2][3] has been used for plasma-e- trapping within the first bucket behind the driver. Here, in rising density gradient the trapping does not occur in the first plasmon bucket but in subsequent plasmon buckets behind the driver. Trapping reduces the Hamiltonian of each bucket where e- are trapped, so it is a wakefield-decay probe. Preliminary computational results for beam and laser-driven wakefield are shown.
1.Sahai, A. A. et.al.,Proc of IPAC2013, MOPAC10, Oct2013
2.Suk, H. et.al.,Phys. Rev.Lett. 86 2001 10.1103/PhysRevLett.86.1011
3.Dawson, J, Phys Rev 113 1959 10.1103/PhysRev.113.383
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME064 Laser-driven Acceleration with External Injection at SINBAD plasma, laser, acceleration, simulation 1515
 
  • J. Grebenyuk, R.W. Aßmann, U. Dorda, B. Marchetti
    DESY, Hamburg, Germany
 
  One of the important milestones to make plasma acceleration a realistic technology for user-applications is demonstration of bunch acceleration inside a plasma wake with minimal degradation of its quality. This can be achieved by external injection of beams into a plasma accelerator. SINBAD is a proposed dedicated accelerator research and development facility at DESY where amongst other topics laser-driven wakefield acceleration with external injection of ultra-short bunches will be exploited. To minimise energy-spread growth the bunch should occupy a small fraction of the plasma wavelength. In addition it has to be longitudinally synchronised with the laser driver to high accuracy. To avoid emittance growth the beam Twiss parameters have to be matched to the intrinsic beta-function of the plasma. To facilitate matching and synchronisation, acceleration at low plasma densities can be advantageous. We present a preparatory feasibility study for future plasma experiments at SINBAD using simulations with the particle-in-cell code OSIRIS. Field-gradient scaling laws are presented together with parameter scans of externally injected bunch, such as its injection phase, charge and length.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME077 The Challenge of Interfacing the Primary Beam Lines for the AWAKE Project at CERN proton, plasma, electron, laser 1534
 
  • C. Bracco, B. Goddard, E. Gschwendtner, M. Meddahi, A.V. Petrenko
    CERN, Geneva, Switzerland
  • P. Muggli
    MPI, Muenchen, Germany
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  The Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN foresees the simultaneous operation of a proton, a laser and an electron beam. The first stage of the experiment will consist in proving the self-modulation, in the plasma, of a long proton bunch into micro-bunches. The success of this experiment requires an almost perfect concentricity of the proton and laser beams, over the full length of the plasma cell. The complexity of integrating the laser into the proton beam line and fulfilling the strict requirements in terms of pointing precision of the proton beam at the plasma cell are described. The second stage of the experiment foresees also the injection of electron bunches to probe the accelerating wakefields driven by the proton beam. Studies were performed to evaluate the possibility of injecting the electron beam parallel and with an offset to the proton beam axis. This option would imply that protons and electrons will have to share the last few meters of a common beam line. Issues and possible solutions for this case are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME078 Electron Injection Studies for the AWAKE Experiment at CERN electron, plasma, proton, wakefield 1537
 
  • A.V. Petrenko, C. Bracco, E. Gschwendtner
    CERN, Geneva, Switzerland
  • K.V. Lotov
    NSU, Novosibirsk, Russia
  • K.V. Lotov
    BINP SB RAS, Novosibirsk, Russia
  • P. Muggli
    MPI, Muenchen, Germany
 
  The AWAKE experiment recently approved at CERN will use the self-modulation instability (SMI) of long (12 cm), relativistic (400 GeV/c) proton bunches in dense plasmas to drive wakefields with accelerating gradients at the GV/m level. These accelerating gradients will be probed by externally injected electrons. In order to preserve the plasma uniformity required for the SMI the first experiments will use on-axis injection of a low energy 10-20 MeV electron beam collinearly with the proton beam. In this article we describe the physics of electron injection into the proton driven SMI wakefields. Requirements on the injected electron beam are determined and the final accelerated beam parameters are obtained via numerical simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI006 Decay Ring Design Updates for nuSTORM lattice, target, dipole, betatron 1565
 
  • A. Liu, A.D. Bross, D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  The nuSTORM FODO decay ring is designed to achieve both a large phase space acceptance of 2 mm and a large momentum acceptance of 3.8±10\% GeV/c. The goal is challenging, not only because the high dispersion needed at the Beam Combination Section (BCS) of the ring enlarges the beam size, but also because of the nonlinear beam dynamics. In this paper the preliminary design of the nuSTORM ring is presented, which includes the requirements, the ring parameters, and also the tracking results in the MADX PTC\TRACKING module.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI027 Detailed Magnetic Model Simulations of the H Injection Chicane Magnets for the CERN PS Booster Upgrade, including Eddy Currents, and Influence on Beam Dynamics simulation, vacuum, emittance, space-charge 1618
 
  • E. Benedetto, B. Balhan, J. Borburgh, C. Carli, V. Forte, M. Martini
    CERN, Geneva, Switzerland
  • V. Forte
    Université Blaise Pascal, Clermont-Ferrand, France
 
  The CERN PS Booster will be upgraded with an H injection system. The chicane magnets for the injection bump ramp-down in 5 ms and generate eddy currents in the inconel vacuum chamber which perturb the homogeneity of the magnetic field. The multipolar field components are extracted from 3D OPERA simulations and are included in the lattice model. The beta-beating correction is computed all along the ramp and complete tracking simulations including space-charge are performed to evaluate the impact of these perturbations and their correction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI030 Beam Coupling Impedance of the New Beam Screen of the LHC Injection Kicker Magnets impedance, coupling, kicker, operation 1627
 
  • H.A. Day, M.J. Barnes, F. Caspers, E. Métral, B. Salvant, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The LHC injection kicker magnets experienced significant beam induced heating of the ferrite yoke, with high intensity beam circulating for many hours, during operation of the LHC in 2011 and 2012. The causes of this beam coupling impedance were studied in depth and an improved beam screen implemented to reduce the impedance. Results of measurements and simulations of the new beam screen design are presented in this paper: these are used to predict power loss and temperature of the ferrite yoke for operation after long shutdown 1 and for proposed HL-LHC operational parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI051 Comparison between Measurements and Orbit Code Simulations for Beam Instabilities due to Kicker Impedance in the 3-GeV RCS of J-PARC simulation, impedance, kicker, acceleration 1683
 
  • P.K. Saha, H. Harada, N. Hayashi, H. Hotchi, Y. Shobuda, F. Tamura, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The transverse impedance of the extraction kicker magnets is the most dominant beam instability source in the 3-GeV Rapid Cycling Synchrotron of J-PARC. The instability occurs when chromaticity is fully corrected during acceleration but on the other hand no instabilities are observed for a full chromatic correction only at the injection energy even for a beam power up to 500 kW. However, the situation may change for a beam power of 1 MW and also for the upgraded injection beam energy from the present 181 MeV to the 400 MeV, as space charge effect in the non-relativistic region is believed to suppress the growth rate of beam instability. In order to study the kicker impedance in detail, recently we have introduced measured time dependent impedance source in the ORBIT simulation code in a realistic manner. The ORBIT code itself has also been well upgraded and given realistic features for application to synchrotrons. We have also carried out a systematic experimental study for a maximum beam power of 500 kW. In this paper, a detail comparison between measurements and corresponding simulations including 1 MW simulation results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI071 Transverse Impedance Measurement in RHIC and the AGS impedance, betatron, proton, luminosity 1730
 
  • N. Biancacci
    CERN, Geneva, Switzerland
  • M. Blaskiewicz, Y. Dutheil, C. Liu, K. Mernick, M.G. Minty, S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance represents a source of detrimental effects for beam quality and stability at high bunch intensities. In this paper, we evaluate a new global transverse impedance in both RHIC and the AGS with recent measurements of tune shift as a function of bunch intensity. The results are compared to past measurements and present impedance model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI074 First Results of the New Bunch-by-bunch Feedback System at ANKA feedback, operation, insertion, insertion-device 1739
 
  • E. Hertle, N. Hiller, E. Huttel, B. Kehrer, A.-S. Müller, A.-S. Müller, N.J. Smale
    KIT, Eggenstein-Leopoldshafen, Germany
  • M. Höner
    DELTA, Dortmund, Germany
  • D. Teytelman
    Dimtel, San Jose, USA
 
