Keyword: heavy-ion
Paper Title Other Keywords Page
MOYBA01 The Very High Intensity Future target, linac, ion, proton 17
 
  • J. Wei
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
This paper surveys the key technologies and design challenges that form a basis for the next generation of very high intensity hadron accelerators, including projects operating, under construction, and under design for science and applications at MW beam power level.
 
slides icon Slides MOYBA01 [7.187 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOYBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI070 2MeV Electron Cooler for COSY and HESR – First Results electron, proton, experiment, operation 765
 
  • V. Kamerdzhiev, U. Bechstedt, F.M. Esser, O. Felden, R. Gebel, A.J. Halama, F. Klehr, G. Langenberg, A. Lehrach, B. Lorentz, R. Maier, D. Prasuhn, K. Reimers, M. Retzlaff, R. Stassen, H. Stockhorst, R. Tölle
    FZJ, Jülich, Germany
  • N. Alinovskiy, T.V. Bedareva, E.A. Bekhtenev, O.V. Belikov, V.N. Bocharov, V.V. Borodich, M.I. Bryzgunov, A.V. Bubley, V.A. Chekavinskiy, V.G. Cheskidov, B.A. Dovzhenko, A.I. Erokhin, M.G. Fedotov, A.D. Goncharov, K. Gorchakov, V.K. Gosteev, I.A. Gusev, G.V. Karpov, Y.I. Koisin, M.N. Kondaurov, V.R. Kozak, A.M. Kruchkov, A.D. Lisitsyn, I.A. Lopatkin, V.R. Mamkin, A.S. Medvedko, V.M. Panasyuk, V.V. Parkhomchuk, I.V. Poletaev, V.A. Polukhin, A.Yu. Protopopov, D.N. Pureskin, A.A. Putmakov, V.B. Reva, P.A. Selivanov, E.P. Semenov, D.V. Senkov, D.N. Skorobogatov, N.P. Zapiatkin
    BINP SB RAS, Novosibirsk, Russia
  • J. Dietrich
    HIM, Mainz, Germany
  • T. Katayama
    Nihon University, Narashino, Chiba, Japan
  • L.J. Mao
    IMP, Lanzhou, People's Republic of China
 
  The 2 MeV electron cooler was installed in the COSY ring in the spring 2013. The new system enables electron cooling in the whole energy range of COSY. The electron beam is guided by longitudinal magnetic field all the way from the electron gun to the collector. This well-proven optics scheme was chosen because of the wide electron energy range of 0.025-2 MeV. The electrostatic accelerator consists of 33 individual sections of identical design. Electrical power to each section is provided by a cascade transformer. Electron beam commissioning and first studies using proton and deuteron beams were carried out. Electron cooling of proton beam up to 1662 MeV kinetic energy was demonstrated. Maximum electron beam energy achieved so far amounted to 1.25 MeV. Voltage up to 1.4 MV was demonstrated. The cooler was operated with electron current up to 0.5 A. The paper provides insights into the recent progress in high energy electron cooling at COSY and perspectives for the HESR ring at FAIR.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI106 Simulation Study of Beam Halo Collimation in the Heavy-ion Synchrotron SIS 100 ion, collimation, simulation, injection 870
 
  • I.A. Prokhorov
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim, I. Strašík
    GSI, Darmstadt, Germany
 
  Funding: Work is supported by German Federal Ministry of Education and Research (BMBF) contract no. 05P12RDRBM
The FAIR synchrotron SIS-100 will be operated with high-intensity proton and heavy-ion beams. The collimation system should prevent beam loss induced degradation of the vacuum, activation of the accelerator structure and magnet quenches. A conventional two-stage betatron collimation system is considered for the operation with protons and fully-stripped ions. Particle tracking and ion-collimator interaction simulations of the collimation system were performed. The angular and momentum distributions of the scattered halo particles were described using analytical models and numerical tools like ATIMA and FLUKA. MADX was used for the multi-pass tracking simulations. The results obtained for the collimation cleaning efficiency as a function of the ion species and beam energy together with the detailed beam losses distributions along the ring circumference are presented. This work highlights the main aspects of the collimation of fully-stripped ion beams in the intermediate energy range using conventional two-stage systems.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO014 Semi-empirical Model for Optimising Future Heavy Ion Luminosity of the LHC luminosity, injection, kicker, simulation 1033
 
  • M. Schaumann
    CERN, Geneva, Switzerland
 
  The wide spectrum of intensities and emittances imprinted on the LHC Pb bunches during the accumulation of bunch trains in the injector chain result in a significant spread in the single bunch luminosities and lifetimes in collision. Based on the data collected in the 2011 Pb-Pb run, an empirical model is derived to predict the single-bunch peak luminosity depending on the bunch's position within the beam. In combination with this model, simulations of representative bunches are used to estimate the luminosity evolution for the complete ensemble of bunches. Several options are being considered to improve the injector performance and to increase the number of bunches in the LHC, leading to several potential injection scenarios, resulting in different peak and integrated luminosities. The most important options for after the long shutdown 1 and 2 are evaluated and compared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO042 Ion Optics of the HESR Storage Ring at FAIR for Operation with Heavy Ions ion, target, experiment, optics 1117
 
  • O.A. Kovalenko, A. Dolinskyy, T. Katayama, Yu.A. Litvinov, T. Stöhlker
    GSI, Darmstadt, Germany
  • B. Lorentz, R. Maier, D. Prasuhn, H. Stockhorst
    FZJ, Jülich, Germany
 
  The High Energy Storage Ring (HESR) of the FAIR project is primarily designed for internal target experiments with stored and cooled antiprotons, which is the main objective of the PANDA collaboration. However, the HESR storage ring also appears to have remarkable properties to carry out physics experiments with heavy ions. In this paper a new ion optical design allowing the heavy ion operation mode of the HESR is presented. The main goal was to provide an optics which meets the requirements of the future experiments with heavy ion beams. Closed orbit correction, dynamic aperture as well as other characteristics of beam dynamics of the ion optical setup are under analysis in this study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYA01 Challenges of Radioactive Beam Facilities – Comparing Solutions at SPIRAL2 and FAIR ion, target, linac, ISOL 1852
 
  • R. Ferdinand
    GANIL, Caen, France
 
  The SPIRAL2 facility at GANIL will use a high-power p, d and heavy-ion driver to produce RIB though both ISOL and in-flight techniques. The SPIRAL2-injector beam is expected before the end of 2014. The construction of the FAIR facility has started at GSI and the outline of the accelerator complex is well defined. A clear strategy and construction schedule is defined in the framework of the international FAIR collaboration. This talk will give an overview of the accelerators at both facilities and compare the characteristics and benefits of these two approaches to meet their user needs.  
slides icon Slides WEYA01 [9.134 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEYA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBA01 Status of the FAIR Synchrotron Projects SIS18 Upgrade and SIS100 ion, quadrupole, dipole, operation 1857
 
  • P.J. Spiller, R. Balß, A. Bleile, L.H.J. Bozyk, J. Ceballos Velasco, T. Eisel, E.S. Fischer, P. Forck, P. Hülsmann, M. Kauschke, O.K. Kester, H. Klingbeil, H.G. König, H. Kollmus, P. Kowina, A. Krämer, J.P. Meier, A. Mierau, C. Omet, D. Ondreka, N. Pyka, H. Ramakers, P. Schnizer, H. Welker, St. Wilfert
    GSI, Darmstadt, Germany
  • A. Iluk
    WRUT, Wrocław, Poland
  • H.G. Khodzhibagiyan
    JINR, Dubna, Moscow Region, Russia
  • D. Urner
    FAIR, Darmstadt, Germany
 
  The upgrade of the existing heavy ion synchrotron SIS18 as booster for the FAIR synchrotron SIS100 has been partly completed. With the achieved technical status, a major increase of the accelerated number of heavy ions could be reached. This progress especially demonstrates the feasibilty of acceleration of medium charge state heavy ions with high intensity and and the succesfull control of dynamic vaccuum effects and correlated charge exchange loss. Two further upgrade measures, the installation of additional MA acceleration cavities and the exchange of the main dipole power converter are in progress. For the FAIR synchrotron SIS100 all major components with long production times have been ordered. With several pre-series components, outstanding technical developments have been completed and the readiness for series production reached. The technical project status will be summarized.  
slides icon Slides WEOBA01 [6.107 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIB05 Big Science Projects - What is it that makes some a success and others to fail? factory, collider, plasma, operation 4099
 
  • J.H. Yeck
    ESS, Lund, Sweden
 
  This presentation analyses the driving forces behind big science projects (which are very different compared to similarly complex but totally commercial projects). This presentation should be enlightening and a big help for anyone wanting to make business with big science projects.  
slides icon Slides WEIB05 [3.312 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEIB05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO087 Magnetic-field Measurements of Superconducting Magnets for a Heavy-ion Rotating-gantry and Beam-tracking Simulations superconducting-magnet, ion, quadrupole, simulation 2159
 