  A new digital three dimensional fast bunch by bunch feedback system has been installed and commissioned at ANKA. Immediate improvements to stored current and lifetime were achieved for normal user operation. For this, the feedback has to be running during the injection and the energy ramp to 2.5 GeV. Additionally, the feedback system was also incorporated into the diagnostic tool-set at ANKA and opened up new possibilities of automated and continuous measurements of certain beam parameters. The system can operate in different modes such as the low alpha operation mode, which has different requirements on the feedback system compared to normal user operation. Results on the various aspects will be presented as well as future improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI075 Beam Orbit Stability at Elettra feedback, electron, storage-ring, operation 1742
 
  • G. Gaio, S. Cleva, E. Karantzoulis, S. Krecic, M. Lonza
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The top-up operation established since 2010 at the Elettra third-generation synchrotron light source has solved the problems related to thermal drifts and beam current dependence, and a series of feedback loops acting on the machine optics and radio-frequency systems made easier to setup and operate the ring. Those systems together with the fast orbit feedback in operation since 2007, contributed to a very high electron beam orbit stability. A description of the active systems and their performance, future perspectives as well as some still open issues will be presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI082 Active Optics Stabilisation Measures at the Diamond Storage Ring quadrupole, feedback, optics, storage-ring 1760
 
  • I.P.S. Martin, R. Bartolini, R.T. Fielder, M.J. Furseman, E.C. Longhi, G. Rehm, W.A.H. Rogers, A.J. Rose, B. Singh
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  The Diamond storage ring is currently operated with 26 insertion devices (IDs), including 14 in-vacuum IDs, 7 APPLE-II type helical undulators and 2 superconducting wigglers. Differences in the design, construction and operation of these devices, combined with different Twiss parameters at the source point, mean each has a different impact on tune stability and beta-beat. In turn, these parameters affect the on and off-momentum dynamic aperture and ultimately impact on the injection efficiency and lifetime. Another source of optics variation arises from the coherent tune shift with current, which when injecting from zero current causes the tune to span the available good-tune region. In this paper we discuss the difficulties of operating the Diamond storage ring in top-up mode with these effects, and present the various measures taken to stabilise the storage ring optics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI109 Construction and Commissioning of Event Timing System at SuperKEKB timing, linac, positron, software 1829
 
  • H. Kaji, K. Furukawa, M. Iwasaki, E. Kikutani, T. Kobayashi, F. Miyahara, T.T. Nakamura, M. Satoh, M. Suetake, M. Tobiyama
    KEK, Ibaraki, Japan
  • T. Kudo, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • T. Okazaki
    EJIT, Hitachi, Ibaraki, Japan
 
  The Event Timing System of Injector Linac at KEK is upgraded to satisfy the new requirements for the SuperKEKB project. After finishing the design and feasibility studies*, we have constructed the new system at Main Trigger Station of Linac. The new functions are developed in this system to perform the injection control of positrons with the newly constructed damping ring. Besides, we integrate the capability to adjust the trigger timing just 20 ms before injection so that the injection RF-bucket of the ring can be decided at the last minute. Now, both the new system and the current working system are operational at Main Trigger Station. This is important for the smooth taking over of Event Timing System. Even during the construction period, Linac must be operated to provide beams into the two light source rings. In this situation, we can carry out enough tests with the actual condition. These tests do not disturb the regular operation and brush up the Event Timing System to enable the quick startup of the SuperKEKB operation. We report about the detailed configuration of the new system and its commissioning performed in the 2014 spring run period.
* H. Kaji et al., "Upgrade of Event Timing System at SuperKEKB",
proceedings of ICALEPCS13, San Francisco, USA, October 6-11, 2013.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI113 Integration of the Timing System for TPS timing, operation, booster, gun 1833
 
  • C.Y. Wu, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.S. Huang, D. Lee, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
 
  Timing system for the Taiwan Photon Source (TPS) were setup and ready for accelerator system commissioning. Event based timing system was chosen to satisfy various requirements for the machine and experiments. The system consist of event generator and multiple event receivers which installed local control nodes. The system is ready in the first quarter of 2014. Performance and functionality are investigated systematically. Parameters like delay, skew, latency, drift due to ambient temperature variation, etc. will be addressed. This report wills summary progress of TPS timing system before system delivery for accelerator commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAA01 Longitudinal Top-up Injection for Small Aperture Storage Rings kicker, storage-ring, electron, radiation 1842
 
  • M. Aiba, M. Böge, F. Marcellini, A. Saá Hernández, A. Streun
    PSI, Villigen PSI, Switzerland
 
  Future light sources aim at achieving a diffraction limited photon beam both in the horizontal and vertical planes. Small magnet apertures and high magnet gradients of a corresponding ultra-low emittance lattice may restrict physical and dynamic acceptance of the storage ring such that off-axis injection and accumulation may become impossible. We investigate a longitudinal injection, i.e. injecting an electron bunch onto the closed orbit with a time-offset with respect to the circulating bunches. The injected bunch will be merged to a circulating bunch thanks to longitudinal damping.  
slides icon Slides WEOAA01 [0.953 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBA03 Status of Preparations for a 10 μs Laser-Assisted H Beam Stripping Experiment laser, experiment, ion, optics 1864
 
  • S.M. Cousineau, A.V. Aleksandrov, V.V. Danilov, T.V. Gorlov, Y. Liu, A.A. Menshov, M.A. Plum, A.P. Shishlo, Y. Wang
    ORNL, Oak Ridge, Tennessee, USA
  • F.G. Garcia, N.F. Luttrell
    UTK, Knoxville, Tennessee, USA
  • D.E. Johnson
    Fermilab, Batavia, Illinois, USA
  • A. Rakhman
    ORNL RAD, Oak Ridge, Tennessee, USA
  • Y. Takeda
    KEK, Ibaraki, Japan
 
  Funding: This work is funded by the U.S. DOE under grant number DE-FG02-13ER41967, and by the U.S. DOE under contract number DE-AC05-00OR22725 with UT-Battelle Corporation.
The concept of laser-assisted H stripping, originated over three decades ago, was successfully demonstrated for a 6 ns, 900 MeV H beam in 2006. Plans are underway to build on this foundation by performing laser-assisted H stripping of a 10 μs, 1 GeV H beam at the Spallation Neutron Source facility; this constitutes a three orders of magnitude improvement over the initial proof of principle demonstration. The central theme of the experiment is the reduction of the required laser power through ion beam manipulations and laser-ion beam temporal matching. This paper discusses the configuration of the experiment, the current and anticipated challenges, and the schedule.
 
slides icon Slides WEOBA03 [2.549 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOBA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB01 The Commissioning of the Laser Ion Source for RHIC-EBIS ion, laser, target, ion-source 1890
 
  • T. Kanesue, J.G. Alessi, E.N. Beebe, M.R. Costanzo, L. DeSanto, R.F. Lambiase, D. Lehn, C.J. Liaw, V. LoDestro, M. Okamura, R.H. Olsen, A.I. Pikin, D. Raparia, A.N. Steszyn
    BNL, Upton, Long Island, New York, USA
  • S. Ikeda
    TIT, Yokohama, Japan
  • K. Kondo, M. Sekine
    RLNR, Tokyo, Japan
 
  Funding: Work supported by NASA and Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A new laser ion source (LIS) for low charge state ion production was installed on RHIC-EBIS. This is the first LIS to be combined with an Electron Beam Ion Source (EBIS) type heavy ion source. The LIS provides intense low charge state ions from any solid state material, with low emittance and narrow pulse length. These features make it suitable as an external source of 1+ ions that can be injected into the EBIS trap for charge breeding. In addition, a LIS is the only type ion source which can allow rapid switching among many ion species, even on pulse-by-pulse basis, by changing either laser path or target position, to strike the material of choice. The EBIS works as a charge breeder, with the extracted high charge state ions used in the following accelerators. The beams from LIS will be used for RHIC and NASA Space Radiation Laboratory (NSRL) at BNL. The rapid beam switching, which was not possible with existing ion sources, will expand the research field at NSRL as a galactic cosmic ray simulator. The results of commissioning will be shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOAB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO009 A New Booster Synchrotron for the Sirius Project booster, lattice, emittance, sextupole 1959
 
  • L. Liu, X.R. Resende, A.R.D. Rodrigues, F. H. de Sá
    LNLS, Campinas, Brazil
 
  The design for the Sirius full energy booster has been modified after the decision to change the storage ring lattice from TBA to 5BA in July 2012. In the new design the booster is concentric with the storage ring and shares the same tunnel. The achieved emittance of 3.7 nm.rad at 3 GeV for this large booster (496.8 m circumference) is better matched to the 5BA storage ring emittance of 0.28 nm.rad. Good nonlinear behaviour and efficient closed orbit correction in the presence of realistic errors are shown. Injection and extraction schemes and eddy current effects during ramping are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO011 Design Study of Pulsed Multipole Injection for Aichi SR multipole, storage-ring, power-supply, electron 1962
 
  • N. Yamamoto, M. Hosaka, A. Mano, T. Takano, Y. Takashima
    Nagoya University, Nagoya, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
 
  Since March of 2013 the user operation has been started with the top-up injection mode of the storage ring at Aich SR.The accelerators of Aichi SR consisted with a 50 MeV linac, an 1.2 GeV full energy booster and the storage ring. The operation current of the storage ring is 300 mA and the injection rate is up to 1 Hz. The single bunch injection scheme is employed and the electron beam can be injected into the arbitrary bucket of the storage ring. Up to now, the stabilitiy of 0.2 % for the stored beam current was achieved, however, the coherent oscillation of stored beams due to injection kikers is also obserbed. In order to introduce the new injection scheme into Aichi SR and to suppress that coherent oscillation, we have designed the pulsed multipole injection system. The system consists of the sextupole-like pulsed magnet and the micro-sec responce power supply. In the paper, we will report the results of beam tracking calculations with our designed magnet and power supply.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO012 New Injection System of Siberia-2 Light Source kicker, septum, simulation, electron 1965
 
  • S.I. Tomin, V. Korchuganov
    NRC, Moscow, Russia
 
  The storage ring Siberia-2 is SR source of second generation with circumference 124 m. The electron beam is injected into the ring at the energy 450 MeV. The Siberia-2 injection system was initially consisted of two high voltage rectangular pulses generators connected to the two in-vacuum strip – line kickers of traveling wave (wave impedance 50 Ohm) – a pre-inflector and an inflector. The amplitude voltage was 25-35 kV with 20 ns pulse duration and 2-3 ns pulse front/fall. Recently the new injection generators were proposed. Injection system now includes the same kickers and the new 1 microsecond pulse duration and 10 kV voltage amplitude generators. A dynamics of the electron beam after injection moment is considered in the article. The possibility of effective injection with kikers pulse duration over 2 periods of revolution of the electron beam is shown. The results of the new injection system commissioning are also demonstrated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO013 Design Modifications and Installation of the Injection Girder System in the Taiwan Photon Source septum, kicker, lattice, photon 1968
 
  • K.H. Hsu, J.-R. Chen, Y.L. Chu, H.C. Ho, D.-G. Huang, W.Y. Lai, C.J. Lin, Y.-H. Liu, H.M. Luo, S.Y. Perng, P.L. Sung, T.C. Tseng, H.S. Wang, M.H. Wu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The prototype of TPS injection girder system was designed and installed in a temporary factory. As the leakage field of the kicker magnet in the prototype was found to be too large according to both simulation and measurement to be acceptable, the lattice was altered to fit the requirements. In this paper, we present the design modifications of the injection girder system due to the new lattice. The DC septum magnet is replaced by a pre-AC septum magnet, of which its adjustable stage must be redesigned. The positions of vacuum components in the injection girder are also altered; we add some new holes in the prototype girder. The prototype of an injection girder system after modification has been installed in the tunnel of Taiwan Photon Source. The accuracy of position of three girders installed, and the stages for the septum or kicker magnet are within 0.25 and 0.08 mm, respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO014 The Installations of the In-vacuum Kicker System of the Booster Injection Section in TPS kicker, booster, vacuum, extraction 1971
 
  • C.S. Chen, C.K. Chan, K.H. Hsu, Y.T. Huang, Y.-H. Liu, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  The installations of the In-Vacuum kicker system of the booster injection in TPS are presented in this article. Due to the more than 20 kV operation voltages and precise positioning requirements, the insulations and positioning systems are designed with more attentions. Although increasing the gap between high potential parts and ground could provide enough withstanding voltage, on the other hand, the insufficient space and vacuum requirements limit the sizes of insulators. Therefore, lots of effort have been done to deal with these conflicts. All assembling processes will be described in this paper as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO016 Injection/Extraction Kicker for the ALS-U Project kicker, impedance, extraction, coupling 1977
 
  • S. De Santis, W. Barry, S. Kwiatkowski, T.H. Luo, G.C. Pappas, L.R. Reginato, D. Robin, C. Steier, C. Sun, H. Tarawneh, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the US Department of Energy under Contract no. DEAC02-05CH11231
The ALS-II proposal consists in the upgrade of the existing Advanced Light Source at LBNL to a new ultra-low emittance lattice for production of diffraction-limited soft x-rays. In order to compensate for the reduced beam lifetime we intend to operate the machine in continuous top-off mode, where one of several bunch trains is extracted every 30-60 seconds and swapped with a fresh train from the accumulator ring, which is injected on axis without perturbing the circulating beam. In this paper we present a possible design for the injection/extraction kicker based on matched stripline electrodes. The main parameters of such a kicker are discussed in reference to the minimum gap between trains, the storage ring lattice, and the characteristics of a suitable pulser. We also present results from 3D electromagnetic modeling of the proposed kicker performed to evaluate its rise and fall time and field uniformity characteristics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO065 New Design of J-PARC Main Ring Injection System for High Beam Power Operation kicker, septum, operation, space-charge 2097
 
  • K. Fan, K. Ishii, H. Matsumoto, N. Matsumoto, T. Shibata, T. Sugimoto
    KEK, Ibaraki, Japan
 
  The present J-PARC main ring (MR) injection system has worked for 6 years since 2008, and the performance has been improved a lot by correcting the original design faults. But there are still problems in the existing injection system that affects the daily operation. In order to realize the MR beam power to the design limit, a high performance injection system is crucial. The remaining problems may have severe effects on high intensity beam, and become a big block to the realization of high beam power operation. Thus, upgrade the present injection system to satisfy the demands of high beam power operation is extremely important. The upgrade will redesign injection septa to obtain high performance, which will reduce the leakage field greatly. The kicker rise time will be reduced greatly by optimizing the configuration and using speed-up circuit. A compensation kicker magnet is being studied for reflection tail field cancelation. Careful 3D electromagnetic field simulations and 3D particle tracking are performed to ensure the accuracy of magnets design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO069 Development of Cogging at the Fermilab Booster booster, kicker, extraction, dipole 2109
 
  • K. Seiya, S. Chaurize, C.C. Drennan, W. Pellico, A.K. Triplett, A.M. Waller
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25·1017 protons/hour which is almost double the present flux, 1.4·1017 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedback keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO071 Optics Setup in the AGS and AGS Booster for Polarized Helion Beam resonance, booster, proton, polarization 2115
 
  • H. Huang, L. Ahrens, J.G. Alessi, M. Bai, E.N. Beebe, M. Blaskiewicz, K.A. Brown, Y. Dutheil, W. Fischer, C.J. Gardner, J.W. Glenn, T. Hayes, F. Méot, A. Poblaguev, V.H. Ranjbar, T. Roser, V. Schoefer, K.S. Smith, S. Tepikian, N. Tsoupas, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Future RHIC physics program calls for polarized He3 beam. The He3 beam from the new EBIS source has a relative low rigidity which requires delicate control of injection and RF setup in the Booster. The strong depolarization resonance strength in both AGS and AGS Booster requires careful consideration of beam energy range and optics setup. Recently, the He3 beam was accelerated to 11GeV/n in the AGS. The near term goal fo 3*1010 at RHIC requires several RF bunch merges in both AGS and the Booster. The beam test results are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO081 Status of MedAustron – The Austrian Ion Therapy and Research Centre synchrotron, extraction, proton, ion 2146
 
  • F. Osmić, A. Koschik, P. Urschütz
    EBG MedAustron, Wr. Neustadt, Austria
  • M. Benedikt
    CERN, Geneva, Switzerland
 
  MedAustron is the Austrian centre for hadron therapy and non-clinical research. The accelerator design is based on the PIMMS study * and features proton beams of up to 800 MeV and carbon ion beams of up to 400 MeV/n. The accelerator is currently being installed and the beam commissioning has started early 2013. The injector comprising three ECR sources, an RFQ and an IH-mode structure has already been qualified; the synchrotron commissioning shall start in March 2014. Certification of the therapy accelerator following the European Medical Device Directive (MDD) is well under way with strong partners from industry involved in the process. The status of the overall facility including an overview of the recent commissioning results will be presented in this paper.
* P. J. Bryant et al., “Proton-Ion Medical Machine Study (PIMMS), 2,” Aug 2000.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO097 The Base Parameters of the Compact 27 GHz Electron Linac for Medical Application electron, linac, simulation, coupling 2189
 
  • S.M. Polozov, T.V. Bondarenko, Yu.D. Kliuchevskaia, V.I. Rashchikov
    MEPhI, Moscow, Russia
 