  • S.S. Suzuki, T. Furukawa, Y. Hara, Y. Iwata, K. Mizushima, S. Mori, K. Noda, T. Shirai, K. Shoda
    NIRS, Chiba-shi, Japan
  • N. Amemiya
    Kyoto University, Kyoto, Japan
  • H. Arai, T. Fujimoto
    AEC, Chiba, Japan
  • T.F. Fujita
    National Institute of Radiological Sciences, Chiba, Japan
  • Y. Nagamoto, T. Orikasa, S. Takayama, T. Yazawa
    Toshiba, Tokyo, Japan
  • T. Obana
    NIFS, Gifu, Japan
  • T. Ogitsu
    KEK, Ibaraki, Japan
 
  Manufacture of superconducting rotating-gantry for heavy-ion radiotherapy is currently in progress. This rotating gantry can transport heavy ions having 430 MeV/nucleon to an isocenter with irradiation angles of over 0-360 degrees, and enable advanced radiation-therapy. The three-dimensional scanning-irradiation method is performed in this rotating gantry. Therefore, uniformity of magnetic field is quite important since scanned beams traverse through these superconducting magnets before reaching to the isocenter. In the present work, we precisely measured the magnetic-field distributions of the superconducting magnets for the rotating gantry. We used Hall probes to measure the magnetic field. The magnetic-field distributions were determined by measuring Hall voltage, while moving the Hall probes on a rail, which has the same curvature as a center trajectory of beams. The measured-field distributions were compared with calculated distributions with a three-dimensional electromagnetic-field solver, the OPERA-3D code. Furthermore, beam-tracking simulations were performed by using the measured magnetic-field distributions to verify the design of the superconducting magnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAB01 Recent Progress and Future Plan of Heavy-ion Radiotherapy Facility, HIMAC ion, operation, synchrotron, flattop 2812
 
  • K. Noda, T. Furukawa, Y. Hara, Y. Iwata, N. Kanematsu, K. Katagiri, A. Kitagawa, K. Mizushima, S. Mori, T. Murakami, M. Muramatsu, M. Nakao, A. Noda, S. Sato, T. Shirai, E. Takada, Y. Takei
    NIRS, Chiba-shi, Japan
 
  The first clinical trial with a carbon-ion beam generated from HIMAC was conducted in June 1994. Based on more than ten years of experience with HIMAC, a pilot facility of a standard carbon-ion radiotherapy facility in Japan, was constructed at Gunma University. Owing to the successfully operation of the pilot facility, Saga-HIMAT and i-ROCK in Kanagawa have been progressed. In addition, NIRS has developed the new treatment research project for the further development of radiotherapy with, based on the pencil-beam 3D scanning for both the static and moving targets. This treatment procedure has been successfully carried out with a pencil-beam 3D scanning since May 2011. Owing to the development of NIRS 3D scanning, the i-ROCK project decided to employ the NIRS 3D scanning. As a future plan, further, NIRS has developed a superconducting rotating gantry, and we are going to just start a study of a superconducting accelerator for the ion radiotherapy. The recent progress and the future plan of HIMAC for the heavy-ion cancer radiotherapy will be reported.  
slides icon Slides THOAB01 [10.523 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME004 Further R&D for a New Superconducting CW Heavy Ion Linac@GSI cavity, linac, ion, solenoid 3211
 
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
  • M. Amberg, K. Aulenbacher, V. Gettmann
    HIM, Mainz, Germany
  • F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  A low energy beam line (1.4 MeV/u) behind the GSI High Charge State Injecor will provide cw-heavy ion beams with high beam intensity. It is foreseen to build a new cw-heavy ion-linac for post acceleration up to 7.3 MeV/u. In preparation an advanced R&D program is defined: The first linac section (financed by HIM and partly by HGF-ARD-initiative) comprising a sc CH-cavity embedded by two sc solenoids will be tested in 2014/15 as a demonstrator. After successful testing the construction of an advanced cryomodule comprising four rf cavities is foreseen. As an intermediate step towards an entire cw-linac the use of a double of two CH-cavities is planned: Ashort 5 cell cavity should be mounted directly behind the demonstrator cavity inside a short cryostat. The design of the cw linac based on shorter sc CH-cavities would minimize the overall technical risk and costs. Besides with this cavity an optimized operation of the whole linac especially with respect to beam quality could be achieved. Last but not least the concept of continuous energy variation applying phase variation between the two cavities with constant beta profile could be tested.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME029 Upgrade of Heavy Ion Injector for ITEP-TWAC Facility ion, acceleration, simulation, focusing 3283
 