  A compact and light-weight electron linac is attractive for a number of medical applications including intra-operational and cyber-knife systems. The design of such an accelerator can nowadays be based on using of a powerful high-voltage high-frequency gyrotron which can provide now in pulsed regime a peak power up to 15 MW at the frequency about of 30 GHz. Taking into account this possibility, the paper presents the results of design and numerical simulations for the electron beam dynamics in a linac with the operating frequency of 27 GHz. Designed linac consists of two parts: gentle buncher and main accelerating section. The beam bunching is complicated at 1 cm wavelength because high energy about 2 MeV is necessary for beam injection into the main stage with v/c=1. Beam dynamics simulations are held using BEAMDULAC-BL code*. The electrodynamics of accelerating structure based on biperiodic structure is presented. The electron gun simulation is also discussed. The RF feeding is planned to be realized using a gyrotron to be designed in IAP RAS. The gyrotron is capable to produce 2 MW peak RF power in pulses with pulse duration 400 μs and repetition rate 10 Hz.
T.V. Bondarenko, E.S. Masunov, S.M. Polozov. BEAMDULAC-BL code for 3D simulation of electron beam dynamics taking into account beam loading and coulomb field. PAST, 2014 (in press).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO100 NORMA - The Normal-Conducting, Scaling Racetrack FFAG lattice, extraction, proton, dynamic-aperture 2198
 
  • R. Appleby, J.M. Garland, H.L. Owen, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • K.M. Hock
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Research supported by STFC grant number ST/K002503/1 "Racetrack FFAGs for medical, PRISM and energy applications".
We present a design for a 30~-~350~MeV scaling racetrack FFAG accelerator for medical application - NORMA (NOrmal-conducting Racetrack Medical Accelerator) - which utilises normal-conducting magnets. NORMA consists of 12 FDF triplet cells with a maximum drift length of  ∼ 2~m; an additional drift space inserted into two places forms a racetrack lattice with enough space for injection/extraction. Optimisation routines in PyZgoubi are used to find optimum cell parameters and working point.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO106 Complex “ALFA” After 10 Years of Operation on Track Membranes Production ion, cyclotron, extraction, ion-source 2212
 
  • G.A. Karamysheva, Yu.N. Denisov
    JINR, Dubna, Moscow Region, Russia
 
  The film irradiation complex “ALFA” dedicated to expose the polymer films used in the track membranes production was designed and manufactured by Joint Institute for Nuclear Research for “TRACKPORE TECHNOLOGY" holding company and put into operation in 2002 year in Dubna, Russia. The complex consists of the isochronous cyclotron CYTRACK with external injection of ions, the extraction system, the beam transport of accelerated ions and the film irradiation chamber. Cyclotron CYTRACK accelerates argon ions upto the energy - 2,4 МeV/nucleon, intensity of extracted beam is about 500nA, extraction efficiency totaled 50%. The complex “ALFA” products polyethylene terephthalate track membranes with less than 25 μm thickness and less than 40cm width. After ten years of the successful operation complex “ALFA” was upgraded. Vacuum, control and power supply systems were replaced. As a result the stability and efficiency of the operation of the equipment were increased.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO117 The Accumulator of the ESSnuSB for Neutrino Production linac, proton, target, lattice 2245
 
  • E.H.M. Wildner, J. Jonnerby, J.-P. Koutchouk, M. Martini, H.O. Schönauer
    CERN, Geneva, Switzerland
  • E. Bouquerel, M. Dracos, N. Vassilopoulos
    IPHC, Strasbourg Cedex 2, France
  • T.J.C. Ekelöf, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • M. Eshraqi, M. Lindroos, D.P. McGinnis
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a research centre based on the world’s most powerful neutron source currently under construction in Lund, Sweden, using 2.0 GeV, 2.86 ms long proton pulses at 14 Hz for the spallation facility (5MW on target). The possibility to pulse the linac at 28 Hz to deliver, in parallel with the spallation neutron production, a very intense, cost effective, high performance neutrino beam. The high current in the horns of the target system for the neutrino production requires proton pulses far shorter than the linac pulse. Therefore an accumulator ring is required after the linac to produce the shorter pulses. Charge exchange injection of an H beam from the linac would be used. The Linac would deliver 1.1 1015 protons per pulse. Due to space charge limits, several rings or one ring re-filled several times during the neutrino cycle are necessary. A cost effective design of an accumulator that can handle this large number of ions will be shown, taking into account the structure of the linac pulse and the requirements of the target system. Beam dynamics issues, the injection system, the extraction and the distribution on the targets are addressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME035 Beam Loss Suppression by Improvement of Vacuum System in J-PARC RCS vacuum, ion, synchrotron, linac 2338
 
  • J. Kamiya, M. Kinsho, S. Noshiroya, K. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  In high power beam accelerators, pressure of the beam line directly affects the amount of the beam loss. For example, in the early 1970’s in CERN’s Intersecting Storage Ring (ISR), the ion-induced pressure bump produced the fall-off of the beam current. 3GeV synchrotron (RCS) in J-PARC is no exception. RCS is one of the most high power beam accelerators in the world. It aims the 1 MW beam power, which corresponds to the average and peak beam current of 333 uA and about 10 A, respectively. In the present stage, the injection line called L3BT line (Linac to 3GeV Beam Transport line), is the section, where the pressure notably produces the beam loss. In this line, H beam from Linac was converted to H0 by charge stripping due to the interaction between H beam and the residual gas molecules. Such H0 was not bended by the injection septum magnets and directly hit the vacuum wall. We decided to add the vacuum pumps in this line to reduce the residual gas molecules. We will present the effectivity of the additional pumps on the basis of the measured results of the pressure improvement and the beam loss suppression.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME038 Introduction to the Latest Version of the Test-particle Monte Carlo Code Molflow+ vacuum, simulation, software, cryogenics 2348
 
  • M. Ady, R. Kersevan
    CERN, Geneva, Switzerland
 
  The Test-Particle Monte Carlo code Molflow+ is getting more and more attention from the scientific community needing detailed 3D calculations of vacuum in the molecular flow regime mainly, but not limited to, the particle accelerator field. Substantial changes, bug fixes, geometry-editing and modelling features, and computational speed improvements have been made to the code in the last couple of years. This paper will outline many of these new features, and show examples of applications to the design and analysis of vacuum systems at CERN and elsewhere.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME041 Vacuum Acceptance Tests for the UHV Room Temperature Vacuum System of the LHC during LS1 vacuum, ion, accumulation, controls 2357
 
  • G. Cattenoz, V. Baglin, G. Bregliozzi, D. Calegari, P. Chiggiato, J.E. Gallagher, A. Marraffa
    CERN, Geneva, Switzerland
 
  During the CERN Large Hadron Collider (LHC) first long shut down (LS1), a large number of vacuum tests are carried out on consolidated or newly fabricated pieces of equipment. In such a way, the vacuum compatibility is assessed before installation in the UHV system of the LHC. According to the equipment’s nature, the vacuum acceptance tests consist in functional checks, leak tests, outgassing rate measurements, evaluation of contaminants by Residual Gas Analysis (RGA), pumping speed measurements, and qualification of the sticking probability of Non-Evaporable-Getter coating. In this paper, the methods used for the tests and the acceptance criteria are described. A summary of the measured vacuum characteristics for the tested components is also given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME044 LHC Experimental Beam Pipe Upgrade during LS1 vacuum, detector, experiment, simulation 2366
 
  • G. Lanza, V. Baglin, G. Bregliozzi, P. Chiggiato
    CERN, Geneva, Switzerland
 
  The LHC experimental beam pipes are being improved during the ongoing long shutdown 1 (LS1). Several vacuum chambers have been tested and validated before their installation inside the detectors. The validation tests include: leak tightness, ultimate vacuum pressure, material outgassing rate, and residual gas composition. NEG coatings are assessed by hydrogen sticking probability measurement with the help of Monte Carlo simulations. In this paper the motivation for the beam pipe upgrade, the validation tests of the components and the results are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME045 Assessment of New Components to be Integrated in the LHC Room Temperature Vacuum System vacuum, experiment, ion, operation 2369
 
  • G. Bregliozzi, V. Baglin, P. Chiggiato
    CERN, Geneva, Switzerland
 
  Integration of new equipment in the long straight sections (LSS) of the LHC must be compatible with the TiZrV non-evaporable getter thin film that coats most of the 6-km-long room-temperature beam pipes. This paper focus on two innovative accelerator devices to be installed in the LSS during the long shutdown 1 (LS1): the beam gas vertex (BGV) and a beam bending experiment using crystal collimator (LUA9). The BGV necessitates a dedicated pressure bump, generated by local gas injection, in order to create the required rate of inelastic beam-gas interactions. The LAU9 experiments aims at improving beam cleaning efficiency with the use of a crystal collimator. New materials like fibre optics, piezoelectric components, and glues are proposed in the original design of the two devices. The integration feasibility of these set-ups in the LSS is presented. In particular outgassing tests of special components, X-rays photoelectron spectroscopy, analysis of NEG coating behaviour in presence of glues during bake-out, and pressure profile simulations will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME056 Further Optimisation of NEG Coatings for Accelerator Beam Chamber electron, vacuum, experiment, photon 2399
 
  • O.B. Malyshev, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The non-evaporable getter (NEG) coating, invented at CERN in 90s, is used nowadays in many accelerators around the world. The main advantages of using NEG coatings are evenly distributed pumping speed, low thermal outgassing rates and low photon and electron stimulated gas desorption. The only downside of the NEG is its selective pumping: it pumps H2, CO, CO2 and some other gas species, but does not pump noble gases and hydrocarbons. However, in the accelerators where NEG coating could be beneficial, there is synchrotron radiation and photoelectrons that bombard vacuum chamber walls, it was found in our study that hydrocarbons can be pumped by NEG coating under electron and, most likely, photon bombardment. The detail and the results of this study are reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME062 A New Digital LLRF System for a Fast Ramping Storage Ring cavity, LLRF, feedback, operation 2418
 
  • M. Schedler, F. Frommberger, W. Hillert, D. Proft, D. Sauerland
    ELSA, Bonn, Germany
  • D. Teytelman
    Dimtel, San Jose, USA
 
  At the Electron Stretcher Facility ELSA of Bonn University, an upgrade of the maximum stored beam current from 20 mA to 200 mA is planned. The storage ring operates applying a fast energy ramp of 6 GeV/s from 1.2 GeV to 3.5 GeV and a slow extraction afterwards over a few seconds to the hadron physics experiments. The intended upgrade is mainly limited by the coupled-bunch instabilities and the ability of bunch-by-bunch feedback systems to suppress such instabilities. In order to achieve optimum bunch-by-bunch feedback performance, the beam phase with respect to the master oscillator and the synchrotron frequency have to stay constant. This paper reports on a new high performance low level RF (LLRF) system. The system stabilizes the cavity field and is capable of executing fast voltage and phase ramps. The LLRF uses FPGA-based digital signal processing and includes cavity tuner control as well as fast interlocks and extensive diagnostics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI092 Test and Simulation Results for Quenches Induced by Fast Losses on a LHC Quadrupole quadrupole, simulation, operation, proton 2706
 
  • C. Bracco, B. Auchmann, W. Bartmann, M. Bednarek, A. Lechner, M. Sapinski, R. Schmidt, N.V. Shetty, M. Solfaroli Camillocci, A.P. Verweij
    CERN, Geneva, Switzerland
 
  A test program for beam induced quenches was started in the LHC in 2011 in order to reduce as much as possible BLM-triggered beam dumps, without jeopardizing the safety of the superconducting magnets. A first measurement was performed to assess the quench level of a quadrupole located in the LHC injection region in case of fast (ns) losses. It consisted in dumping single bunches onto an injection protection collimator located right upstream of the quadrupole, varying the bunch intensity up to 3·1010 protons and ramping the quadrupole current up to 2200 A. No quench was recorded at that time. The test was repeated in 2013 with increased bunch intensity (6·1010 protons); a quench occurred when powering the magnet at 2500 A. The comparison between measurements during beam induced and quench heaters induced quenches is shown. Results of FLUKA simulations on energy deposition, calculations on quench behaviour using QP3 and the respective estimates of quench levels are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI098 QUENCH PROTECTION STUDIES OF 11T Nb3Sn DIPOLE MODELS FOR LHC UPGRADES dipole, extraction, simulation, collimation 2725
 
  • A.V. Zlobin, G. Chlachidze, A. Nobrega, I. Novitski
    Fermilab, Batavia, Illinois, USA
  • M. Karppinen
    CERN, Geneva, Switzerland
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAA03 Transverse Intra-bunch Feedback in the J-PARC MR feedback, kicker, synchrotron, betatron 2786
 
  • K. Nakamura
    Kyoto University, Kyoto, Japan
  • Y.H. Chin, T. Obina, M. Okada, M. Tobiyama
    KEK, Ibaraki, Japan
  • T. Koseki, T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Shobuda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  We will report the development of a new broadband (bandwidth of around 100MHz) feedback system for suppression of intra-bunch oscillations and reduction of particle losses at the J-PARC Main Ring (MR). A new BPM has been designed based on the exponential coupler stripline type (the diameter of 134 mm and the length of 300 mm) and it is now under fabrication. In this BPM system, the frequency characteristics are corrected using the equalizer as bunch signals are differentiated. The design detail and the performance of the new BPM as well as preparation of newly installed exciter and power amplifiers will be presented. We will also report beam test results of head-tail mode suppression at 3 GeV with the bunch length of 150-250 ns.  
slides icon Slides THOAA03 [1.149 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA02 Status of the Emittance Transfer Experiment Emtex emittance, solenoid, quadrupole, coupling 2798
 
  • M.T. Maier, L. Groening, C. Mühle, I. Pschorn, P. Rottländer, C. Will, C. Xiao
    GSI, Darmstadt, Germany
  • M. Chung
    Fermilab, Batavia, Illinois, USA
 
  In order to improve the injection efficiency of the round UNILAC heavy ion beam into the asymmetric acceptance of the SIS18 it would be of great advantage to decrease the horizontal emittance by a so called emittance transfer to the vertical plane. In this contribution the present status of the emittance transfer experiment EMTEX at GSI will be reported. A short introduction about the theoretical background of the technique will be given, while the main part is dedicated to the practical solutions setting up a test beam line at GSI. Finally, the results of a first commissioning beam time will be presented. The scheduled beam time to apply the emittance transfer technique foreseen in spring 2014 had to be shifted to calendar week 26 in 2014, just after this conference, as some components have not been delivered in time by the contractor. The results and comparison to the theoretical predictions you may find in later publications.  
slides icon Slides THOBA02 [1.928 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOBA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO078 Time-dependent Behaviour of Gas Ejected from an Accelerating Structure after a Discharge vacuum, distributed, HOM, damping 3062
 
  • V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  Funding: This work is supported by the 7th European Framework program EuCARD under grant number 227579.
A discharge or RF-breakdown event in a CLIC acceleration structure causes the localized release of gas molecules inside a thin conduction limited system with distributed pumping. We discuss the transient behavior of such a system in the molecular flow regime that allows an analytical solution with the help of Greens functions. They describe the temporal evolution of the gas density and the gas flow ejected from the ends of thin pipes of finite length. Distributed pumping, for example through the HOM damping slits is taken into account.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO080 The FiDeL Model at 7 TeV operation, quadrupole, optics, dipole 3069
 
  • N. Aquilina, M. Giovannozzi, P. Hagen, M. Lamont, A. Langner, E. Todesco, R. Tomás, J. Wenninger
    CERN, Geneva, Switzerland
  • N.J. Sammut
    University of Malta, Information and Communication Technology, Msida, Malta
 
  After the long shut down of 2013-2014, the LHC energy will be pushed toward 7 TeV. In this range of energy, the main magnets will enter a new regime. For this reason, this paper will present a detailed study of the performance of the FiDeL model that could be critical for the operation in 2015. In particular this paper will study the saturation component and its precision in the model, together with the hysteresis error. The effect of these two components and their errors on the beta-beating is also given. Furthermore, an estimate of the dynamic effects visible in the tune and chromaticity will be presented for the 7 TeV operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO084 Beam Dynamics Observations of Slow Integer Tune Crossing in EMMA simulation, lattice, acceleration, synchrotron 3082
 
  • J.M. Garland, H.L. Owen
    UMAN, Manchester, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  When the betatron tune is an integer in a cyclical accelerator, dipole-field errors can drive the coherent addition of betatron amplitude to the bunch eventually causing particle loss. Transverse integer tune crossing in a linear non-scaling FFAG is inevitable due to finite chromaticity. In EMMA (Electron Machine with Many Applications), as many as 6 integers may be crossed is as little as 6 turns at maximum acceleration over the 10 – 20 MeV energy range. This fast integer tune crossing, of the order 1 integer per turn, was shown to have little effect on the coherent amplitude growth and charge loss rate. Slower acceleration inside an RF bucket in EMMA allowed the experimental exploration of slower integer tune crossing speeds, of the order of a factor ten slower. The effect on the coherent oscillation amplitude was observed and the charge loss at integer tune crossings indicated resonant effects on the bunch. Simulations in Zgoubi allowed a more detailed analysis and the mechanism of slower resonance crossing in a non-scaling FFAG is discussed, including the importance of coupled longitudinal-transverse decoherence on the effective emittance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME014 Beam Dynamics in the LEBT for FRANZ rfq, emittance, solenoid, simulation 3241
 