  • V. Andreev, N.N. Alexeev, A.I. Balabin, M.M. Kats
    ITEP, Moscow, Russia
  • A.A. Metreveli
    MEPhI, Moscow, Russia
 
  A new scheme of heavy ion injector I-3 designed for improvement of accelerated beam parameters has been proposed for ITEP-TWAC Facility. It is based on the usage of two quarter-wave double gap resonators operated on 5 MHz with accelerating voltage of 3 MV per gap. Existing 2.5 MHz double gap resonator will be retuned for operational frequency of 5 MHz and new additional one will be built. The new injector optimized for acceleration of heavy ions with A/Z in the range of 3-10 will allow accelerating any ions from C to U with beam current up to10 mA. Results of both electrodynamics and beam dynamics simulations of the accelerating structures are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME036 ECOS-LINCE: A High Intensity Multi-ion Superconducting Linac for Nuclear Structure and Reactions ion, linac, ECR, rfq 3301
 
  • I. Martel, L. Acosta, R. Carrasco Dominguez, J.A. Dueñas, A.K. Orduz, A. Peregrin, J. Prieto-Thomas, J. Sanchez-Segovia, A.C.C. Villari
    University of Huelva, Huelva, Spain
  • F. Azaiez
    IPN, Orsay, France
  • G. De Angelis
    INFN/LNL, Legnaro (PD), Italy
  • M. Lewitowicz
    GANIL, Caen, France
  • A. Maj
    IFJ-PAN, Kraków, Poland
  • P.N. Ostroumov
    ANL, Argonne, Illinois, USA
  • A.C.C. Villari
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work partially supported by the Spanish Government (MINECO-CDTI) under program FEDER INTERCONNECTA.
During the past ten years, ECOS working group and users strongly supported the construction of a dedicated high-intensity stable-ion-beam facility in Europe, with energies at and above the Coulomb barrier as part of the Long-Range Plan of the Nuclear-Physics community. LINCE will be a multi-user facility dedicated to ECOS science: fundamental physics, astrophysics, nuclear structure and reaction dynamics. Applied research is foreseen in the fields of medical physics, aerospace and material sciences with energetic heavy ions. The facility will produce a wide range of ions, from protons (45 MeV) up to Uranium (8.5 MeV/u) with 1mA maximum beam intensity. A very compact linac has been designed by using a HV platform with a double-frequency ECR ion source, multi-harmonic buncher, an innovative CW RFQ design (1 ≤A/Q ≤ 7) and 26 accelerating cavities made of bulk niobium (β = 0.045, 0.077 and 0.15) working at 72.75 and 109.125 MHz. This article gives an outline of the accelerator complex from the ion source to the experimental areas, and presents its research potential and the relevant physics instrumentation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME067 Air Stripper for Intense Heavy Ion Beams target, ion, cyclotron, acceleration 3388
 
  • H. Imao
    RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, Japan
  • M. Fujimaki, N. Fukunishi, H. Hasebe, O. Kamigaito, M. Kase, H. Kuboki, H. Okuno, Y. Yano
    RIKEN Nishina Center, Wako, Japan
 
  Intensity upgrade of very heavy ions such as uranium or xenon beams is one of the main concerns at the RIKEN Radioactive Isotope Beam Factory (RIBF). The lifetime problem of carbon-foil strippers due to the high energy loss of beams was a principal bottleneck for the intensity upgrade. We have already developed and successfully operated a re-circulating He-gas stripper for 10-MeV/u uranium beams as an alternative to carbon foils. Recently, the 2nd gas stripper with air dedicated for 50-MeV/u 124Xe beams was developed. The differential pumping techniques similar to that used in the He gas stripper was applied. We confined a very thick gas target, up to 20~mg/cm2 of air, in a 0.5-m target chamber. One good feature of using air is that it can be inexhaustible for our use. The stripper was stably operated in user runs performed in June 2013. The service rate reached 91\%. The maximum beam intensity reached 38~pnA and the average intensity provided to users becomes approximately four times higher than it was in 2012. The down-time free gas strippers greatly contributed to these improvements. We also discuss the applicability of the air stripper to 50-MeV/u 238U beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME101 Considerations for a Cavity-Based Position-Sensitive Heavy Ion Detector for the CR at FAIR cavity, impedance, ion, simulation 3477
 