  • P.P. Schneider, H. Dinter, M. Droba, O. Meusel, D. Noll, T. Nowottnick, O. Payir, H. Podlech, A. Schempp, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  The two Low Energy Beam Transport (LEBT) sections of the accelerator-driven neutron source FRANZ* consist of four solenoids. The first section with two solenoids will match the 120 keV proton beam into a chopper system**. Downstream from the chopper system a second section with two more solenoids will match the beam into the acceptance of the following RFQ. The accelerator will be operated using either a 2 mA dc beam or a pulsed beam with intensities from 50 mA to 200 mA at 250 kHz repetition rate. The high intensity of these ion beams requires the consideration of space-charge effects. Particle simulations with varying parameter sets have been performed in order to determine the settings providing best transmission and beam quality. Loss profiles along the transport channel were computed to identify hotspots. Simulation results for best transmission at lowest emittance growth will be presented.
* O. Meusel et al., Proc. of LINAC12, Tel-Aviv, Israel, MO3A03
** C. Wiesner et al., Proc. of IPAC2012, New Orleans, LA., USA, THPPP074
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME025 Low Power Test of a Hybrid Single Cavity Linac rfq, linac, cavity, ion 3274
 
  • L. Lu, Y. He, Q. Jin, C.X. Li, G. Pan, A. Shi, L.B. Shi, L.T. Sun, L.P. Sun, Z.L. Zhang, H.W. Zhao, H. Zhao
    IMP, Lanzhou, People's Republic of China
  • T. Hattori
    NIRS, Chiba-shi, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
 
  We fabricated and assembled a hybrid single cavity (HSC) linac which is formed by combining a radio frequency quadrupole (RFQ) structure and a drift tube (DT) structure into one interdigital-H (IH) cavity. ]. The HSC linac was designed as an injector for a cancer facility and was able to be used as a neutron source for boron neutron capture therapy. The injection method of the HSC linac used a direct plasma injection scheme (DPIS), which is considered to be the only method for accelerating a high current heavy ion beam produced by a laser ion source. The input beam current was designed to be 20 mA, which could be produced by a laser ion source. According to the simulations and calculations, the HSC linac could accelerate a 6-mA C6+, beam which satisfies the particle number criteria for cancer therapy use (108~9 ions/pulse). Details of the measurements and evaluations of the assembled HSC linac, and details of a DPIS test using a laser ion source are reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME052 Measurement of the Longitudinal Acceptance of the ReA RFQ rfq, simulation, linac, ion 3346
 
  • D.M. Alt, S.W. Krause, A. Lapierre, D. Leitner, S. Nash, R. Rencsok, J.A. Rodriguez, M.J. Syphers, W. Wittmer
    NSCL, East Lansing, Michigan, USA
 
  The ReA reaccelerator facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) will provide a unique capability to study reactions with low-energy beams of rare isotopes. A beam from the coupled cyclotron facility is stopped in a gas stopping system, charge bred in an Electron Beam Ion Trap (EBIT), and then reaccelerated in a compact superconducting LINAC. The beam is injected into the LINAC by a room-temperature Radio Frequency Quadrupole (RFQ) combined with an external Multiharmonic Buncher. (MHB) In preparation for future upgrades to the capabilities of the ReA, an accurate determination of the longitudinal acceptance of the RFQ was conducted using a stable ion beam from a test source. This paper presents the results of the acceptance measurement, including empirical confirmation of a predicted asymmetry in the shape of the acceptance window.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME061 Present Status of J-PARC - after the Shutdown due to the Radioactive Material Leak Accident- linac, operation, power-supply, target 3373
 
  • T. Koseki
    KEK, Ibaraki, Japan
  • K. Hasegawa
    JAEA/J-PARC, Tokai-mura, Japan
 
  In J-PARC, a radioactive material leak accident occurred at the Hadron Experimental Facility on May 23, 2013. The accident was triggered by a malfunction of the slow extraction system of the Main Ring synchrotron. After seven-month long shutdown due to the accident, beam operation of the linac was restarted in December 2013. In this paper, the most recent status of the beam operation is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME063 Residual Dose with 400 MeV Injection Energy at J-PARC Rapid Cycling Synchrotron operation, vacuum, linac, synchrotron 3379
 
  • K. Yamamoto, N. Hayashi, M. Kinsho
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  Last summer shutdown J-PARC RCS injection energy was upgraded from 181 MeV to 400 MeV. We report the effect of the injection energy upgrade on the residual dose in the RCS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME064 Progress and Status of the J-PARC 3GeV RCS operation, linac, vacuum, power-supply 3382
 
  • M. Kinsho
    JAEA/J-PARC, Tokai-mura, Japan
 
  Big issue for the J-PARC 3GeV RCS was displacement of main magnets caused by last big earthquake because this made beam loss more than 400 kW beam power. Since realignment of main magnet and other components was essential to realize higher beam power and stable operation, this work has been done last maintenance period. To minimize amount of realignment work, we decided that not all components moved to designed regular potions but also minimum components moved to the position which was secured design acceptance 486 π mm mrad. Almost all components which are main magnets, rf cavities, and extraction magnets had to be moved in the range of 10 mm for horizontal, 3 mm for vertical and 9 mm for longitudinal, respectively. It was not necessary for the components installed in injection straight line to move because displacement of these components was less than ± 0.2 mm. At same time 400 MeV injection upgrade work should be done. Beam commissioning is planned from the middle of January 2014. The progress and status of the RCS in J-PARC are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME068 Optics Design of the High-power Proton Synchrotron for LAGUNA-LBNO optics, dipole, proton, quadrupole 3391
 
  • Y. Papaphilippou, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, I. Efthymiopoulos, R. Steerenberg
    CERN, Geneva, Switzerland
 
  Funding: Work supported by EC/FP7 grant 284518
The prospects for future high-power proton beams for producing neutrinos at CERN within the LAGUNA-LBNO study, include the design of a 2 MW High-Power Pro- ton Synchrotron (HP-PS). In this paper, the optics design of the ring is reviewed, comprising Negative Momentum Compaction (NMC) arc cells and quadrupole triplet long straight sections, flexible enough to achieve the constraints imposed mainly by different beam transfer equipment and processes. A global tunability study is undertaken includ- ing aperture and magnet parameter considerations. Basic correction systems are specified and their impact to beam dynamics including dynamic aperture is finally evaluated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME070 Status of the LIU Project at CERN linac, ion, luminosity, extraction 3397
 
  • K. Hanke, H. Damerau, A. Deleu, A. Funken, R. Garoby, S.S. Gilardoni, N. Gilbert, B. Goddard, E.B. Holzer, A.M. Lombardi, D. Manglunki, M. Meddahi, B. Mikulec, E.N. Shaposhnikova, M. Vretenar
    CERN, Geneva, Switzerland
 
  CERN has put in place an ambitious improvement programme to make the injector chain of the LHC capable of supplying the high intensity and high brightness beams requested by the High-Luminosity LHC (HL-LHC) project. The LHC Injectors Upgrade (LIU) project comprises a new Linac (Linac4) as well as major upgrades and renovations of the PSB, PS and SPS synchrotrons. The heavy ion injector chain is also included, adding Linac3 and LEIR to the list of accelerators concerned. This paper reports on the work completed during the first long LHC shutdown, and outlines the further upgrade path.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME071 Injection and Extraction Systems for a High-Power Proton Synchrotron at CERN laser, extraction, septum, kicker 3400
 
  • W. Bartmann, V. Fedosseev, B. Goddard, T. Kramer
    CERN, Geneva, Switzerland
 
  A new High-Power Proton Synchrotron (HP-PS) is being studied at CERN for the second phase of the Long Baseline Neutrino facility (LAGUNA-LBNO) where a 2 MW beam power shall impinge onto a target. A 4 GeV H injection based on foil stripping and extendable to laser-assisted magnet stripping is described. The proposed laser-assisted stripping is assessed with regard to the laser power requirements. The feasibility of a fast extraction system at 75 GeV is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME072 Delivery of Special Magnets for the MedAustron Project kicker, extraction, dipole, controls 3403
 
  • T. Kramer, M.G. Atanasov, R.A. Barlow, M.J. Barnes, J. Borburgh, L. Ducimetière, T. Fowler, M. Hourican, V. Mertens, A. Prost
    CERN, Geneva, Switzerland
  • T. Stadlbauer
    EBG MedAustron, Wr. Neustadt, Austria
 
  Ten different types of kickers, bumpers, and electrostatic and magnetic septa, along with certain power supplies and associated control system components, have been designed in a collaboration between CERN and MedAustron for an ion therapy centre in Wr. Neustadt (Austria). This paper focuses on the status of the special magnets work package and the improvements applied during the production. The design parameters are compared with data from measurements, hardware tests and initial commissioning. The major factors contributing to the successful completion of the work package are highlighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME098 Set up of a Synchrotron Light Monitor at the 2.5 GeV Booster Synchrotron at ELSA synchrotron, vacuum, radiation, diagnostics 3468
 
  • T. Schiffer
    Uni Bonn, Bonn, Germany
  • P. Hänisch, W. Hillert, M.T. Switka
    ELSA, Bonn, Germany
 
  For the upgrade of the accelerator facility ELSA towards higher stored beam currents, a non-destructive beam analysis is being implemented at the 2.5 GeV booster synchrotron. It is a fast ramping combined function synchrotron with an extraction repetition rate of 50 Hz. Typically, beam currents of 10 mA are accelerated from 20 MeV to the extraction energy of 1.2 GeV within 8.6 ms, hence the magnetic field is increased by up to 85 T/s. A synchrotron light monitor as the primary diagnostic tool will be utilized for measuring the transversal position and intensity distribution of the beam. Its dynamics on the fast energy ramp is of distinct interest. The proposed set-up of the synchrotron light monitor and the current development are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME114 Commissioning and First Beam Measurements with a New Beam Diagnostics for Medical Electron Accelerators electron, diagnostics, simulation, quadrupole 3500
 
  • D. Vlad
    Siemens AG Healthcare, H CP CV - Components and Vacuum, Erlangen, Germany
  • G. Fischer
    Friedrich-Alexander Universität Erlangen-Nuernberg, University Erlangen-Nuernberg LFTE, Erlangen, Germany
  • M. Hänel
    Siemens Healthcare, Erlangen, Germany
 
  A new beam diagnostics system was developed and built at the Siemens Healthcare Sector facility in Rudolstadt, Germany. The project goal was to develop, commission and operate a complete beam diagnostics system to fully characterize the compact medical linear electron accelerators. An overview of the whole system including the beam diagnostics, linear accelerator and control and supply unit is given. The system was successfully commissioned in July 2013. We report on initial experiences and first experimental results on current measurements, transverse beam size, transverse emittance and momentum and momentum distribution gained during the commissioning phase.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME121 The Status of the Diagnostic System at the Cryogenic Storage Ring CSR ion, pick-up, storage-ring, diagnostics 3521
 
  • M. Grieser, A. Becker, K. Blaum, S. George, C. Krantz, S. Vogel, A. Wolf, R. von Hahn
    MPI-K, Heidelberg, Germany
 
  The cryogenic storage ring (CSR) at MPI für Kernphysik is an electrostatic storage ring for low velocity phase space cooled ion beams. Among other experiments cooling and storage of molecular ions in their rotational ground state is projected. The stored beam current will be in the range of 1 nA - 1 μA. The resulting low signal strengths on the beam position pickups, current monitors and Schottky monitor put strong demands on these diagnostics tools. Methods and systems were developed to measure the profile of the ion beam. In the paper a summary of the CSR diagnostics tools and diagnosis of the first stored ion beam will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME175 A Beam Gas Vertex Detector for Beam Size Measurement in the LHC detector, target, simulation, luminosity 3680
 
  • P. Hopchev, V. Baglin, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, C. Gaspar, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, N.J. Jurado, V. Kain, M. Kuhn, B. Luthi, P. Magagnin, R. Matev, N. Neufeld, J. Panman, M.N. Rihl, V. Salustino Guimaraes, B. Salvant, R. Veness, E. van Herwijnen
    CERN, Geneva, Switzerland
  • A. Bay, F. Blanc, S. Gianì, G.J. Haefeli, T. Nakada, B. Rakotomiaramanana, O. Schneider, M. Tobin, Q.D. Veyrat, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, W. Karpinski, T. Kirn, S. Schael, G. Schwering, M. Wlochal, A. von Dratzig
    RWTH, Aachen, Germany
  • R. Matev
    Sofia University St. Kliment Ohridski, Faculty of Physics, Sofia, Bulgaria
 
  The Beam Gas Vertex (BGV) detector is foreseen as a possible non-invasive beam size measurement instrument for the LHC and its luminosity upgrade. This technique is based on the reconstruction of beam gas interaction vertices, where the charged particles produced in inelastic beam gas interactions are measured with high-precision tracking detectors. The design studies and expected performance of the currently developed BGV prototype will be presented with an overview given of the associated vacuum, detector, and readout systems. A brief description will be given of the BGV Monte Carlo simulation application, which is based on the LHCb computing framework (Gaudi) and allows simulation studies to be performed and online event reconstruction algorithms to be developed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME175  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME177 A Novel Approach to Synchrotron Radiation Simulation simulation, detector, radiation, synchrotron 3687
 
  • G. Trad, E. Bravin, A. Goldblatt, S. Mazzoni, F. Roncarolo
    CERN, Geneva, Switzerland
  • G. Trad
    LPSC, Grenoble Cedex, France
 
  At the Large Hadron Collider (LHC) at CERN, synchrotron radiation (SR) is used to continuously monitor the transverse properties of the beams. Unfortunately the machine and beam parameters are such that the useful radiation emitted inside a separation dipole, chosen as source, is diffraction limited affecting heavily the accuracy of the measurement. In order to deconvolve the diffraction effects from the acquired beam images and in order to design an alternative monitor based on a double slit interferometer an extensive study of the synchrotron light source and of the optical propagation has been made. This study is based on simulations combining together several existing tools: SRW for the source, ZEMAX for the transport and MATLAB for the "glue" and analysis of the results. The resulting tool is very powerful and can be easily adapted to other synchrotron radiation problems. In this paper the simulation package and the way it is used will be described as well as the results obtained for the LHC and SPS cases.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME177  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME181 Progress on Beam Measurement and Control Systems for the ISIS Synchrotron synchrotron, lattice, quadrupole, controls 3700
 
  • B. Jones, D.J. Adams, B.G. Pine, H. V. Smith, C.M. Warsop
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS Facility at the Rutherford Appleton Laboratory in the UK produces intense neutron and muon beams for condensed matter research. Its 50 Hz, 800 MeV proton synchrotron delivers a mean beam power of 0.2 MW to two spallation targets. Recent developments to beam control and measurement systems at ISIS are described. New PXI-based digitising hardware and custom software developed with LabVIEW have increased the capability to study beam behaviour. New, more flexible power supplies for steering and trim quadrupole correction magnets have been commissioned allowing greater control of beam orbits and envelopes. This paper looks at recent linear lattice measurements and attempts to identify the source of lattice errors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME181  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI001 Design of a High Luminosity Tau/Charm Factory luminosity, emittance, sextupole, dipole 3757
 
  • M.E. Biagini, R. Boni, M. Boscolo, A. Chiarucci, R. Cimino, A. Clozza, E. Di Pasquale, A. Drago, S. Guiducci, C. Ligi, G. Mazzitelli, R. Ricci, C. Sanelli, M. Serio, A. Stella, S. Tomassini
    INFN/LNF, Frascati (Roma), Italy
  • S. Bini, F. Cioeta, D. Cittadino, M. D'Agostino, M. Del Franco, A. Delle Piane, G. Frascadore, R. Gargana, S. Gazzana, S. Incremona, A. Michelotti, L. Sabbatini
    Consorzio Laboratorio Nicola Cabibbo, Frascati, Italy
  • N. Carmignani, S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
  • R. Petronzio
    Università di Roma II Tor Vergata, Roma, Italy
  • M.T.F. Pivi
    IMS Nanofabrication AG, Vienna, Austria
  • G. Schillaci, M. Sedita
    INFN/LNS, Catania, Italy
 