  • X. Chen, P. Hülsmann, Yu.A. Litvinov, F. Nolden, M.S. Sanjari, M. Steck, T. Stöhlker
    GSI, Darmstadt, Germany
  • X. Chen
    Heidelberg University, Heidelberg, Germany
  • Yu.A. Litvinov
    MPI-K, Heidelberg, Germany
  • J. Piotrowski
    AGH University of Science and Technology, Kraków, Poland
  • T. Stöhlker
    HIJ, Jena, Germany
 
  Funding: Work funded by the European Commission (PITN-GA-2011-289485), the Alliance Program of the Helmholtz Association (HA216/EMMI), the Helmholtz-CAS Joint Research Group (HCJRG-108), the BMBF (05E12CD2).
The Facility for Antiproton and Ion Research (FAIR) is a complex yet ongoing project which will allow for a broad range of experimental physics programs as well as a variety of material and medical applications. Being a heavy ion storage ring at FAIR, the Collector Ring (CR) is perfectly suitable for scientific investigations on fundamental properties – such as masses and lifetimes – of short-lived radioactive nuclei when it operates in isochronous mode. To fulfill stringent experimental requirements, a compatible heavy ion detector sensitive to beam intensities and positions is highly demanded. In this paper we present a conceptual design of cavity-based Schottky noise pickup to achieve non-destructive detections of stored particles. Computer-aided simulations follow immediately to justify the feasibility of such a design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME120 An Intensity Measurement Method based on Inorganic Scintillators and Optoelectronic Sensors ion, proton, experiment, beam-transport 3518
 
  • A. Kechler, E. Feldmeier, Th. Haberer, A. Peters, C. Schömers
    HIT, Heidelberg, Germany
 
  The Heidelberg Ion Therapy Center (HIT) is a heavy ion accelerator facility located at the Heidelberg university hospital and intended for cancer treatment with heavy ions and protons. Currently ionization chambers with highly sensitive charge amplifiers are regularly used for intensity measurements of the high-energy ion beams. A new intensity measuring method will be presented based on the combination of fluorescent light from inorganic scintillators and an optoelectronic sensor with adjacent electronics as an alternative to the ionization chambers. A special measurement set-up with a large-area Si PIN-diode and adapted optics was investigated with respect to signal dynamics, resolution and linearity. The experimental results with proton and carbon beams will be presented in detail. Worth mentioning is a variation in sensitivity relating to the position of the beam spot, which could be reduced to some percent only.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME136 Beam Energy and Longitudinal Beam Profile Measurement System at RIBF LabView, controls, ion, Windows 3566
 
  • T. Watanabe, M. Fujimaki, N. Fukunishi, H. Imao, O. Kamigaito, M. Kase, M. Komiyama, N. Sakamoto, K. Suda, M. Wakasugi, K. Yamada
    RIKEN Nishina Center, Wako, Japan
 
  Monitors that use plastic scintillator (scintillation monitors) were fabricated to measure the energy and longitudinal profiles of heavy-ion beams at the RIKEN RI beam factory (RIBF).Six pairs of scintillation monitors (12 monitors) installed in the transport lines were used to measure the particle time-of-flight (TOF) to determine the acceleration energy of the heavy-ion beams. In addition, five scintillation monitors were installed to optimize the phase between the rebuncher cavities and the beam for the beam injection to the cyclotrons. Longitudinal beam profiles were obtained by using a time-to-digital converter (TDC), which digitizes the detected signals from the scintillator and the RF clock. The energy of the beam can be calculated from the measured TOF of the beam by using a scintillation monitor pair. Recently, to help users operate the system more easily, a new embedded processor with a higher-performance CPU was introduced, and LabVIEW programs were newly written or greatly improved. Development of the scintillation monitor system and results of experimental measurements of heavy-ion beams are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME195 Nondestructive Beam Current Monitor for the 88-inch Cyclotron cyclotron, ion, ion-source, operation 3738
 
  • M. Kireeff Covo
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of Nuclear Physics, Division of Nuclear Physics, US Department of Energy under Contract No. DE-AC02-05CH11231.
A fast current transformer is mounted in the staging line of the Berkeley 88-inch isochronous cyclotron. The measured signal is amplified and connected to the input of a lock-in amplifier. The lock-in amplifier detects the signal vector from the input signal at the RF reference frequency of the cyclotron second harmonic. The magnitude of the signal detected is calibrated against a Faraday cup and shows the beam current leaving the cyclotron.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME195  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)