  The design of a high luminosity Tau/Charm Factory has been accomplished by the INFN-LNF Laboratory in Frascati in collaboration with the Consortium Nicola Cabibbo Laboratory. The target luminosity is 1035 cm-2 ses−1 at 4.6 GeV in the center of mass. This design is a natural evolution of the SuperB B-Factory, that was aimed to be built in the Rome Tor Vergata University campus as an Italian Flagship Project. The Tau/Charm design keeps all the features that made SuperB a state-of-the art accelerator, such as the “large Piwinski angle and crab waist sextupoles” collision scheme, the super squeezed beams, and the polarized electron beam. As a plus, it will be possible to collect data at high luminosity in a large energy range (2 to 4.6 GeV c. m.), with a peak luminosity target of 1034 cm-2 ses−1 at 2 GeV. The possibility to extend the Linac for a SASE-FEL facility is also taken into account. A Conceptual Design Report* was published in September 2013. In this paper the design principles and the project features are reviewed.
* Tau/Charm Factory Accelerator Report, INFN Report INFN-13-13/LNF, September 2013, arXiv:1310.6944 [physics.acc-ph]
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI015 DAΦNE Transfer Line for KLOE-2 Physics Run controls, linac, detector, electron 3797
 
  • A. De Santis, B. Buonomo, S. Cantarella, P. Ciuffetti, G. Di Pirro, A. Drago, L.G. Foggetta, A. Ghigo, C. Milardi, R. Ricci, U. Rotundo, M. Serio, A. Stecchi, A. Stella
    INFN/LNF, Frascati (Roma), Italy
  • A. Michelotti
    Consorzio Laboratorio Nicola Cabibbo, Frascati, Italy
 
  The transfer lines of the DAΦNE accelerator complex have been revised and optimized in view of the forthcoming KLOE-2 physics run. The transfer lines consolidation activities involved low level systems, diagnostics tools and control system hardware modifications for the magnetic element switching polarity during the injection procedure. Transfer lines optics has been reviewed and optimized as well by a systematic study based on a MAD-X model. The work done determined a substantial improvement in the transfer lines stability and reproducibility, speeded up the injection procedure with a considerable reduction on the background hitting the experimental detector during the beam injection process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI016 Pulse Based Data Archive System and Analysis for Current and Beam Loss Monitors in the J-PARC RCS linac, vacuum, ion-source, ion 3800
 
  • N. Hayashi, S. Hatakeyama, K. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The data archive system in the J-PARC 25-Hz Rapid-Cycling Synchrotron (RCS) records the beam intensity and the beam loss monitor (BLM) pattern for all pulses. The system is based on the common memory and utilizes the timing system of the J-PARC. Although its time resolution is limited, it is useful to detect rare events or phenomena appearing with only higher accelerator repetition. Using these data, the stability of the beam intensity, particularly ion source can be examined. The relation between BLM patterns and its causes can be studied pulse-by-pulse basis and it would make use of future improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI025 Accelerator Reliability Reporting at the Swiss Light Source operation, feedback, interlocks, insertion 3819
 
  • A. Lüdeke
    PSI, Villigen PSI, Switzerland
 
  Third generation light sources do aim for a very high reliability of the accelerator. This contribution describes the reliability reporting of the Swiss Light Source at the Paul Scherrer Institut, as it has been performed in the past decade. We will highlight the importance of a formal reporting on the accelerator reliability to support the long term optimization of the reliability of an accelerator facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI032 Study of a RF Gun with a Thermoionic Cathode gun, cavity, simulation, space-charge 3837
 
  • A.S. Setty, A.S. Chauchat, D. Fasse, D. Jousse, P. Sirot
    Thales Communications & Security (TCS), Gennevilliers Cedex, France
 
  The low energy part of our pre injectors* is made up of a 90 kV DC thermoionic triode gun, followed by a 500 MHz sub harmonic prebuncher and a 3 GHz prebuncher. These two cavities are respectively fed with 500 W, a modulation of ± 25 kV, and 90 W corresponding to a ± 10 kV. The gun grid is modulated within a 500 MHz signal. The initial 1 ns phase extension at the gun level is reduced, at the buncher entry, to 40 ps for 75% of the gun current. This study proposes to replace the gun and the two cavities by a RF gun integrated in a modulated cavity at 200 MHz followed by a drift in order to bunch the beam. This study will compare the beam dynamics simulations for these two cases.
*A. Setty et al, "Design and Construction of Turnkey Linacs as Injectors for Light Sources", Proceedings IPAC 2012, USA, Louisiana, May 2012.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI046 Air-cooled Magnetic Alloy Cavity for J-PARC Doubled Rep.-rate Scenario cavity, impedance, acceleration, ion 3869
 
  • C. Ohmori, K. Hara, K. Hasegawa, K. Takata, M. Toda, M. Yoshii
    KEK, Ibaraki, Japan
  • M. Nomura, A. Schnase, T. Shimada, F. Tamura, M. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  The upgrade project of the J-PARC MR (Main Ring) is in progress to deliver the beam power of 750 kW based on doubled repetition-rate scenario. The present RF section will be occupied by 9 sets of new magnetic alloy, FT3L, cavity using the direct water cooling scheme. The direct water cooling requires dedicated high-quality cooling water. These cavities will be used for the fundamental RF for acceleration. The second harmonic RF is necessary to increase the bunch length. This allows to enlarge the beam current, and to relax the space charge effects during the injection. Thanks to the high impedance FT3L, the power loss in the second harmonic RF system becomes moderate. The air cooled cavity is designed to fit in any space in the MR where the dedicated water is not available. This paper reports the design of the second RF system, technical issues to produce the magnetic alloy cores to fit the air cooling, and construction of the system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI061 Perpendicular Biased Ferrite Tuned Cavities for the Fermilab Booster cavity, booster, TRIUMF, proton 3911
 
  • G.V. Romanov, M.H. Awida, T.N. Khabiboulline, W. Pellico, C.-Y. Tan, I. Terechkine, V.P. Yakovlev, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  The aging Fermilab Booster RF system needs an upgrade to support future experimental program. The important feature of the upgrade is substantial enhancement of the requirements for the accelerating cavities. The new requirements include enlargement of the cavity beam pipe aperture, increase of the cavity voltage and increase in the repetition rate. The modification of the present traditional parallel biased ferrite cavities is rather challenging. An alternative to rebuilding the present Fermilab Booster RF cavities is to design and construct new perpendicular biased RF cavities, which potentially offer a number of advantages. An evaluation and a preliminary design of the perpendicular biased ferrite tuned cavities for the Fermilab Booster upgrade is described in the paper. Also it is desirable for better Booster performance to improve the capture of beam in the Booster during injection and at the start of the ramp. One possible way to do that is to flatten the bucket by introducing second harmonic cavities into the Booster. This paper also looks into the option of using perpendicularly biased ferrite tuners for the second harmonic cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI096 Use of Silicon Carbide as Beam Intercepting Device Material: Tests, Issues and Numerical Simulations radiation, vacuum, interface, booster 3998
 
  • C. Maglioni, M. Delonca, M. Gil Costa, A. Vacca
    CERN, Geneva, Switzerland
 
  Silicon Carbide (SiC) stands as one of the most promising ceramic material with respect to its thermal shock resistance and mechanical strengths. It has hence been considered as candidate material for the development of higher performance beam intercepting devices at CERN. Its brazing with a metal counterpart has been tested and characterized by means of microstructural and ultrasound techniques. Despite the very positive results, its use has to be evaluated with care, due to the strong evidence in literature of large and permanent volumetric expansion, called swelling, under the effect of neutron and ion irradiation. This may cause premature and sudden failure of components, and can be mitigated to some extent by operating at high temperature. For this reason limited information is available for irradiation below 100°C, which is the typical temperature reached in intercepting devices like dumps or collimators. This paper describes the brazing campaign carried out at CERN, the results, and the theoretical and numerical approach used to characterize the extent of the swelling phenomenon with radiation, as well as the p+ irradiation test program to be conducted in the next future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXCA01 State-of-the-art and Future Challenges for Machine Protection Systems operation, linac, monitoring, diagnostics 4060
 
  • J. Wenninger
    CERN, Geneva, Switzerland
 
  Current frontier accelerators explore regimes of increasing power and stored energy, with beam energies spanning more than three orders of magnitude from the GeV to the TeV scale. In many cases the high beam power has to cohabit with superconducting equipment in the form of magnets or RF cavities requiring careful control of losses and of halos to mitigate quenches. Despite their large diversity in physics goals and operation modes, all facilities depend on their “Machine Protection Systems” (MPS) for safe and efficient running. This presentation will aim to give an overview of current MPS and on how the MPS act on or control the beams. Lessons from the LHC and other accelerators show that ever tighter monitoring of accelerator equipment and of beam parameters is required in the future. Such new monitoring systems must not only be very accurate but also be extremely reliable to minimize false alarms. Novel MPS ideas and concepts for linear colliders, high intensity hadron accelerators and to other high power accelerators will be presented.  
slides icon Slides FRXCA01 [5.507 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-FRXCA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)